Joint Research Centre

the European Commission's in-house science service

X

3

÷

www.ec.europa.eu/jrc

¥2.

1

to

Serving society Stimulating innovation Supporting legislation

Neutron resonance experiments Design and analysis

Peter Schillebeeckx

Summer school on Neutron Detectors and Related Applications 29 June – 2 July 2016 Riva del Garda, Trento, Italy

EC - JRC - IRMM

Contents

- Neutron induced reaction cross sections
- Neutron sources
 - Mono-energetic neutron beams by (cp,n) reactions
 - Time-of-flight measurements at white neutron sources (response function)
- Cross section measurements
 - Total cross section (transmission)
 - Reaction cross sections
- Neutron resonance transmission and capture analysis (NRTA& NRCA)
 - Archaeological applications
 - Nuclear applications (melted fuel from severe nuclear accidents)

Neutron induced reactions

- Calculated cross sections are required for nuclear energy applications
 - Ensures full consistency, e.g. $\sigma_{tot} = \sum \sigma_{r,i}$
 - Doppler broadening
 - Inter- and extrapolation in regions were no data is available
- Cross sections are strongly energy dependent
- Cross sections are different for each nuclide

NDRA - 2016, Riva del Garda, Italy

- Parameterized by nuclear reaction model
- Different models in different energy regions

Parameterisation in resonance region

Parameterisation in resonance region

The resonant structure can be described by a Breit-Wigner shape :

$$\sigma_{tot} \sim \frac{\Gamma}{(E_n - E_R)^2 + (\Gamma/2)^2}$$

with

- Γ total width (FWHM)
- E_R resonance energy

Heisenberg uncertainty principle

$$\Delta E \Delta t = \frac{\hbar}{2}$$
 $\Gamma \Delta t = \frac{\hbar}{2}$

Parameterisation in resonance region

Model parameters

R and (
$$E_R$$
, J^{π} , Γ_n , Γ_{γ} , ...,)_j

 $\begin{array}{ll} \mathsf{E}_{\mathsf{R}} & \text{resonance energy} \\ \Gamma_{\mathsf{n}}, \Gamma_{\gamma}, \Gamma_{\mathsf{f}} & \text{partial widths} \\ \Gamma & \text{total width} \\ & (\Gamma = \Gamma_{\mathsf{n}} + \Gamma_{\gamma} + \Gamma_{\mathsf{f}} \dots) \\ \mathsf{R} & \text{scattering radius} \end{array}$

- Cross sections cannot be predicted by nuclear theory from first principles
- Model parameters are adjusted to experimental data

\Rightarrow Experimental data are required

White neutron source

+ Time-of-flight (TOF)

NDRA - 2016, Riva del Garda, Italy

Mono-energetic neutrons (cp,n) reactions

European Commission

Mono-energetic neutron beams by (cp,n) reactions

Mono-energetic neutron beams by (cp,n) reactions

Commission

Low-scatter experimental hall at PTB Braunschweig

- Neutron cross section measurements
- Neutron activation measurements
- Fission studies
- Neutron fluence measurements
- Calibration of detectors

Response functions of EJ-309 scintillator at PTB

Conversion of light output into energy units based on energy deposition of electrons:

Light output for electrons is \approx linear $L_e = a P_e$

Response functions of EJ-309 scintillator at PTB

Response functions of a EJ-309 scintillator at PTB

- Ideally : $L_p / E_p = 1$
- L_p : strongly non-linear (quenching)

Tomanin et al., NIMA 756 (2014) 45

Response functions of a EJ-309 scintillator at PTB

- Ideally : $L_p / E_p = 1$
- L_p : strongly non-linear (quenching)

• $\Delta L_p / E_p \approx \Delta L_e / E_e$

Use of EJ-309 scintillator to verify fuel assemblies

Verification of fuel assemblies Detection system based on a EJ309 scintillator ³He-alternative

Response functions of diamond detectors at JRC Geel

Diamond detectors

Use of diamond detectors for verification of spent fuel

- Nuclear safeguards
- Final disposal of spent fuel: Finland and Sweden

Response functions of a plastic scintillator at INFN Legnaro

NDRA - 2016, Riva del Garda, Italy

Response functions of a plastic scintillator at INFN Legnaro

Response functions of a plastic scintillator at INFN Legnaro

TOF – facility GELINA

- Pulsed white neutron source (10 meV < E_n < 20 MeV)
- Neutron energy : time of flight (TOF)
- Multi-user facility: 10 flight paths (10 m 400 m)
- Measurement stations with special equipment:
 - Total cross section measurements
 - Partial cross section measurements

