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Outline 

•  Introduction 

–  Overview of 3D sensors properties and 
technologies 

•  The ATLAS IBL project 

•  On going developments for HL-LHC  

•  3D sensors for timing 

•  Conclusions 
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3D radiation sensors 

DISADVANTAGES: 
•  Non uniform spatial response 
(electrodes and low field regions) 
•  Higher capacitance with respect  
to planar (~3-5x for ~ 200 µm thickness)  
•  Complicated technology (cost, yield)  

S. Parker et. Al. NIMA 395 (1997) 328   Electrode distance (L) and active substrate  
thickness (Δ)  are decoupled à L<<Δ by layout  

HIGH RADIATION HARDNESS 
ADVANTAGES: 
-  Low depletion voltage (low power diss.) 
-  Short charge collection distance:  

-  Fast response rise 
-  Less trapping probability after irr.  

-  Lateral drift à cell “shielding” effect:  
-  Lower charge sharing 
-  Low sensitivity to magnetic field 

-  Active edges 
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Key technology: DRIE by the Bosch process 

•  Alternating etch cycles (SF6) and passivation cycles (C4F8) 
•  High aspect ratio (>20:1 or better for trenches) and good uniformity 
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Original full-3D process 
C. Kenney et al., IEEE TNS, vol. 46, n. 4 (1999) 1224 
T.E. Hansen et al., JINST 4 (2009) P03010 

1) wafer bonding 
support wafer 

detector wafer 

2) n+ hole definition 
    and etching 

resist 

oxide 

3) hole doping and 
    filling 

n+ polysilicon 

4) p+ hole definition 
    and etching 

resist 

5) hole doping and 
    filling 

p+ polysilicon 

6) Metal deposition 
    and definition 

metal 
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Active edges 
•  First introduced at Stanford as an extension of 3D  
sensor technology, later applied to planar sensors 
•  Cut lines are not sawed but etched with DRIE &  
doped as electrodes, arbitrary shapes possible 
•  Sensitivity up to a few µm from the physical edge,  
at the expense of additional process complication 

support wafer! oxide!

sensor  wafer!

p!  n! n!

p!
oxide!

support wafer! oxide!

p! n!

p!

 n!

C. Kenney et al., IEEE TNS 48 (2001) 2405 C. Kenney et al., NIMA 565 (2006) 272 
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Double-sided 3D sensors 
FBK (Trento, Italy) CNM (Barcelona, Spain) 

G. Pellegrini et. al. NIMA 592(2008), 38   
G. Pellegrini et. al. NIMA 699(2013), 27   

 

A. Zoboli et. al.,  IEEE TNS 55(5) (2008), 2775 
G. Giacomini, et al., IEEE TNS 60(3) (2013) 2357   

•  Do not use support wafer à reduced process complexity  
•  Back-side accessible à Easier assembly within a detector system 
•  Active edge not feasible à Slim edge 
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Slim edge in double-sided 3D sensors 

•  Devices can be safely operated up to the 3rd cut (i.e., with only one row of ohmic 
columns beyond the active area) 
à There’s room for design optimization (dead region < 100 micron) 

Intrinsic breakdown  
due to p-spray 

100 um 

•  Repeated cuts starting from scribe-line, each one closer to the active area 
(the 6th cut dices the last row of ohmic columns of the active area) 

M. Povoli et al,  
JINST 7 (2012)  
C01015 

8 



Bologna, June 10, 2016 G.-F. Dalla Betta 

3D Signal Efficiency: a comparison 

Compilation  
by C. Da Via 

Data from: 
[1] ATLAS IBL Collaboration, JINST 7 (2012) P11010 
[2] G.-F. Dalla Betta, et al., NIMA 765 (2014) 155 
[3] M. Koehler et al. NIMA 659 (2011) 272   
[4] C. Da Via, et al., NIMA 604 (2009) 505 

Signal Efficiency =  
Ratio  of max. signal  
after irradiation  
and before irradiation 

