Preliminary study of SVT external layers

John Walsh INFN, Pisa

XI SuperB Workshop Frascati December 2009

External layer design

- Thus far, most focus of SVT group has been on Layer 0, the new layer to be placed at r ~ 1.5 cm
- The working baseline for the external layers has been to use the same design as the current BaBar silicon tracker, but extending the modules out to ± .300 radians in polar angle
- We have now begun investigating if the BaBar configuration (5 layers at radii from 3.3 to 14.2 cm)
 - the first issue being addressed is if there is some gain to removing one or more of the external layers

Motivations for BaBar design

- Two important considerations for the BaBar 5-layer design were 1) standalone tracking and 2) redundancy
 - <u>Standalone tracking</u>: since low-p_T particles will not penetrate in the DCH, they are reconstructed using only SVT information
 - need at least 3 xy-hits and 2 z-hits to make a helix
 - experience has shown that at least 4 hits in the xy-view and 3 hits in the z-view are necessary for robust track reconstruction
 - <u>Redundancy</u>: since access to the SVT was limited, it needed to function reasonably well even if several modules (or even a whole layer) failed.
- The result with a 5-layer design, with layers 1-2 and layers 4-5 close in radius, for redundancy.

BaBar SVT - transverse view

Fig. 18. Schematic view of SVT: tranverse section.

SuperB design

- Default is L₀ + BaBar SVT, *i.e.*, a 6-layer device
- Do we need 6 layers?
- Is there an advantage to having fewer than 6 layers?
 - physics motivation
 - other considerations (money, effort, etc.)
- Compare performance of nominal SuperB design with two alternatives:
 - 5-layer device
 - 4-layer device

Alternative designs

- Rules for 4- and 5-layer designs:
 - L₀ same as for nominal SuperB: hybrid pixels at r=1.6 cm (but I've also looked at striplets)
 - L_5 same as for nominal SuperB: lampshade geometry, r=14.22 cm
 - Add in remaining layers with equal spacing between layers
 - note: no attempt to optimize spacing (yet)

Figures of merit

- Track parameters: compare resolution in track parameters, by fitting reco-MCtruth difference
 - fits are simple (single Gaussian). Good enough for comparison of geometries
 - compare as function of p_T in two separate p_T ranges:
 - 50 200 MeV
 - 200 3000 MeV
- Kinematic variables and efficiency in $B \rightarrow D^*K$ decays
 - $\Delta m = m(D^*) m(D^0)$
 - ΔΕ
 - ε(B→D*K) acceptance and track efficiency:
 - nsvt>=8 OR ndch>=15

Nominal v. 5-Layer (track pars)

Nominal v. 4-Layer (track pars)

Non-perfect detector

- The previous plots were made assuming a fully functional detector with hit efficiency ≥ 95%
- We know from BaBar experience that modules sometimes fail
 - For Run 1-2 in BaBar:
 - Some were recovered later

Layer	% dead $\boldsymbol{\varphi}$	% dead z
1	0	0
2	8	8
3	0	25
4	0	6
5	3	6

- Model this in fastsim as hit inefficiency
 - fastsim inputs:

Layers	ϕ efficiency	z efficiency
0-2	.93	.91
3	.89	.70
4-5	.95	.89

Nominal v. 5-Layer: non-perfect SVT

Nominal v. 4-Layer: non-perfect SVT

High-background scenario

- We can also consider the scenario where backgrounds are higher than expected in L₀
- This can lead to significant loss of efficiency with both L₀ technologies:
 - hybrid pixels: readout inefficiency
 - striplets: shadowing due to out-of-time background hits
- Compare geometries with L₀ efficiency set to 60%

Nominal v. 5-Layer: non-perfect + ineff L_0

Nominal v. 4-Layer: non-perfect + ineff L_0

Reco efficiency in $B \rightarrow D^*K$

"Efficiency" here means geometrical acceptance plus ۲ tracking efficiency

nsvt>=8 OR ndch>=15

Remember: no pattern recognition in FastSim

XI SuperB Workshop, Frascati, Dec 2009

Summary

- Studied the performance of 5-Layer and 4-Layer SVT geometry using track parameter resolution and B→ D*K kinematic variables and efficiency
- We have considered various detector conditions: new, some damaged modules, high background
- Also evaluated performance when striplets technology used for L₀ (see Backup slides)
- In all cases, gains in tracking performance in going to 4- or 5-Layer device are modest (in many cases absent)
- Efficiency for tracks and B reconstruction is reduced for the 4- and 5-Layer devices
- These results are very fresh, but it appears that the current 6-Layer design is superior to the alternatives investigated

Striplets for L₀

- If striplet technology is adopted for L₀, the overall material budget for the SVT will be significantly lower
- In this case, a layer removed will represent a larger proportion of the overall SVT material
- So, perhaps a design with 4 or 5 layers will have larger gains in this case

Efficiency in $B \rightarrow D^*K$: L₀ striplets

SVT layer radii

Nominal Radius Layer (cm) 0 1.6 3.32 1 2 4.02 3 5.92 4 12.22 5 14.22

LayerRadius
(cm)01.614.7627.91311.07414.22

5-Layer

4-Layer

Layer	Radius (cm)
0	1.6
1	5.81
2	10.01
3	14.22