GELINA : neutron production

- e^{-} accelerated to $E_{e^{-},max} \approx 140 \text{ MeV}$
- Bremsstrahlung in U-target (rotating & cooled with liquid Hg)
- (γ, n) , (γ, f) in U-target

GELINA : neutron production

- e^{-} accelerated to $E_{e^{-},max} \approx 140 \text{ MeV}$
- Bremsstrahlung in U-target (rotating & cooled with liquid Hg)
- (γ, n) , (γ, f) in U-target
- Low energy neutrons by moderation (water moderator in Be-canning)

European

Commission

TOF - measurements

Probability distribution of t₊ : GELINA

Equivalent distance : $L_{t} = v t_{t}$

P(t_t, E) : photonuclear

P(t_t, E) : photonuclear

$P(t_{+}, E)$: photonuclear \Leftrightarrow spallation reactions

$P(t_{+}, E)$: photonuclear \Leftrightarrow spallation reactions

Response GELINA (60 m) < - > n_TOF (180 m)

Cross section measurements

Transmission

$$T\cong e^{-n\,\sigma_{tot}}$$

T: transmission Fraction of the neutron beam traversing the sample without any interaction

- n $n = \frac{N_A m}{M_A m}$ N_A m_aA
 - m
 - : sample area Α
 - : atomic mass m_a

: material mass

: Number of Avogadro

Cross section measurements

Transmission

$$T \cong e^{-n \sigma_{tor}}$$

T : transmission Fraction of the neutron beam traversing the sample without any interaction

Reaction

$$Y_r \approx (1 - e^{-n \sigma_{tot}}) \frac{\sigma_r}{\sigma_{tot}}$$

 Y_r : reaction yield Fraction of the neutron beam creating a (n,r) reaction in the sample

Transmission measurements

$$T_{exp} = \frac{C_{in}}{C_{out}} \propto e^{-n\sigma_{tot}}$$

- Incoming neutron flux cancels
- Detection efficiency cancels
- \Rightarrow Direct relation between ${\rm T}_{\rm exp}$ and $\sigma_{\rm tot}$

Transmission : principle

All detected neutrons passed through the sample
 Neutrons scattered in the target do not reach detector
 Sample perpendicular to parallel neutron beam
 ⇒ Good transmission geometry (collimation)

(4) Homogeneous target (no spatial distribution of n)

Transmission : principle

Detectors Low energy : ⁶Li(n,t)α Li-glass High energy : H(n,n)H NE213 type, plastic scintillator

NDRA - 2016, Riva del Garda, Italy

Lithium-glass scintillator : energy deposition

NDRA - 2016, Riva del Garda, Italy

Lithium-glass scintillator : resolution

NDRA - 2016, Riva del Garda, Italy

Transmission station at GELINA

European Commission

Background: black resonance technique

Black resonance filter

- strong resonance at E_r

$$T = e^{-n\sigma_{tot}} \approx 0$$

- removes all neutrons at TOF corresponding to E_r
- ⇒ Remaining counts are due to background

Background: black resonance technique

•

$$B(t) = B_0 + B_{\gamma}(t) + B_n(t) + B_{ov}(t)$$

•
$$B_{\gamma}(t)$$
 ¹ $H(n, \gamma)$ $E_{\gamma} = 2.2 \text{ MeV}$
 $b_1 e^{-\lambda_1 t}$

 $B_n(t)$ scattered neutrons $b_2 e^{-\lambda_2 t}$

$$B_{ov}(t) \quad \text{overlap neutrons} \\ b_3 e^{-\lambda_3(t+\tau_0)}$$

Shape from measurements at lower frequency or extrapolation at high TOF-values

Transmission data : ²⁴¹Am + n

NDRA - 2016, Riva del Garda, Italy

Transmission : fraction of neutron beam traversing without any interaction the sample

$$\Gamma_{exp} = \frac{C'_{in} - B'_{in}}{C'_{out} - B'_{out}} \qquad \frac{u_{T_{exp}}}{T_{exp}} < 0.25\%$$

