

Longitudinal Bunch Position Update

Super-B Workshop Frascati Dec 2009

Kirk Bertsche

- e+ and e- bunches must overlap at crab waist
 - For 5 mm (1σ) bunch, 0.5 degrees of RF
 phase difference (1.0 mm) between HER and
 LER will decrease luminosity by 1%
 - Want RMS error < 0.5 deg
- Phase transient
 - Due to ion-clearing gap and heavy beam loading of cavities
 - About 10x the 0.5 degree requirement
 - Generally different for HER and LER

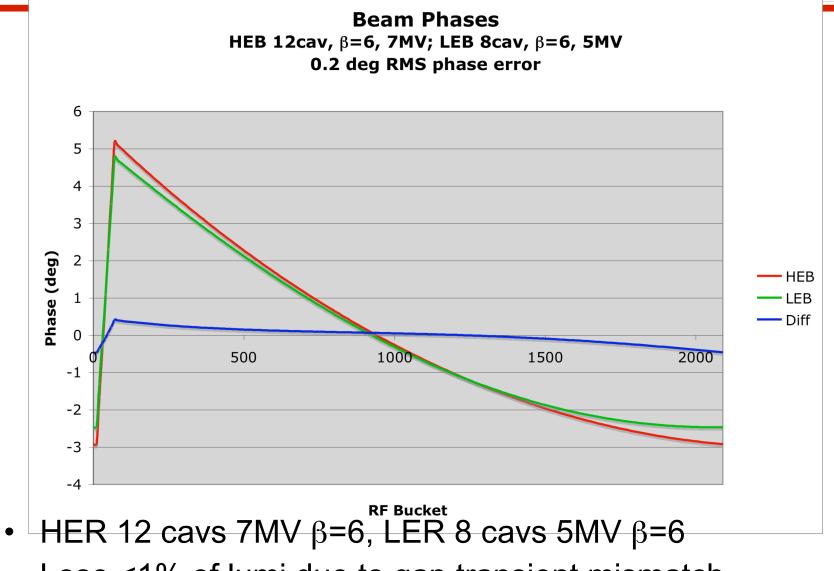
- Perfect matching
 - Occurs with HER and LER at identical beam loading and identical synchronous phase
 - Requires identical beam currents
 - Requires identical ratio of beam/cavity power
 - May require more RF stations than otherwise needed

