tracking and dE/dx vs DCH length

M. Rama, SuperB general meeting 2 December 2009

Outline

4 DCH configurations:

Unmasked (sl. 3) Masked (sl. 4) Long (sl. 6) Short (sl. 7) shifted IP (sl. 8)

- Compare the 'Masked' DCH with the 'Long' and 'Short' cfg
 - track reconstruction
 - DCH dE/dx

tested with:

I0k B⁰→π⁺π⁻ events I0k B⁰→D^{*}K events 50k single particles

'standard' DCH ("Unmasked")

standard DCH with masked fwd/bwd regions

standard DCH with masked fwd/bwd regions

Long DCH

Short DCH

shifted IR+SVT w.r.t. DCH and outer detectors

Reconstruction efficiency of $B \rightarrow \pi^+ \pi^-$

the $B^0 \rightarrow \pi^+ \pi^-$ reconstruction efficiency is not affected

Angles useful to interpret the patterns in next slides

Matteo Rama

Matteo Rama

single particles: p resolution at θ =23°

p resolution in Short DCH worsens by ~25% in fwd region (for θ =23°) negligible effect in Long DCH vs. Masked DCH

single particles: p resolution at θ =150°

p resolution in Long DCH improves by ~30% in bwd region (for θ =150°)

$B \rightarrow \pi \pi$: ΔE and m_{ES}

no significant difference in the overall ΔE and m_{ES} resolution

$B \rightarrow D^*K$

note: same run numbers (i.e. same generated events) for the 4 configurations

the difference in the $B^0 \rightarrow D^*$ -K reconstruction efficiency is small

B→D*K: ΔE and m_{ES}

no significant difference in ΔE and m_{ES} resolution

dE/dx tuning

dE/dx tuned according to BaBar DCH (BAD#1500)

K- π separation vs p

tracks from $B \rightarrow \pi \pi$: DCH dE/dx) vs polar angle σ(DCH dE/dx) vs theta σ(DCH dE/dx) vs theta (profile) 0.35 ×10 ×10⁻³ 0.34 backward region 0.32 0.3 0.3 0.25 0.28 zoom 0.2 0.26 Unmasked 0.24 0.15 Masked 0.22 Long 0.1 0.2 Short 0.18 0.05 zoom 0.16 120 130 150 160 170 180 140 20 40 60 80 160 180 100 120 140 σ(DCH dE/dx) vs theta 0.3^{×10}

Note: the spread of the dE/dx measurement of the single hit is parameterized as:

$$\sigma(dE/dx) = a_1(dE/dx)^{a_2}dl^{a_3} \qquad \begin{array}{l} a_2 = I \\ a_3 = -0.5 \end{array}$$

a₁ (and also a2) is tuned to resemble the dE/dx π/K separation measured in Babar data (sl. 9)

32

30

0.28

0.26

0.24

0.22

0.2

0.18

0.16

12

forward region

tracks from $B \rightarrow \pi \pi$: DCH dE/dx K- π separation vs theta

Matteo Rama

single particles: K/π separation vs p at $\theta=23^\circ$

see drawings in sl. 10-11

between Short and Masked: 0.16σ difference @2.5GeV 0.21σ difference @0.6 GeV

between Long and Masked: ~0.04σ difference @2.5GeV ~0.07σ difference @0.6GeV

single particles: K/π separation vs p at $\theta=150^{\circ}$

see drawings in sl. 10-11

Summary

Preliminary study of tracking and $(dE/dx)_{DCH}$ performance vs DCH length

tracking

- significant improvement of momentum resolution in bwd region with Long DCH (no bwd EMC)
- significant worsening of momentum resolution in fwd region with Short DCH (FARICH)

BUT

▶ the fraction of tracks going in fwd and bwd region is quite small (modes considered: $B \rightarrow \pi\pi$, $B \rightarrow D^*K$) → Impact on B reconstruction (reco. efficiency, ΔE resolution) is very small

dE/dx (tuned on BaBar)

- moderate improvement of K/ π separation in bwd region with Long DCH (~0.4 σ @2.5GeV or 0.6GeV)
- moderate worsening of K/ π separation in fwd region with FARICH (~0.2 σ @2.5GeV or 0.6GeV)
- negligible improvement of K/ π separation in fwd region with Long DCH (no TOF)
- Eventually it is the combined dE/dx+other-PID-devices performance that must be compared

Next steps

- Look closer at reconstruction of very low p tracks
- dE/dx of electrons needs investigation
- Review the dE/dx simulation and possibly consider different gas/techniques (e.g. performance with cluster counting)
- Study the performance of combined PID information (together with the PID group)

backup

Matteo Rama

2 Dec 2009

25

B→ $\pi^+\pi^-$: #DCH hits and #DCH dE/dx hits vs theta

Matteo Rama

2 Dec 2009

dE/dx BaBar vs fastsim

muons→protons: reasonable electrons: need work

dE/dx BaBar vs fastsim

DCH dE/dx pi/K separation, 2.5<p_{CM}<2.75, Runs 1-5, data

In BaBar the range of separation is ~ 1.2 . In fastsim is $\sim 0.6-0.8$ One reason could be the fact that the DCH hit efficiency in fastsim does not depend on the polar angle

Matteo Rama

2 Dec 2009

29