 \Rightarrow absolute measurement \Rightarrow no calibration measurement required

$$T_{M}(t) = \int R(t, E) e^{-n} \sigma_{tot}(E) dE$$

R(t,E)	•	response of TOF-spectrometer
σ_{tot}	•	total cross section
n	•	areal number density
		total number of atoms per unit area

 $\chi^2 (RP) = (T_{exp} - T_M)^T V_{T_{exp}}^{-1} (T_{exp} - T_M)$

Neutron Induced reactions

Reaction cross section measurement

Reaction yield

$$Y_{r} = (1 - e^{-n\sigma_{tot}}) \frac{\sigma_{r}}{\sigma_{tot}} + \dots$$

Y_r: reaction yield

- n : areal density
- σ_r : cross section for (n,r) reaction
- σ_{tot} : total cross section

Fraction of the neutron beam creating a (n,r) reaction in the sample

Experimental response \Leftrightarrow yield

 $\mathsf{C}_{\mathsf{r}} = \, \boldsymbol{\epsilon}_{\mathsf{r}} \, \, \boldsymbol{\Omega}_{\mathsf{r}} \, \, \mathsf{P}_{\mathsf{r}} \, \, \mathsf{Y}_{\mathsf{r}} \, \, \mathsf{A} \, \boldsymbol{\phi}$

- C_r experimental response
- ϕ neutron flux
- A effective area (beam/sample intersection)
- Y_r reaction yield
- P_r escape probability
- Ω_r solid angle
- ϵ_r detection efficiency

Experimental response \Leftrightarrow yield

$$Y_{r,exp} = \frac{1}{AP_r\Omega_r\epsilon_r} \frac{C_r}{\phi}$$

- φ neutron flux
- A effective area
- P_r escape probability
- Ω_r solid angle
- ϵ_r detection efficiency

Experimental response \Leftrightarrow yield

$$Y_{r,exp} = \left(\frac{1}{N_r}\right) \frac{C_r}{\phi}$$

- φ neutron flux
- A effective area
- P_r escape probability
- Ω_r solid angle
- ϵ_r detection efficiency

$$\mathbf{N}_{r} = \mathbf{A} \mathbf{P}_{r} \Omega_{r} \varepsilon_{r}$$

Cross section measurements

Transmission

$$T = e^{-n \sigma_{tot}}$$

$$T_{exp} = \frac{C_{in}}{C_{out}}$$

- Absolute measurement
- No additional measurements
- + direct relation: T $\Leftrightarrow \sigma_{tot}$ good geometry homogeneous sample

Reaction

$$\begin{split} Y_{r} &\cong (1 - e^{-n\sigma_{tot}}) \frac{\sigma_{r}}{\sigma_{tot}} \\ Y_{r,exp} &= \frac{1}{N_{r}} \frac{C_{r}}{\phi} \end{split}$$

- Normalization required
- Additional flux measurement
- + complex relation : $Y_r \Leftrightarrow \sigma_r$ $Y_r = f(\sigma_r, \sigma_{tot} \& \sigma_n)$ only for $n\sigma_{tot} <<1 : Y_r \cong n \sigma_r$

Cross section measurements

Transmission

$$T = e^{-n \sigma_{tot}}$$

$$T_{exp} = \frac{C_{in}}{C_{out}}$$

- Absolute measurement
- No additional measurements

 σ_{tot} : most accurate cross section

¹⁹⁷Au(n,γ) from transmission $\sigma(n_{th}, \gamma) = (98.7 \pm 0.1) b$

Reaction

$$Y_{r} \cong (1 - e^{-n\sigma_{tot}}) \frac{\sigma_{r}}{\sigma_{tot}}$$
$$Y_{r,exp} = \frac{1}{N_{r}} \frac{C_{r}}{\phi}$$

- Normalization required
- Additional flux measurement
- + complex relation : $Y_r \Leftrightarrow \sigma_r$ $Y_r = f(\sigma_r, \sigma_{tot} \& \sigma_n)$ only for $n\sigma_{tot} <<1 : Y_r \cong n \sigma_r$

Flux measurement : neutron detection

Neutron: electrical neutral

- No direct ionisation or excitation
- Transfer reaction is required to transform neutron energy into charged particle energy
- Create ionisation or excitation

NEUTRON CROSS-SECTION STANDARDS (2006) and REFERENCES (2015)

STANDARDS

HOME

Nuclear Data

Data Services Home Page

Technical Report

Downloads
 Numerical data
 Codes and Programs
 Test cases
 Most recent
 calculations

Documents
 Documents and
 Reports
 Plots
 PDF Plot files

UPDATING ..

