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Gravity as geometry

General relativity (GR) is a geometric theory of gravitation whereby the
gravitational field of an object is described by the curvature of spacetime
in the neighbourhood of the object.
Three principles underlying GR:

Principle of equivalence

Principle of general covariance

Geodesic principle
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Equations of general relativity

Recall the Poisson equation:

∇2ϕ = 4πGρ

Variables

ϕ is the gravitational potential

ρ is the matter density

Equation is of the form:

Geometry = 4πG × (Matter) → Geometry ∝ Matter

Equation is valid for weak fields; GR extends this to strong fields
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Curvature

Object of interest in GR is a differentiable manifold, denoted M

Manifold → a collection of points that are connected to each other
such that the neighbourhood of each point looks like R

n, but
globally is curved.

M has three basic structures: vector, metric and curvature

Vector: tangent to curve γ on M

Metric: distance between two points on M

Curvature: acceleration between two neighbouring geodesics
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Einstein equations

The Einstein field equations couple matter to spacetime geometry

Rab −
1

2
Rgab + Λgab = 8πTab

Variables

gab spacetime metric

Rab = Rc
acb Ricci tensor and Rabcd Riemann curvature tensor

R = Rabg
ab Ricci scalar

Tab stress-energy tensor

Λ cosmological constant

Classical theory works well on astrophysical scales, but breaks down
where quantum effects in matter become important
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Black hole thermodynamics

Black holes have thermal properties

ds2 = −

(

1−
2M

r

)

dt2 +

(

1−
2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2)

Variables

M mass

r radial distance from center

The Schwarzschild black hole has a temperature T = 1/(8πM) and
an entropy S = 4πM2

In general a black hole has a temperature T = κ/(2π) and an
entropy S = A/4; κ is the surface gravity and A is the surface area

Example: the entropy of a one solar-mass Schwarzschild black hole
is S = 2.895× 1054 J · K−1

Quantum gravity will explain this entropy from first principles
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Singularities

Hawking and Penrose showed that a large class of spacetimes are
geodesically incomplete; for a trapped surface this necessarily implies
that a curve will terminate at a point where curvature diverges

Singularities are present in strong gravitational fields

Example: the Schwarzschild solution contains a curvature singularity
at r = 0

Where classical general relativity breaks down, physics has to continue
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Leading approaches to quantum gravity

Loop quantum gravity:

Canonical quantization of Hamiltonian phase space with constraints
The resulting picture is that of a discrete spacetime with area and
volume operators that have discrete eigenvalues
Difficulties with finding classical or semiclassical limit that would
describe quantum fields over spacetime backgrounds

Superstring theory:

Standard perturbative QFT methods used to quantize open and
closed strings
The spectrum of the closed string includes a spin-two excitation;
naturally includes quantum gravity!
Theory requires extra dimensions, supersymmetry etc for consistency
Theory describes QFT on fixed nondynamical backgrounds; a
background independent formulation is necessary
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Overview of path integral methods

Fundamental object here is the amplitude from initial configuration on
manifold M1 with metric g1 and matter field φ1 to a final configuration
on manifold M2 with metric g2 and matter field φ2:

〈g2, φ2;M2|g1, φ1;M1〉 =

∫

D[g ]D[φ]exp(iI [g , φ])

Does not require a space-time split; does not require extra
dimensions, supersymmetry...

