OpenStack Object
Storage:
Swift vs CEPH

Giacinto Donvito
Marica Antonacci - INFN Bari

Scuola di Cloud Storage
Bari, Ottobre 2016

Swift introduction

 Key Elements & Concepts

* Architecture

Swift Geographically distributed cluster
Hints on Ceph Object storage

Swift vs Ceph

Swift is the software behind the OpenStack Object
Storage service.

Written in python. Over 100+ contributors from
many Org.

Provides a simple storage service for applications
using RESTful interfaces

Provides maximum data availability and storage
capacity.

2roduction depl

Wikipedia
Rackspace
Hp Cloud
Mercadol.ibre

Disney

W

Massive Scaling with
Eventual Consistency

* Objects are protected by storing multiple copies of data
so that if one node fails, the data can be retrieved from
another node

 That means that you'll always get your data, they will be
dispersed on many places, but you could get an old
version of them (or no data at all) in some odd cases
(like some server overload or failure).

e But there are mechanisms built into Swift to minimize the
potential data inconsistency window: they are
responsible for data replication and consistency.

Consisten

* RIng: represents the space of all possible computed
hash values divided in equivalent parts. Each part of
this space is called a partition.

55 2160 __0
THE RING ST-D:,) \ 2 single wode/partition

YA

* Rings are used to deduce where a particular piece of
data is stored.

Data duplication

By default, Swift stores 3 copies of every objects, but
that's configurable.

Zone: Is an isolated space that does not depend on
other zone, so in case of an outage on a zone, the
other zones are still available.

Concretely, a zone is likely to be a disk, a server, or a
whole cabinet, depending on the size of your cluster.

Each partition is replicated; each replica is placed as
uniguely as possible across the cluster.

In Swift, there are 3 categories of thing to store:
container and objects —> 3 independent rings

account,

\J

m = -?-r -#-P- R
) I
oo

objects

The Ring, split into
¢ P partitions for account
(where log,(P) e N)

references

C containers R replicas

(CeN) (where R € N and =
here with R equals 3)

container |----p | Partitions |

- |
 for container |

|

O objects :
(0O e N) I jm—————————=- —p

references @ ‘-----+---mmeo-7

object -—--

|
for E
|

|

|

|

|

I = e e e e e e e e e [e - PR OO IO

'-p ! Partitions '\---p ' Zones '
 for objects | |

Swift Compone

e Proxy Server
* Object Server S

e Container Server

e Account Server

account container object

* Replication

* Updaters

e Auditors OpenStack Object Store

 Reapers

WITt dep

load from
Single Node

S

Requires

Swift is a two-tier storage system
consisting of

* a proxy tier, which handles all
Incoming requests;

* an object storage tier where the
actual data Is stored.

In addition, consistency processes run
to ensure the integrity of the data.

Jata Acces

By default, Swift OpenStack provides

o RESTful APIs

e CLI client (python-swiftclient)

It is possible to enable standard interfaces, like 83 (Amazon-compliant APIs) and
CDMI (Cloud Data Management Interface), adding the corresponding middleware

name in the proxy-server pipeline and its parameter section.
S3 Example: /etc/swift/proxy-server.conf

[pipeline:main]

[filter:swift3]
use = egQ:swift3#swift3

[filter:s3token]

paste.filter_factory = keystone.middleware.s3_token:filter_factory
auth_port = 35357

auth_host = controller

auth_protocol = https

For CDMI the following extra package has to be installed too: https://github.com/

osaddon/cdmi

https://github.com/osaddon/cdmi
https://github.com/osaddon/cdmi

Jata

Protect the cluster endpoint, enabling SSL support in
the proxy servers or using an SSL terminator (e.g.
Pound)

Node-to-node communication happens via HT TP —>
deploy them on secure network (e.g. VLAN)

Node-to-node replication: rsync traffic is not encrypted
—> USe a secure network

Data encryption: relies on the backend storage system

Multi-regional clusters

A Region represents an additional level of tiering, or a group of zones, so all the

devices that belong to zones constituting a single region must belong to this region.

The proxy nodes will have an affinity to a Region and be able to optimistically write

to storage nodes based on the storage nodes’ Region. Optionally, the client will

have the option to perform a write or read that goes across Regions (ignoring local

affinity),if required.

S Asyrchronous offsite replica [Highwthwoughput Upload

Afinty for local copy

/ /
/ ta replicas are writlen in a Region
f == ’ ==
vl
! zasyrchronous replication ko cther Regions 1 ! ‘
Region A Region B Region C
i l ‘Fetch newes?’ chacks tmestamps
Region B Region C ,
/
/
== —
3!\ snge copy neach Region lueblat i (,heuk
Region A Region B Region C Region A Region B Region C

Architectural persc

OpenStack Swift transfers data
through proxy servers which then
distribute data to the Storage
nodes.