• On-going ... IAEA Project

> CM 2008 INDC(NDS)-0540 doc

Presentations

An IAEA Nuclear Data Section Initiative

Neutron cross-section standards are important in the measurement and evaluation of all other neutron reaction cross-sections. Not many cross-sections can be defined as absolute - most cross-sections are measured relative to the cross-section standards for normalization to absolute values. Previous evaluations of the neutron cross-section standards were completed in 1987 and disseminated as both NEANDC/INDC (NEANDC-311) and ENDF/B standards. R-matrix model fits for the light elements and non-model least-squares fits for the heavy elements were the basis of the crombined fits for all of the data. Some important reactions and reduce their uncertainties - these data were also included in the combined fits.

The need to re-evaluate the cross-section standards at the beginning of the 21st century is based on the appearance of a significant amount of precise experimental data and developments in the methodology of analysis and evaluation. An IAEA Consultants' Meeting was held in 2001 to consider the major tasks to be undertaken in order to improve the 1987 standards evaluation (<u>Summary Report</u> of the Consultants' Meeting on Improvement of the Standard Cross Sections for Light Elements, Vienna, 2-4 April 2001, INDC(NDS)- 425, prepared by A.D. Carlson, D.W. Muir and V.G. Pronyaev, June 2001). Thus, an IAEA Co-ordinated Research Project (CRP) entitled "<u>Improvement of Standards Cross-Sections for Light Elements</u>" was formulated, and this work was substantially extended through the course of these multinational studies by the inclusion of tasks to evaluate the cross-section standards for heavy elements.

The evaluations of the neutron cross-section standards were finalized in October 2005. Previous difficulties experienced with a data evaluation problem known as "Peelle's Pertinent Puzzle" create biases in the fit of correlated data, and were addressed to reduce this phenomenon. The new evaluations of the cross-section standards also include covariance matrices of the uncertainties that contain fully justifiable values. Significant contributions to the experimental database were made by participants of Subgroup 7 of the NEA Working Party on International Nuclear Data Evaluation Co-operation (WPEC). Furthermore, the evaluations could not have been carried out without access to the original GMA database and related computer codes given to staff of the IAEA Nuclear Data Section by the US Cross Section Evaluation Working Cosp.

A final technical report was prepared in 2006, and <u>published in 2007</u>. A comprehensive paper with detailed technical description of derived standards and uncertainties was published in <u>Nuclear Data</u> Sheets Volume 110, Issue 12, December 2009, Pages 3215-3324.

For neutron flux measurements a transfer reaction with a well-known cross section is required:

Standard and reference reactions

https://www-nds.iaea.org/standards/

Reaction	2200 m/s	Energ	y re	gion		For neutron flux measurements
		E _{low}		E _{high}		
¹ H(n,n)		1 keV	-	20 MeV		a transfer reaction with a well-known
³ He(n,p)	Х	25.3 meV	-	50 keV		cross section is required:
⁶ Li(n,t)	Х	25.3 meV	-	1 MeV		·
¹⁰ Β(n,α)	Х	25.3 meV	-	1 MeV		
¹⁰ B(n, $\alpha_1\gamma$)	X	25.3 meV	-	1 MeV		Standard and reference reactions
^{nat} C(n,n)		25.3 meV	-	1.8 MeV		
¹⁹⁷ Au(n,γ)	Х	0.2 MeV	-	2.5 MeV		
²³⁵ U(n,f)	Х	0.15 MeV	_	200 MeV	(1 GeV)	https://www-nds.iaea.org/standards/
²³⁸ U(n,f)	Х	2 MeV	_	200 MeV	(1 GeV)	
²³⁹ Pu(n,f)	Х	0.15 MeV	-	300 MeV	. ,	
²⁰⁹ Bi(n,f)		34 MeV	-	1 GeV		
^{nat} Pb(n,f)		34 MeV	-	1 GeV		