Disadvantages? See below!
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Black-hole thermodynamics

Recall from statistical mechanics the partition function

Z = Tr
[

exp
(

−βĤ [φ]
)]

−→ Z =

∫

D[φ]exp
(

−Ĩ [φ]
)

Variables

φ fields, β inverse temperature, Ĥ Hamiltonian and Ĩ Euclidean action

Typically hard to evaluate Z exactly so need approximation;
standard trick from thermodynamics is to expand action around
on-shell field φ0
To first-order in the Taylor expansion the partition function is:

Z = exp
(

−Ĩ [φ0]
)

From here ones finds average energy 〈E 〉 = −∂(lnZ)/∂β and
entropy S = β〈E 〉+ lnZ
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Perturbation theory

Starting point is the formal path integral

Z [J] =

∫

D[g ]exp

{

i

(

IGrav +

∫

gabJ
abd4V

)}

with J an external source

One can then take functional derivatives of Z with respect to J and
get correlation functions

Problem: Metric-based action (see below) is not suitable to define Z
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Surface term

The second-order action for gravity on a four-dimensional (Lorentzian)
manifold M with boundary ∂M is given by:

I [g ] =
1

16π

∫

M

(R − 2Λ)d4V +
1

8π

∮

∂M

Kd3V

Variables

with G = 1, R Ricci scalar of spacetime metric g , K trace of extrinsic
curvature of boundary, Λ = −3/ℓ2 the cosmological constant with ℓ the
anti-de Sitter radius, d4V volume element determined by g , and d3V

volume element determined by induced metric h on ∂M

Appearance of the boundary term can be traced to the fact that the
action is second-order derivatives of metric; in the variational
principle both g and its first derivative must be held fixed

Prescription fails for asymptotic boundaries such as those of
asymptotically flat and anti-de Sitter spacetimes
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Counter-terms

First suggested resolution was to isometrically embed (∂M, h) in
background spacetime, calculate the extrinsic curvature K0 of ∂M
defined by the background metric, and subtract resulting quantity
from

∮

∂M
Kd3V

The action is thus

I [g ] =
1

16π

∫

M

(R − 2Λ)d4V +
1

8π

∮

∂M

(K − K0)d
3V

Resulting action is finite on spacetimes with asymptotic boundaries,
but K0 requires an isometric embedding into flat spacetime by
definition and so the prescription cannot be applied to certain
spacetimes, for example those containing nut charges
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Asymptotically flat spacetimes

Resolution to embedding problem is to define local counter-terms
that are intrinsic to ∂M; functions of Ricci tensor of boundary

For boundaries with topology Sn × R
3−n with n ∈ [2, 3] (e.g.

S2 × R
1 etc) two local counter-terms:

Mann:

ICT[h] = −
1

8π

∮

∂M

√

nR

n − 1
d
3
V

Kraus-Larsen-Siebelink:

ICT[h] = −
1

8π

∮

∂M

R
3/2

R2 −RijR
ij
d
3
V
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Asymptotically anti-de Sitter spacetimes

Lau-Mann prescription:

ICT[h] = −
1

4πℓ

∮

∂M

√

1 +
ℓ2R

2
d3V

Balasubramanian-Kraus:

ICT[h] = −
1

4πℓ

∮

∂M

(

1−
ℓ2R

4

)

d3V

... Plus many other much more complicated counter-terms!

Tomáš Liko Actions with gravity



Classical general relativity: gravity as geometry
Leading approaches to quantum gravity

Path integral approach
Second-order action
First-order actions

Surface term
Counter-terms
A closer look at the Lagrangian

Summary so far...

There is a plethora of counter-term prescriptions that renormalize
either the action for asymptotically flat or anti-de Sitter spacetimes

The question we are currently exploring is the following:

Is there a generic counter-term prescription that

renormalizes quantities for both asymptotically flat

and anti-de Sitter spacetimes???
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A closer look at the Lagrangian

The first term in the second-order action is

R = R [Γ, ∂Γ] ∼ ∂2g

→ No quadratic term in Lagrangian so not suitable for perturbation
theory
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Hilbert-Palatini action

In the first-order formulation of general relativity the action is given by

I [e,A] = −
1

16π

∫

M

⋆(e i ∧ e j) ∧ Fij + 2Λǫ+
1

16π

∮

∂M

⋆(e i ∧ e j) ∧ Aij

Variables

e i coframe (i , j ∈ [0, 3]), Ai
j an SO(3, 1) connection, F i

j associated cur-
vature, ǫ the volume four-form and ⋆ the internal Hodge dual operator

Boundary term is the natural one on the configuration space
C = {e,A} that is required by differentiablility; arises due to
presence of exterior derivative dA in action

Resulting action is both finite and does not make any reference to
the embedding of boundary in flat space

Same boundary term works for asymptotically anti-de Sitter
spacetimes; employing Hamiltonian phase space techniques, one
finds the Ashtekar-Magnon-Das conserved charges at I
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Transition to second-order action

What does first-order boundary term look like in second-order
formalism???