Φ+
=

Dv
KL

SE
τ6.01

1

C. Da Via, S. Watts,  
NIMA 603 (2009) 319 
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[5] I. Haughton et al.,  
     NIMA 806 (2016) 425 
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Capacitance and noise 

E. Alagoz et al. JINST 7 (2012) P08023 

C. Da Via et al.  NIMA 604 (2009) 505  

JINST 7 (2012) P11010 

1E 
2E 
3E 

4E 

CMS PSI46 

FE-I3 + SNF 3D  

FE-I4 (2E) 
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Null field points and delayed signals 
S. Parker et al.  
NIMA395 (1997) 328 

Efield 

Efield 

50V 

5V 

50V 

5V 

Current pulses for particle  
hit at high field point 

Current pulses for particle  
hit at null field point 

•  3D structure implies 
null field points in 
between columnar 
electrodes of the same 
doping type 

 
•  Carriers generated at 

null field points first 
have to diffuse before 
drifting, thus delaying 
signals 

 
•  This can be improved 

with trenched 
electrodes, but at the 
expense of higher 
capacitance and 
reduced geometrical 
efficiency 
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Poly-Si electrode inefficiency 
J. Hasi, PhD thesis, Brunel, 2004 

Electrode response using 12 keV X-ray beam 
(ALS at LBNL), beam size ~ 2µm 

•  Diffusion, lifetimes (poly-Si grain sizes) 
•  Oxide barrier effect at the interfaces … 

 à Replace POCl3 with PH3 
 à Replace BBr3/O2 with B2H6 
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•  Approved by CERN in 2007 for the “Development,  
Testing and Industrialization of Full-3D Active-Edge 
and Modified-3D Silicon Radiation Pixel Sensors  

     with Extreme Radiation Hardness”.  
•  It includes 18 Institutions and 4 processing facilities: 

SNF, SINTEF, CNM, and FBK. 
•  Major efforts devoted to the Insertable B-Layer (IBL) 

of the ATLAS detector at LHC: 
–  First application of 3D sensors in a  
    High Energy Physics experiment 
–  First medium volume production accomplished  
    in due time and with reasonably good yield 

The ATLAS 3D Sensor Collaboration 
14 
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ATLAS IBL 3D common floor-plan 
FE-I4 (8x) 

FE-I3 (9x) 
CMS (3x) 

Test 
structures at 
the periphery 
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Pixel Roadmap LHC → HL-LHC  
2003 

2010 

2017-18 

ATLAS roadmap → Pixel Size 

Increased luminosity requires 
• higher hit-rate capability 
• increased granularity 
• higher radiation tolerance 
• lighter detectors 

N. Wermes, 9th TN Workshop (Genova, 2014) 

100 
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Next ROC generation (RD53 65 nm)  
50x50	  µm2	  and	  25x100	  µm2	  pixels	  
CDET	  ≤	  100	  fF	  	  
Ileak	  ≤	  10	  nA/pixel	  (no	  amp.	  comp.)	  
Threshold:	  ~1000	  electrons	  

•  HL-LHC ATLAS and CMS Pixel TDR: 2017 
•  3D pixels are an option for the innermost layers 

Modified technology/design for:  

•  thinner sensors 

•  narrower electrodes  

•  reduced electrode spacing 

•  very slim (or active) edges 

Implications for 3D sensors 
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New 3D pixels: fabrication 

•  Thin sensors on support wafer (SiSi) 
• Ohmic columns/trenches depth > active layer depth (for bias) 
•  Junction columns depth < active layer depth (for high Vbd) 
•  Reduction of hole diameters to ~5 um 
•  Holes (at least partially) filled with poly-Si  

INFN-FBK  
“RD_FASE2”  
Project (CSN1) 

p++ low !cm wafer 

P- high !cm wafer 

Handle wafer to be thinned down 

Metal to be deposited after thinning 
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New 3D pixels: design and simulations 

•  50x50 design safe, 25x100 is difficult … too little 
clearances (new ideas for bump pad to be tested)  