Reaction	2200 m/s	Energy regio		ion	
		Elow		E_{high}	
¹ H(n,n)		1 keV	-	20 MeV	
³ He(n,p)	Х	25.3 meV	-	50 keV	
⁶ Li(n,t)	X	25.3 meV	-	1 MeV	
¹⁰ Β(n,α)	Х	25.3 meV	-	1 MeV	
¹⁰ Β(n,α ₁ γ)	Х	25.3 meV	-	1 MeV	
^{nat} C(n,n)		25.3 meV	-	1.8 MeV	
¹⁹⁷ Au(n,γ)	Х	0.2 MeV	-	2.5 MeV	
²³⁵ U(n,f)	Х	0.15 MeV	-	200 MeV	(1 GeV)
²³⁸ U(n,f)	Х	2 MeV	-	200 MeV	(1 GeV)
²³⁹ Pu(n,f)	Х	0.15 MeV	-	300 MeV	
²⁰⁹ Bi(n,f)		34 MeV	-	1 GeV	
^{nat} Pb(n,f)		34 MeV	-	1 GeV	

Neutron energy / eV

Reaction	2200 m/s	Energy region					
		E _{low}	_{ow} E _{high}				
¹ H(n,n)		1 keV	-	20 MeV			
³ He(n,p)	Х	25.3 meV	-	50 keV			
⁶ Li(n,t)	Х	25.3 meV	-	1 MeV			
¹⁰ Β(n,α)	Х	25.3 meV	-	1 MeV			
¹⁰ Β(n,α ₁ γ)	Х	25.3 meV	-	1 MeV			
^{nat} C(n,n)		25.3 meV	-	1.8 MeV			
¹⁹⁷ Au(n,γ)	Х	0.2 MeV	-	2.5 MeV			
²³⁵ U(n,f)	Х	0.15 MeV	-	200 MeV	(1 GeV)		
²³⁸ U(n,f)	Х	2 MeV	-	200 MeV	(1 GeV)		
²³⁹ Pu(n,f)	Х	0.15 MeV	-	300 MeV			
²⁰⁹ Bi(n,f)		34 MeV	-	1 GeV			
^{nat} Pb(n,f)		34 MeV	-	1 GeV			

Reaction	2200 m/s	Energy region					
		E _{low}					
¹ H(n,n)		1 keV	-	20 MeV			
³ He(n,p)	Х	25.3 meV	-	50 keV			
⁶ Li(n,t)	Х	25.3 meV	-	1 MeV			
¹⁰ Β(n,α)	X	25.3 meV	-	1 MeV			
¹⁰ Β(n,α ₁ γ)	Х	25.3 meV	-	1 MeV			
^{nat} C(n,n)		25.3 meV	-	1.8 MeV			
¹⁹⁷ Au(n,γ)	Х	0.2 MeV	-	2.5 MeV			
²³⁵ U(n,f)	Х	0.15 MeV	-	200 MeV	(1 GeV)		
²³⁸ U(n,f)	Х	2 MeV	-	200 MeV	(1 GeV)		
²³⁹ Pu(n,f)	Х	0.15 MeV	-	300 MeV			
²⁰⁹ Bi(n,f)		34 MeV	-	1 GeV			
^{nat} Pb(n,f)		34 MeV	-	1 GeV			

Frisch-gridded ionisation chamber loaded with ¹⁰B

Frisch-gridded ionisation chamber loaded with ²³⁵U

Parallel plate ionisation chamber loaded with ²³⁵U

Reaction cross section measurements

1. Reaction measurement
$$C_r = \varepsilon_r \Omega_r P_r Y_r A_r \phi$$

2. Flux measurement (mostly thin target)

$$\mathsf{C}_{\phi} = \varepsilon_{\phi} \ \Omega_{\phi} \ \mathsf{P}_{\phi} \ \mathsf{Y}_{\phi} \ \mathsf{A}_{\phi} \ \phi$$

$$Y_{r,exp} = \frac{\varepsilon_{\phi}}{\varepsilon_{r}} \frac{\Omega_{\phi}}{\Omega_{r}} \frac{P_{\phi}}{P_{r}} \frac{A_{\phi}}{A_{r}} \frac{C_{r}}{C_{\phi}} Y_{\phi} = N \frac{C_{r}}{C_{\phi}} Y_{\phi}$$

$$\Rightarrow$$
 Y_{r.exp} is the ratio of results of 2 reaction cross section measurements

