
Giacinto Donvito
Marica Antonacci - INFN Bari

Scuola di Cloud Storage
Bari, Ottobre 2016

OpenStack Object
Storage:

Swift vs CEPH

• Swift introduction

• Key Elements & Concepts

• Architecture

• Swift Geographically distributed cluster

• Hints on Ceph Object storage

• Swift vs Ceph

Outline

• Swift is the software behind the OpenStack Object
Storage service.

• Written in python. Over 100+ contributors from
many Org.

• Provides a simple storage service for applications
using RESTful interfaces

• Provides maximum data availability and storage
capacity.

Swift

• Wikipedia

• Rackspace

• Hp Cloud

• MercadoLibre

• Disney

• …

Production deployments

Swift Key Elements

• Objects are protected by storing multiple copies of data
so that if one node fails, the data can be retrieved from
another node

• That means that you'll always get your data, they will be
dispersed on many places, but you could get an old
version of them (or no data at all) in some odd cases
(like some server overload or failure).

• But there are mechanisms built into Swift to minimize the
potential data inconsistency window: they are
responsible for data replication and consistency.

Massive Scaling with
Eventual Consistency

• Ring: represents the space of all possible computed
hash values divided in equivalent parts. Each part of
this space is called a partition.

• Rings are used to deduce where a particular piece of
data is stored.

Consistent hashing

• By default, Swift stores 3 copies of every objects, but
that's configurable.

• Zone: is an isolated space that does not depend on
other zone, so in case of an outage on a zone, the
other zones are still available.

• Concretely, a zone is likely to be a disk, a server, or a
whole cabinet, depending on the size of your cluster.

• Each partition is replicated; each replica is placed as
uniquely as possible across the cluster.

Data duplication

• In Swift, there are 3 categories of thing to store:
account, container and objects —> 3 independent rings

accounts, containers,
objects

Swift Architecture

• Proxy Server

• Object Server

• Container Server

• Account Server

• Replication

• Updaters

• Auditors

• Reapers

Swift Components

46 Openstack IaaS

L’architettura di Swift è altamente distribuita per evitare i problemi di inconsistenza, mal-

funzionamenti e inagibilità del servizio nel caso di problemi ai server - che altrimenti sarebbero

centralizzati - in una data zona. Prevede, quindi, un insieme di meccanismi per la replicazione

e la ridondanza delle informazioni.

Swift risulta costituito da

• un Proxy Server che intercetta le chiamate alle API o la richiesta di servizio tramite

protocollo HTTP e si interfaccia direttamente con i diversi object server;

• un Object Server adibito alla gestione (recupero, modifica o cancellazione) degli oggetti

sui nodi di storage. Ogni oggetto è memorizzato in base ad un path ottenuto tramite

una funzione hash applicata al nome e al timestamp e viene trattato come un file binario

con i metadati specificati negli attributi estesi del file, e una volta cancellato è demarcato

dall’estensione .ts (tombstone).

• un Container Server che implementa il concetto di aggregazione di un gruppo di files

in uno specifico contenitore (indipendentemente dalla loro dislocazione fisica) e provvede

quindi alla gestione di tali associazioni (memorizzate in un database sql);

• un Account Server che si occupa degli account definiti all’interno del servizio.

Figura 4.3: Architettura del componente Swift che realizza l’Object Storage in Openstack

Vi è, inoltre, un insieme di processi eseguiti su ogni nodo con lo scopo di replicare le

informazioni e mantenerle consistenti, in cui ogni processo controlla i dati locali confrontandoli

con quelli di ogni altro nodo per verificare che siano aggiornati o eventualmente siano stati

• Swift is a two-tier storage system
consisting of

• a proxy tier, which handles all
incoming requests;

• an object storage tier where the
actual data is stored.

• In addition, consistency processes run
to ensure the integrity of the data.

Swift deployment

• By default, Swift OpenStack provides

• RESTful APIs

• CLI client (python-swiftclient)

• It is possible to enable standard interfaces, like S3 (Amazon-compliant APIs) and
CDMI (Cloud Data Management Interface), adding the corresponding middleware
name in the proxy-server pipeline and its parameter section.  
S3 Example: /etc/swift/proxy-server.conf

• For CDMI the following extra package has to be installed too: https://github.com/
osaddon/cdmi

Data Access

https://github.com/osaddon/cdmi
https://github.com/osaddon/cdmi

• Protect the cluster endpoint, enabling SSL support in
the proxy servers or using an SSL terminator (e.g.
Pound)

• Node-to-node communication happens via HTTP —>
deploy them on secure network (e.g. VLAN)

• Node-to-node replication: rsync traffic is not encrypted
—> use a secure network

• Data encryption: relies on the backend storage system

Data Security

Geographically distributed  
Swift cluster

• A Region represents an additional level of tiering, or a group of zones, so all the
devices that belong to zones constituting a single region must belong to this region.

• The proxy nodes will have an affinity to a Region and be able to optimistically write
to storage nodes based on the storage nodes’ Region. Optionally, the client will
have the option to perform a write or read that goes across Regions (ignoring local
affinity),if required.

Multi-regional clusters

An example: 3 Regions & 3 Replicas

Swift vs Ceph

OpenStack Swift transfers data
through proxy servers which then
distribute data to the Storage
nodes.

Independent proxy servers

No caching

Architectural perspective
4

Architecture
• Ceph clients connect directly to the

Storage nodes eliminating any bottleneck.
• Instead of proxies like Swift, Ceph uses

monitors that distribute cluster maps to
the clients and storage nodes.

• Cluster maps are guidelines for placement
of data files.