•  Capacitance compatible with RD53 specs 
•  Initial breakdown voltage high enough 
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Thickness = 150 µm 
N+ col. depth = 130 µm 25 x 100 50 x 50 

All designs assuming a column 
diameter of 5 µm 
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Simulated signal efficiency (preliminary) 
25 x 100 (2E) 50 x 50 (1E) 

•  New 3-trap level “Perugia” model D. Passeri et al. (doi:10.1016/j.nima.2015.08.039) 
•  1 µm thick (~2d) slice, with MIP vertical hits at many different points 
•  20-ns integration of current signals à normalization to injected charge à average 
•  Higher Signal Efficiency at lower Vbias in 25x100 (2E), as expected due to smaller L 
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3D Pixel Wafer Layout 
Many different pixel geometries 
and pitch variations: 

•  FE-I4  
–  50 x 250 (2E) std 
–  50 x 50 (1E) 
–  25 x 100 (1E and 2E) 
–  25 x 500 (1E) 

•  FE-I3 
–  50 x 50 (1E) 
–  25 x 100 (1E and 2E) 

•  PSI46dig 
–  100 x 150 (2E and 3E) std 
–  50 x 50 (1E and 2E) 
–  50 x 100, 100 x 100 (2E + 4E) 
–  50 x 100, 100 X 150 (2E + 6E) 
–  25 x 100 (1E and 2E) 

•  FCP 
–  30 x 100 (1E) 

•  RD53 
–  50 x 50 (1E) 
–  25 x 100 (1E) 
–  25 x 100 (2E) + Test structures (strip, diodes, etc) 
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Preliminary results (1): W48 diode IV 

<<1pA per column 

100 um 
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Preliminary results (2): W48 diode CV 

43 fF per column 

53 fF per column 

100 um 
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Automatic tests 
25 

•  Good electrical characteristics  
in terms of leakage current,  
breakdown voltage and  
capacitance, in good agreement  
with simulations 
•  Process Yield ~38% on large 

sensors (FEI4), >60% on all 
others 

•  Best two wafers (76&78) at 
Selex for bump bonding 

Numbers of good detectors per type on 9 wafers 
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Timing with 3D 
So far tested with hex-cell 3D’s 
(L=50µm) & fast current amplifier S. Parker et al.  IEEE  

TNS 58(2) (2011) 404 

•  Off-line analysis of  
recorded waveforms 
•  Timing resolution from  
177 ps to 31ps 
•  Limited by front-end noise 

Best choice: trenched detectors 
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New Trenched-3D pixels for timing (1) 
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New Trenched-3D pixels for timing (2) 
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Conclusions 
•  Very impressive progress has been recently achieved in   
3D radiation sensors, boosted by the ATLAS IBL project: 

-  Experimental confirmation of superior radiation 
tolerance with relatively low power dissipation 

-  Demonstration of medium volume productions 

•  These accomplishments paved the way for using 3D 
sensors in pixel detector upgrades at HL-LHC, for which a 
new generation of 3D pixels is being developed 

•  Despite their significant potential, 3D sensors fast signal 
properties have so far not been exploited. 

•  An R&D effort in this direction is worth, and it can partially 
benefit from on-going technological developments  
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Back-Up Slides 
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•  Simplified simulation domain (~2d):  

 1 µm thick slice (1/4 or 1/8 of pixel) 

•  MIP (heavy ion model): vertical hits at 

several different positions evenly 

distributed and representing different 

electric field values 

•  Impact ionization model not active 

•  Avoiding boundaries: no charge sharing 

•  20-ns integration of current signals  

•  Normalization to injected charge 

•  Repeat at different bias voltage 

•  Average charge over all hit positions 

CCE simulation approach 
50x50 

25x100 
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50x50: electric field 2d (preliminary) 

0 V 50 V 100 V 

150 V 200 V 250 V 

2x1016 neq/cm2 
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Charge multiplication by design in 3D sensors 
Exploiting high fields in thin 3D structures with  
small inter-electrode spacing 
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