Independent proxy servers

No caching

OpenStack Swift

Client — Data

Pr

Ceph clients connect directly to
the Storage nodes eliminating any
bottleneck.

Monitor guorum

Journal and Cache tier

Ceph

Xy Proxy
L Storage Storage Storage Storage
Mode Mode Mode Mode

CEPH Object storage

* Nelle ultime release il supporto all'Object Storage in CEPH & stato oggetto di
miglioramenti importanti.

The new multitenancy infrastructure improves compatibility with Swift, which
provides a separate container namespace for each user/tenant.

The OpenStack Keystone v3 APl is now supported. There are a range of other
small Swift APl features and compatibility improvements as well, including bulk
delete and SLO (static large objects).

The multisite feature has been almost completely rearchitected and rewritten to
support any number of clusters/sites, bidirectional fail-over, and active/active
configurations.

You can now access radosgw buckets via NFS (experimental).
The AWS4 authentication protocol is now supported.
There is now support for S3 request payer buckets.

The Swift APl now supports object expiration.

WITt COl
FEATURES SUPPORT

The following table describes the support status for current Swift functional features:

RGW:

Feature Status Remarks
Authentication Supported
Get Account Metadata Supported
Swift ACLs Supported Supports a subset of Swift ACLs
List Containers Supported
Delete Container Supported
Create Container Supported
Get Container Metadata Supported
Update Container Metadata Supported
Delete Container Metadata Supported
List Objects Supported
Static Website Not Supported
Create Object Supported
Create Large Object Supported
Delete Object Supported
Get Object Supported
Copy Object Supported
Get Object Metadata Supported
Update Object Metadata Supported
Expiring Objects Supported
Object Versioning Supported
CORS Not Supported

GW:

FEATURES SUPPORT

The following table describes the support status for current Amazon S3 functional features:

Feature Status Remarks

List Buckets Supported

Delete Bucket Supported

Create Bucket Supported Different set of canned ACLs
Bucket Lifecycle Not Supported

Policy (Buckets, Objects) Not Supported ACLs are supported
Bucket Website Not Supported

Bucket ACLs (Get, Put) Supported Different set of canned ACLs
Bucket Location Supported

Bucket Notification Not Supported

Bucket Object Versions Supported

Get Bucket Info (HEAD) Supported

Bucket Request Payment Supported

Put Object Supported

Delete Object Supported

Get Object Supported

Object ACLs (Get, Put) Supported

Get Object Info (HEAD) Supported

POST Object Supported

Copy Object Supported

Multipart Uploads Supported (missing Copy Part)

CONFIGURING CEPH OBJECT GATEWAY WITH APACHE/FASTCGI

CREATE A USER AND KEYRING

CREATE POOLS

USING THE GATEWAY:
« CREATE A RADOSGW USER FOR S3 ACCESS:
e radosgw-admin user create —uid="testuser"
« CREATE A SWIFT USER

e radosgw-admin subuser create --uid=testuser --subuser=testuser:swift --
access=full

e radosgw-admin key create --subuser=testuser:swift --key-type=swift --gen-secret

 swift -A http:/{IP ADDRESS}/auth/1.0 -U testuser:swift -K ‘{swift_secret_key}’ list

CEPH Object storage

 ADD / REMOVE ADMIN CAPABILITIES

 The Ceph Object Gateway enables you to set quotas on users and buckets
owned by users. Quotas include the maximum number of objects in a bucket
and the maximum storage size in megabytes.

 Bucket: The --bucket option allows you to specity a guota for buckets the
user owns.

 Maximum Objects: The --max-objects setting allows you to specity the
maximum number of objects. A negative value disables this setting.

 Maximum Size: The --max-size option allows you to specity a quota size in B/
K/IM/G/T. A negative value disables this setting.

e Quota Scope: The --quota-scope option sets the scope for the quota. The
options are bucket and user. Bucket quotas apply to buckets a user owns.
User quotas apply to a user.

CEPH Object storage

 The Ceph Object Gateway logs usage for each user. You can track user
usage within date ranges too.

e Options include:

e Start Date: The --start-date option allows you to filter usage stats from a
particular start date (format: yyyy-mm-dd[HH:MM:SS]).

 End Date: The --end-date option allows you to filter usage up to a
particular date (format: yyyy-mm-dd[HH:MM:SS]).