 $\Rightarrow Y_{\phi} \qquad \text{is required} \qquad Y_{\phi} \cong (1 - e^{-n\sigma_{tot}}) \frac{\sigma_{\phi}}{\sigma_{tot}}$ neutron standard reaction

Example : fission cross section

Commission

Neutron induced capture process

Efficiency to detect capture event independent of gamma-ray cascade

 Gamma-ray spectroscopy good resolution for E_γ e.g. Ge-detectors

- Total absorption detectors $4\pi \& \varepsilon_{\gamma} \approx 100\%$ e.g. BaF₂
- Total energy detection principle $\epsilon_{\gamma} \propto E_{\gamma} \& \epsilon_{\gamma} << 1$ e.g. $C_6 D_6$ scintillators

Schillebeeckx et al., Nucl. Data Sheets 113 (2012) 3054

 $S_n + E_n$

NDRA - 2016, Riva del Garda, Italy

Gamma-ray spectroscopy
 high resolution & simple known decay scheme

Ge-detectors

• Gamma-ray spectroscopy high resolution & simple well-known decay scheme

Borella et al., Nucl. Phys. A 850 (2011) 1

NDRA - 2016, Riva del Garda, Italy

Total absorption detector at nTOF (CERN)

• Total absorption detector $\Omega \approx 4\pi$ & $\epsilon_{\gamma} \approx 100\%$

Guerrero et al, NIMA 608 (2009) 424

• Total energy detection principle

Probability to detect a capture event = efficiency to detect at least one γ - ray

$$\varepsilon_{\rm c} = 1 - \prod_{\rm i} \left(1 - \varepsilon_{\gamma,\rm i} \right)$$

1) Detection efficiency : $\varepsilon_{\gamma} << 1$

$$\varepsilon_{c} \approx \sum_{i} \varepsilon_{\gamma,i}$$

2) Detection efficiency: $\epsilon_{\gamma} = k E_{\gamma}$

$$\Rightarrow \epsilon_{c} \approx \sum_{i} \epsilon_{\gamma,i} = k \sum_{i} E_{\gamma,i} \approx k \left(S_{n} + E \frac{m_{\chi}}{m_{\chi} + m_{n}}\right)$$

independent of γ -ray cascade

$\sigma(n,\gamma)$ measurements at GELINA

Total energy detection principle

- $C_6 D_6$ liquid scintillators $\epsilon_{\gamma} \ll 1$ & $\epsilon_{\gamma} \propto E_{\gamma}$ (PHWT)
- Flux measurements (IC): ${}^{10}B(n,\alpha)$

Pulse Height Weighting Technique

$$E_{\gamma} = \int WF(E_d) R(E_d, E_{\gamma}) dE_d$$

Borella et al., NIMA 577 (2007) 626

 Y_{exp} for ¹⁹⁷Au(n, γ)

Normalization: saturated resonance

Commission

Experimental observables

Methodologies to determine $(Z_{exp}, V_{Z_{exp}})$ are well established

Nuclear Data Sheets 113 (2012) 3054 - 3100

+ Doppler + Response

Commission

Resonance shape analysis

$$\chi^{2}(\eta) = (Z_{exp} - Z_{M}(t_{m}, \eta, \kappa))^{T} V_{Z_{exp}}^{-1} (Z_{exp} - Z_{M}(t_{m}, \eta, \kappa))$$

Z_{exp} : experimental observable

 $Z_M(t,\eta,\kappa)$: model for theoretical estimate of Z_{exp} Model implemented in REFIT (M. Moxon):

- R-matrix theory : parameterisation of σ by RP (η)
- Experimental conditions : parameter vector κ

$$Z_{M}(t_{m}) = \int R(t_{m}, E) Z_{M}(E) dE$$
$$Z_{M}(E) = \begin{cases} T(E) = e^{-n\overline{\sigma}_{tot}} \\ Y_{r}(E) = (1 - e^{-n\overline{\sigma}_{tot}}) \frac{\overline{\sigma}_{r}}{\overline{\sigma}_{tot}} + \dots \end{cases}$$

Resonance shape analysis

REFI

260

Commission

$\chi^{2}(\eta) = (Z_{exp} - Z_{M}(t_{m}, \eta, \kappa))^{T} V_{Z_{exp}}^{-1} (Z_{exp} - Z_{M}(t_{m}, \eta, \kappa))$

: experimental observable Z_{exp}

 $Z_{M}(t,\eta,\kappa)$: model for theoretical estimate of Z_{exp} **Experimental conditions:**