Parameters--LNF Site

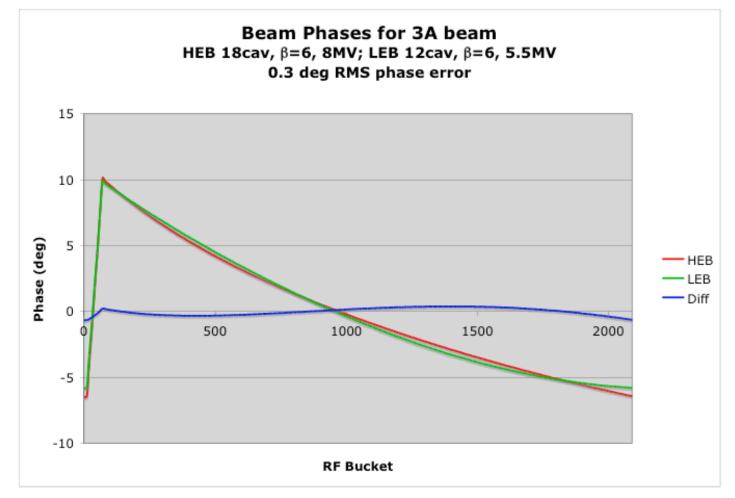
SuperB Parameters July 22 2009


SuperB Parameters July 22 2009

SuperB Parameters		(in bold: computed values	s)				
				Sig x LER	microns	9.899	9.051
Parameter	Units	Super-B	Super-B	Sig y LER	microns	0.038	0.036
		TorVergata	LNF	Piwinski angle HER	rad	26.52	26.52
		1-Mar-09	22-Jul-09	Piwinski angle LER	rad	15.15	16.57
		with SR	with SR LER	Sig x HER effective	microns	150.15	150.15
E HER (positrons)	GeV	6.9	6.7	Sig x LER effective	microns	150.37	150.32
E LER (electrons)	GeV	4.06	4.18	X-angle factor HER		0.038	0.038
Energy ratio		1.70	1.60	X-angle factor LER		0.066	0.060
rO	cm	2.83E-13	2.83E-13	Cap Sig X	microns	11.402	10.673
X-Angle (full)	mrad	60	60	Cap Sig Y	microns	0.054	0.051
				R (hourglass factor)		0.900	0.900
Beta x HER	cm	2	2	Cap Sig X eff	microns	212.13	212.13
Beta y HER	cm	0.037	0.032	Lumi calc	/cm2/s	1.02E+36	1.02E+36
Coupling (high current)		0.0025	0.0025	Tune shift x HER		0.0018	0.0017
Emit x HER	nm	1.6	1.6	Tune shift y HER		0.1271	0.1170
Emit y HER	nm	0.004	0.004	Tune shift x LER		0.0052	0.0045
Bunch length HER	cm	0.5	0.5	Tune shift y LER		0.1220	0.1170
Beta x LER	cm	3.5	3.2	Damping_long HER	msec	21	14.5
Beta y LER	cm	0.021	0.02	Damping_long LER	msec	20.0	22.0
Coupling (high current)	%	0.0025	0.0025	Uo HER	MeV	2.3	2.03
Emit x LER	nm	2.8	2.56	Uo LER	MeV	1,40	0.83
Emit y LER	nm	0.007	0.0064	alfa_c HER		3.50E-04	4.04E-04
Bunch length LER	cm	0.5	0.5	alfa_c LER		3.20E-04	4.24E-04
				sigma-EHER		5.80E-04	6.15E-04
THER	mA	2200	2120	sigma-E LER		8.20E-04	6.57E-04
ILER	mA	2200	2120	CM sigma_E		1.00E-03	9.00E-04
Circumference	m	2105	1315	SR power loss HER	MW	5.06	4.30
N. Buckets distance		2	2	SR power loss LER	MW	3.08	1.76
Gap		0.97	0.97	Touschek lifetime HER	min	33	35
Frf	Hz	4.76E+08	4.76E+08	Touschek lifetime LER	min	17	16
Fturn	Hz	1.43E+05	2.28E+05	Luminosity lifetime HER	min	5.20	4.95
Fcoll	Hz	2.31E+08	2.31E+08	Luminosity lifetime LER Total lifetime HER	min	5.20 4.49	4.95
Num Bunch		1619	1011	Total lifetime LER	min		4.34
NHER		5.96E+10	5.74E+10		min MW	3.98 16.28	3.78
NLER		5.96E+10	5.74E+10	RF plug power	WW	10.28	12.13
Sig x HER	microns	5.657	5.657				
Sig y HER	microns	0.038	0.036	1			

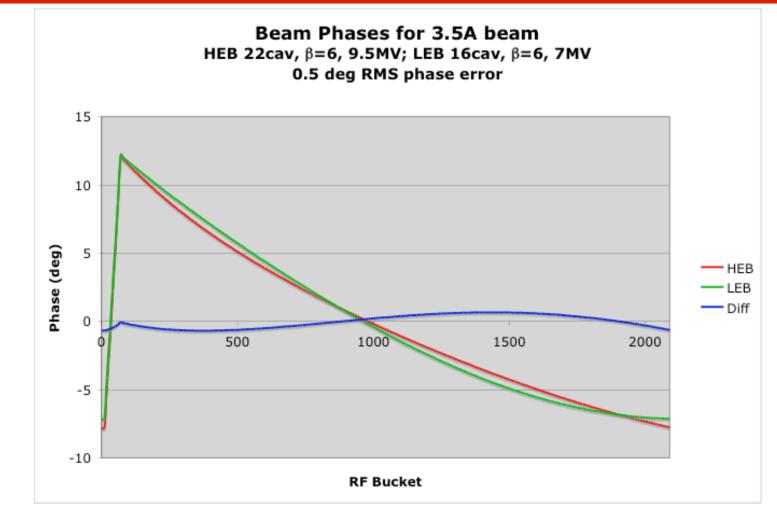

5mm Natural Bunch Length

Lose <1% of lumi due to gap transient mismatch



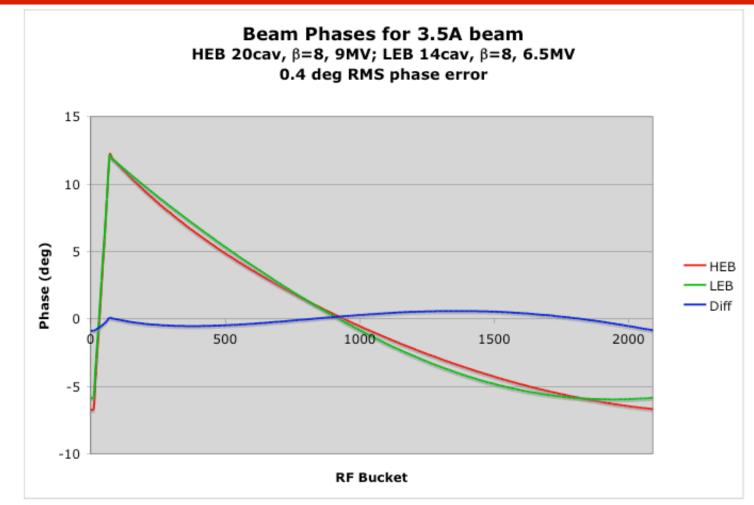
Lose <1% of lumi due to gap transient mismatch