* Log Entries: The --show-log-entries option allows you to specity
whether or not to include log entries with the usage stats (options: true |

false).

e radosgw-admin usage show --uid=johndoe --start-date=2012-03-01 --
end-date=2012-04-0"1

* INTEGRATING WITH OPENSTACK KEYSTONE

openstack service creaze --name=swift \
~-descripticn="swift Service" \

objecl=slLore

L e —— L e ———— '
| Pield | value |
N ————— e —— +
description	swif: Servi.ce
enabled	Trae
id	37c4c0e79571404cb46442C1adabe5ee

name swif=:

type object-store
E S ————— e ——— +

openstack =2ndpoint create --region RegionOne \
——publicurl "hi.p://radosyw.eranple.cam: 8080/ swilL/vl" \
—adminarl "htzp://radosgw.example.ccm:80080/awifs/v1" \
~—intoarnalurl "htzp://radocqgw.example.ccmiB080/ewife/v1" \

swift

D —— = -

| Field | value |

R B ———— +
adminurl ttp://radosgw.example.conm: 8080 /swift /vl I
id e1249d2b60ed4743a67b5e5L38c18dd3
internalarl ttp://radosgw.example.com: 8080 /swift /vl |
publicurl ttp://radosgw.example.com: B0BO/swift /vl |
region Regionune |
service_id 37c4cieT9572404cbi644201adabelee |
service_name | awift |
cervice_typse | objec:z etore |

B T L L A e - - - -+

$ openstack 2ndpoiat shov object-store

R B e +
| Pield | value |
R B e +
adminurl ttp://radosgw.example.com: 8080 /swift/vl |
enabled True |
id e:1219dzbsleds’cjas /bdedbk3dcledds |
internalarl ttp://radosgw.example.com: 8080 /swift/vl |
publicurl hitp://radosyw.example.com: 8080 /swifL/vl |
region RogionOne |
service_id 37cicdeT9572404ebi644201adabesSee |
service nane | swift |
service_type | objecz-store |

F e ——————— e ———————————_—— +

CEPH Object storage

RGW MULTI-TENANCY: New in version Jewel.

The multi-tenancy feature allows to use buckets and users of the same name simultaneously by segregating
them under so-called tenants. This may be useful, for instance, to permit users of Swift API to create
buckets with easily conflicting names such as “test” or “trove”.

From the Jewel release onward, each user and bucket lies under a tenant. For compatibility, a “legacy”
tenant with an empty name is provided. Whenever a bucket is referred without an explicit tenant, an implicit
tenant is used, taken from the user performing the operation. Since the pre-existing users are under the
legacy tenant, they continue to create and access buckets as before. The layout of objects in RADOS is
extended in a compatible way, ensuring a smooth upgrade to Jewel.

S3:

e # radosgw-admin --tenant testx --uid tester --display-name "Test User" --access_key TESTER --secret
test123 user create

SWIFT:

e #radosgw-admin --tenant testx --uid tester --display-name "Test User" --subuser tester:test --key-type
swift --access full user create

« # radosgw-admin --subuser 'testx$tester:test' --key-type swift --secret test123

https://ep.host.dom/tenant:bucket

https://ep.host.dom/tenant:bucket

CREATING AN OBJECT

This creates a file hello.txt with the string "Hello World!"

key = bucket.new key('hello.txt')
key.set contents from string('Hello World!')

CHANGE AN OBJECT'S ACL

This makes the object hello. txt to be publicly readable, and secret_plans.txt to be private.

hello key = bucket.get key('hello.txt')

hello key.set canned acl('public-read’)
plans_key = bucket.get key('secret plans.txt')
plans _key.set canned _acl('private')

DOWNLOAD AN OBJECT (TO A FILE)

This downloads the object perl poetry.pdf and savesitin /home/larry/documents/

key = bucket.get key('perl poetry.pdf')
key.get contents to filename('/home/larry/documents/perl poetry.pdf')

GENERATE OBJECT DOWNLOAD URLS (SIGNED AND UNSIGNED)

This generates &n unsignad downlad URL for hello.txt. This works because we made hello.txt public by setting the ACL above. This then generates a signed
download URL for secret plans.txt that will work for 1 hour. Signed download URLs will work for the time perod even if the object is private (when the time period
is up, the URL will stop working).

hello key = bucket.get key(hello.txt')
hello url = hello key.generate url(0, query auth=False, fcrce http=True)
print hello url

plans_key = bucket.get key(secret plans.txt')
plans_url = plans_key.generate url(3600, query auth=True, force http=True)
print plans_url

The oulput of this will ook something like:

http://objects.dreanhost.con/my-bucket-name/hello.txt
hitp://objects.dreanhost.con/my-bucket-name/secret_plans. txt?Signature=xXXXXXXXXXXXXXKXXXKXKXKXKXKKGEXplres=

SSUE

e Swift main issues:
o traffic to and from the Swift cluster flows through the proxy servers

e eventual consistency: object replicas aren't necessarily updated at
the same time

 Ceph main issues:
« Ceph is quite sensitive to clock drift
* multi-region support based on a master-slave model

« security: RADOS clients on the compute nodes communicates
directly with the RADOS server