- Doppler broadening
- **Response TOF-spectrometer**
- Multiple interaction
- Sample characteristics
- **Detector characteristics**

Transmission + capture at GELINA

 $N_{\rm c}=1.00\pm0.02$

Energy / eV	Γ_n / meV		Γ_{γ} / meV		
0.306	0.064	(0.0004)	41.55	(0.39)	
0.574	0.110	(0.0009)	42.11	(0.63)	
1.272	0.373	(0.0035)	41.68	(0.79)	

Transmission + capture at GELINA

Cross sections for neutron induced reactions

NDRA - 2016, Riva del Garda, Italy

Evaluated data libraries

https://www.oecd-nea.org/janis/

Neutron Resonance Analysis (NRCA&NRTA)

Total cross section / b

- Resonances appear at energies that are specific for each nuclide
- Position and amplitude of resonances can be used as fingerprints to
 - identify and quantify nuclides
 - elemental & isotopic composition
- Neutron Resonance Analysis (developed at JRC)
 - Non-Destructive Analysis (NDA)
 - sensitive to almost all nuclides (except light)
 - no sample preparation required
 - requirements:

TOF-measurements at a white neutron source

Schillebeeckx et al., EUR Report 26848 EN

Cross section measurements

Total cross section

$$T \cong e^{-n\sigma_{tot}}$$

Capture cross section

$$Y_{\gamma} \approx (1 - e^{-n \sigma_{tot}}) \underbrace{\sigma_{\gamma}}_{\sigma_{tot}}$$

Well-characterised samples n: total number of atoms per unit area is well-known U accurate cross-sections can be determined

Neutron resonance analysis

NDRA - 2016, Riva del Garda, Italy

NRTA and NRCA

Element	١	wt%	6	lsotope	E _r /eV
Cu	77.76	±	0.11	⁶³ Cu ⁶⁵ Cu	579.0 230.0
Sn	20.85	±	0.10	 ¹¹²Sn ¹¹⁶Sn ¹¹⁷Sn ¹¹⁸Sn ¹¹⁹Sn ¹²⁰Sn ¹²⁴Sn 	94.8 111.2 38.8 45.7 222.6 427.5 62.0
As	0.34	±	0.01	⁷⁵ As	47.0
Sb	0.20	±	0.02	¹²¹ Sb ¹²³ Sb	6.24 21.4
Ag	0.09	±	0.01	¹⁰⁷ Ag ¹⁰⁹ Ag	16.3 5.2
Fe	0.77	±	0.10	⁵⁶ Fe	1147.4
In	0.0061	±	0.0003	¹¹⁵ In	1.46
			1. A. A.	Co	ommission

$NRCA \Leftrightarrow PGAA$

Typical dead time : $2.5 \,\mu s$

 \Rightarrow detection of In is not hindered by strong resonances of other elements (e.g. Cu)

Roman mixer tap : hot – cold water (1/2)

Commission

NDRA - 2016, Riva del Garda, Italy

Characterisation of Pbl₂ by NRTA at GELINA

- JRC Geel preparation group extracted:
 - 150 g lodine (powder) from 210 liter from reprocessed waste (Le Hague)
 - (1.3 g/l lodine and 40 MBq/l)
- Sample characterisation: by mass spectrometry , (N)AA and NRTA

Characterisation of Pbl₂ by NRTA at GELINA

NRTA compared with NAA and ICP-MS

Element		NR (GEL	TA JNA)	NA	٩A	Ma spectr (P	ass ometry SI)
lodine	total ¹²⁷ ¹²⁹	20.24 3.44 16.80	(0.41) (0.05) (0.40)	19.75 3.35 16.40	(0.61) (0.10) (0.60)	19.86 3.36 16.50	(0.41) (0.08) (0.40)
Lead	total ²⁰⁶ Pb ²⁰⁷ Pb ²⁰⁸ Pb	52.30 12.80 11.50 27.10	(1.70) (0.50) (0.10) (1.70)	51.10	(1.80)		
Sulfur Sodium Oxygen Hydrogen Nitrogen		5.44 0.72 13.92 < 0.13	(0.03) (0.02) (0.05)			1.00 14.50 0.02 1.20	(0.15) (1.50) (0.002) (0.40)

NRTA :