3A Beam Current, β **=6**



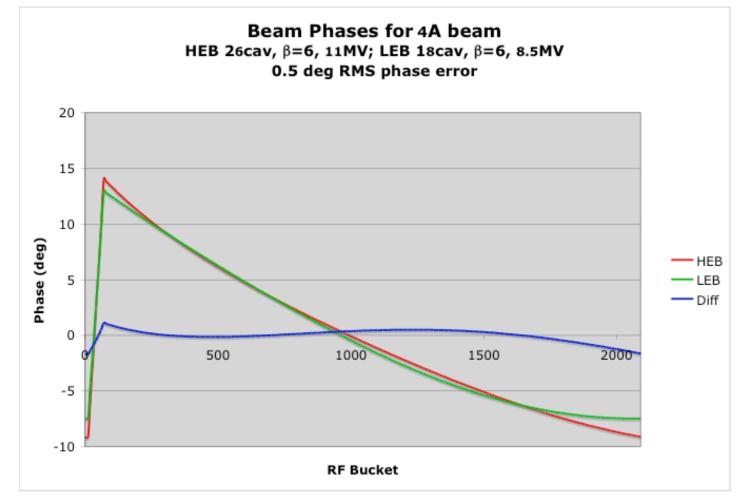
- HER 18 cavs 8MV, LER 12 cavs 5.5MV, 4.2mm bunch
- Lose <1% of lumi due to gap transient mismatch

3.5A Beam Current, β =6



- HER 22 cavs 9.5MV, LER 16 cavs 7MV, 3.8mm bunch
- Lose 1% of lumi due to gap transient mismatch

3.5A Beam Current, β =8

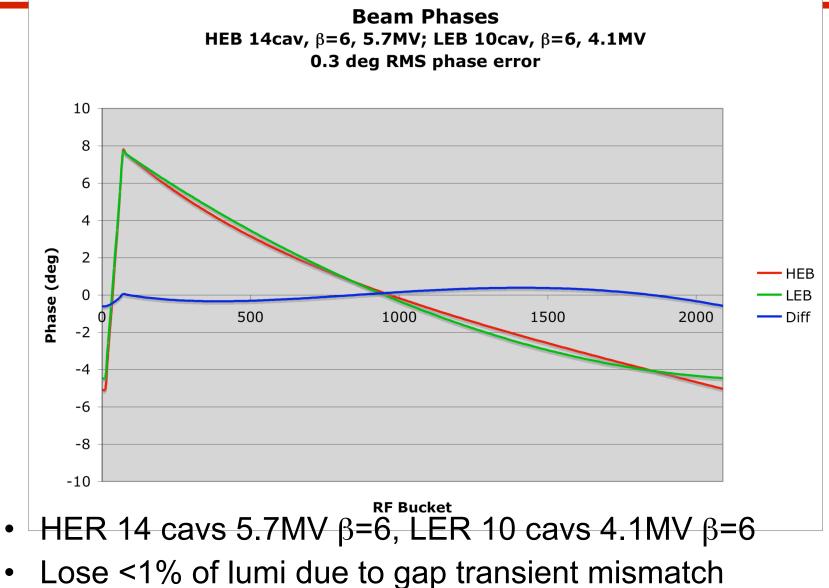


- HER 20 cavs 9MV, LER 14 cavs 6.5MV, 4mm bunch
- Lose <1% of lumi due to gap transient mismatch

4A Beam Current, β**=6**

- HER 26 cavs 11MV, LER 18 cavs 8.5MV, 3.5mm bunch
- Lose 1% of lumi due to gap transient mismatch
- Increasing β to 8 allows 3.8mm bunch with 24 HER, 16LER cavities

- Cavity coupling-constant (β)
 - Must increase to ~6 for HER to get power into cavities
 - Helpful to also increase for LER
- Minimum number of cavities:
 - 12 HER and 8 LER cavities -- for equal natural bunch lengths in HER and LER (4.5 or 5 mm)
 - Recommend 1 additional RF station (2 cavities) in each ring to allow operation with one dead klystron
- Higher beam currents:
 - Possible with β =6, but must reduce natural bunch length
 - Increasing β to 7 or 8 provides more flexibility
 - At 4A, cavity detuning is >2x rev freq (unstable)



5mm Natural Bunch Length

Lose <1% of lumi due to gap transient mismatch