• The monitor service can be run on same
node running the OSD services.

• OpenStack Swift transfers data through
proxy servers which then distribute data
to the Storage nodes.

• A Round Robin or Load Balancer must be
used to distribute work load when using
multiple proxies.

• The proxy nodes will be more CPU & I/O
intensive than storage nodes due to data
transferring.

Ceph OpenStack Swift

Ceph clients connect directly to
the Storage nodes eliminating any
bottleneck.

Monitor quorum

Journal and Cache tier

4

Architecture
• Ceph clients connect directly to the

Storage nodes eliminating any bottleneck.
• Instead of proxies like Swift, Ceph uses

monitors that distribute cluster maps to
the clients and storage nodes.

• Cluster maps are guidelines for placement
of data files.

• The monitor service can be run on same
node running the OSD services.

• OpenStack Swift transfers data through
proxy servers which then distribute data
to the Storage nodes.

• A Round Robin or Load Balancer must be
used to distribute work load when using
multiple proxies.

• The proxy nodes will be more CPU & I/O
intensive than storage nodes due to data
transferring.

Ceph OpenStack Swift

• Nelle ultime release il supporto all’Object Storage in CEPH è stato oggetto di
miglioramenti importanti.

• The new multitenancy infrastructure improves compatibility with Swift, which
provides a separate container namespace for each user/tenant.

• The OpenStack Keystone v3 API is now supported. There are a range of other
small Swift API features and compatibility improvements as well, including bulk
delete and SLO (static large objects).

• The multisite feature has been almost completely rearchitected and rewritten to
support any number of clusters/sites, bidirectional fail-over, and active/active
configurations.

• You can now access radosgw buckets via NFS (experimental).

• The AWS4 authentication protocol is now supported.

• There is now support for S3 request payer buckets.

• The Swift API now supports object expiration.

CEPH Object storage

RGW: Swift compliance

RGW: S3 compliance

• CONFIGURING CEPH OBJECT GATEWAY WITH APACHE/FASTCGI

• CREATE A USER AND KEYRING

• CREATE POOLS

• USING THE GATEWAY:

• CREATE A RADOSGW USER FOR S3 ACCESS:

• radosgw-admin user create —uid="testuser"

• CREATE A SWIFT USER

• radosgw-admin subuser create --uid=testuser --subuser=testuser:swift --
access=full

• radosgw-admin key create --subuser=testuser:swift --key-type=swift --gen-secret

• swift -A http://{IP ADDRESS}/auth/1.0 -U testuser:swift -K ‘{swift_secret_key}’ list

CEPH Object storage

• ADD / REMOVE ADMIN CAPABILITIES

• The Ceph Object Gateway enables you to set quotas on users and buckets
owned by users. Quotas include the maximum number of objects in a bucket
and the maximum storage size in megabytes.

• Bucket: The --bucket option allows you to specify a quota for buckets the
user owns.

• Maximum Objects: The --max-objects setting allows you to specify the
maximum number of objects. A negative value disables this setting.

• Maximum Size: The --max-size option allows you to specify a quota size in B/
K/M/G/T. A negative value disables this setting.

• Quota Scope: The --quota-scope option sets the scope for the quota. The
options are bucket and user. Bucket quotas apply to buckets a user owns.
User quotas apply to a user.

CEPH Object storage

• The Ceph Object Gateway logs usage for each user. You can track user
usage within date ranges too.

• Options include:

• Start Date: The --start-date option allows you to filter usage stats from a
particular start date (format: yyyy-mm-dd[HH:MM:SS]).

• End Date: The --end-date option allows you to filter usage up to a
particular date (format: yyyy-mm-dd[HH:MM:SS]).

• Log Entries: The --show-log-entries option allows you to specify
whether or not to include log entries with the usage stats (options: true |
false).

• radosgw-admin usage show --uid=johndoe --start-date=2012-03-01 --
end-date=2012-04-01

CEPH Object storage

• INTEGRATING WITH OPENSTACK KEYSTONE

CEPH Object storage

• RGW MULTI-TENANCY: New in version Jewel.

• The multi-tenancy feature allows to use buckets and users of the same name simultaneously by segregating
them under so-called tenants. This may be useful, for instance, to permit users of Swift API to create
buckets with easily conflicting names such as “test” or “trove”.

• From the Jewel release onward, each user and bucket lies under a tenant. For compatibility, a “legacy”
tenant with an empty name is provided. Whenever a bucket is referred without an explicit tenant, an implicit
tenant is used, taken from the user performing the operation. Since the pre-existing users are under the
legacy tenant, they continue to create and access buckets as before. The layout of objects in RADOS is
extended in a compatible way, ensuring a smooth upgrade to Jewel.

• S3:

• # radosgw-admin --tenant testx --uid tester --display-name "Test User" --access_key TESTER --secret
test123 user create

• SWIFT:

• # radosgw-admin --tenant testx --uid tester --display-name "Test User" --subuser tester:test --key-type
swift --access full user create

• # radosgw-admin --subuser 'testx$tester:test' --key-type swift --secret test123

• https://ep.host.dom/tenant:bucket

CEPH Object storage

https://ep.host.dom/tenant:bucket

PYTHON S3 EXAMPLES

PYTHON S3 EXAMPLES

• Swift main issues:

• traffic to and from the Swift cluster flows through the proxy servers

• eventual consistency: object replicas aren’t necessarily updated at
the same time

• Ceph main issues:

• Ceph is quite sensitive to clock drift

• multi-region support based on a master-slave model

• security: RADOS clients on the compute nodes communicates
directly with the RADOS server

Issues