Noguere et al., NIMA 575 (2007) 476

- more elements have been analysed
- isotopic composition of Pb

Fukushima accident

Earthquake followed by a Tsunami (15 m)

core meltdown (units 1,2,3)

Melted fuel:

Complex mixture of materials in fuel and control/safety rods, contains

i.e. U, Pu, fission products, structural materials and neutron absorbers (¹⁰B)

European

Commission

Decommissioning of Fukushima nuclear site

Removal of fresh and spent fuel assemblies (undamaged)
 started November 2013

- Removal of melted fuel
 - start removal within 10 yrs
 - completed after 20 ~ 25 yrs
- Dismantling of the power plants
 completed after 30 ~ 40 yrs

Removal of melted fuel: substantial amount of debris

Commission

Complex material to be verified

- Huge amounts of particle-& rock like debris
- Technical Challenges:
 - Materials only remotely accessible
 - Unknown shape of target materials
 - High temperature
 - Complex mixture of materials
 - Unknown components: ¹⁰B
 - Strong radioactivity: ¹³⁷Cs (about 10⁸ Bq/g)

2012: At the time of the first decommissioning studies **no technique existed** to quantify the amount of U and Pu in such **particle - and rock - like debris of melted fuel**

Target value: uncertainty on Pu and U content \leq 2%

Challenges due to the material characteristics:

- Inhomogeneity of the samples: due to diversity in shape and size of the particle & rock-like debris samples
- Impact of impurities: structural material and neutron absorbers, i.e. ¹⁰B (control rods and borated water)
- Complex transmission spectra due to fission products

Impact of particle size distribution

 \Rightarrow Dedicated model is required

Impact of particle size distribution

- widely used for other problems dealing with radiation transport through stochastic media,
 e.g. scattering of sunlight in clouds
- starts from microscopic properties of the sample such as grain size
- in particular applicable for powder samples

implemented in REFIT and validated by experiments at GELINA

Becker et al., Eur. Phys. J. Plus 129 (2014) 58

Experimental validation of LP-model at GELINA

NRTA demonstration experiment at GELINA

- Samples 18 different samples 8 different elements
- Black box: 8 slots

B, Mn, Co, Cu, Nb, Rh, W, Au samples with different thicknesses Selection of samples by DG-ENER, IAEA and DOE representatives

NRTA demonstration experiment at GELINA

NRTA station at 10 m

NDRA - 2016, Riva del Garda, Italy

European Commission

NRTA demonstration experiment at GELINA

Element	Areal num	n _{Ref} /n _{NRTA}	
	n _{Ref}	n _{NRTA}	
Mn	1.901 x 10 ⁻²	$(1.928 \pm 0.003) \times 10^{-2}$	1.014 ± 0.002
Со	4.583 x 10 ⁻³	$(4.509 \pm 0.015) \times 10^{-3}$	0.984 ± 0.003
Cu	0	0	
Nb	5.485 x 10 ⁻³	$(5.382 \pm 0.010) \times 10^{-3}$	0.981 ± 0.002
Rh	1.856 x 10 ⁻³	$(1.891 \pm 0.003) \times 10^{-3}$	1.019 ± 0.002
W	2.269 x 10 ⁻³	$(2.250 \pm 0.002) \times 10^{-3}$	0.992 ± 0.001
Au	0	0	

European

Commission

NRTA: nuclear material GELINA

Strong impact of matrix material

• Beam attenuation due to matrix ~ 99%

European Commission

Time-of-flight / ns
NRTA of nuclear material at GELINA

NRTA of nuclear material at GELINA

U₃O₈ reference sample EC NRM 171

U-isotope	Areal number density (at/b)		Ratio
	Declaration	NRTA	
²³⁵ U	$(5.0326 \pm 0.0080) \times 10^{-4}$	$(5.063 \pm 0.09) \times 10^{-4}$	1.006
²³⁸ U	(1.0628 \pm 0.0015) x 10 ⁻²	$(1.062 \pm 0.01) \times 10^{-2}$	0.999

 \Rightarrow bias < 1.0 %

Thank you for your attention

Transnational access to nuclear facilities at JRC Geel https://ec.europa.eu/jrc/en/eufrat/contacts

Course on

"Nuclear data processing and use in nuclear applications" <u>http://gentleproject.eu/courses/schedule/</u>

JRC Geel , 14 – 18 November 2016