Use several algebraic identities plus definition of extrinsic curvature
and find that

⋆(e i ∧ e j) ∧ Aij = eaiA
j

ai njd
3V = (K − eai∂ani )d

3V

The full action in second-order formalism is therefore

I [g ] =
1

16π

∫

M

(R − 2Λ)d4V +
1

8π

∫

∂M

(K − eai∂ani )d
3V

The surface integral is completely independent of the presence of Λ...

Therefore eai∂ani is a good candidate for a generic counter-term for both
asymptotically flat and ADS spacetimes!
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Boundary stress tensor

Boundary stress tensor was found to be

Tab = −
[

(Kab − Khab)− (h c
a e i

b ∂cni − eai∂ani )
]

Work to be done? Show explicitly that Tab is finite when boundary
is pushed to infinity; and in particular derive the corresponding
conserved charges

Qξ = − lim
Ω→∞

∮

Ω

Tabξ
anbd3V

Show that the resulting charges reproduce the correct quantities
when evaluated for spacetimes such as Kerr, Taub-NUT etc with
Λ ≤ 0
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Extension to supergravity

Extension to supergravity would be of interest because
Gibbons-Hawking-York term breaks supersymmetry

Boundary action for 4D N = 1 supergravity in “1.5-order formalism”
was found to be:

ICT[h, ψ]

=
1

8π

∮

∂M

(

K − eai∂ani − ni∇ae
ai −

1

2
ǫ̃abc ψ̄aγie

i
b ψc

)

d3V

with ǫ̃abc = ǫabcdnd

Work to be done? Show that ICT[h] is supersymmetric without
imposing any boundary conditions on the configuration variables

Work out boundary stress tensor, conserved charges etc...
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“BF” type actions

Motivation from perturbation theory:

Note that the lowest order term in the first-order action is cubic:
⋆(e ∧ e) ∧ dA; for perturbation theory ideal to have Lagrangian with
lowest order term being quadratic

Tetrad can be eliminated by defining a two form B = ⋆(e ∧ e) and
the action becomes

S =

∫

M

B ∧ F −
1

2
ΦB ∧ B

Φ is a scalar matrix Lagrange multiplier imposing the constraint
B ∧ B = 0 which has solution

B = ±e ∧ e and B = ± ⋆ (e ∧ e)

Starting point of so-called spin foam models; but not quite suitable
for perturbation theory because of the contraint term Φ

Need an action that is quadratic and has an interaction term...
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Resolution is the Freidel-Starodubtsev action:

S =

∫

M

B IJ ∧ FIJ −
α

4
B IJ ∧ BKLǫIJKL4

Variables

AI
J an SO(4, 1) connection with I , J ∈ [0, 4], F I

J associated curvature, α
a constant

Action describes breaking of SO(4, 1) down to SO(3, 1)
Action for general relativity is recovered in 4 + 1 decomposition:

Aij = ωij , R ij = dωij + ωi
kω

kj , Ai5 =
1

ℓ
e i

F ij = R ij −
1

ℓ2
e i ∧ e j , F i5 =

1

ℓ
Dωe

i

with ℓ a constant of dimension length, together with the equation of
motion for B5i :

S = I [e, ω] +
1

4α
ǫijklR

ij ∧ Rkl
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Set-up for perturbation theory

α is related to Newton constant via G = αℓ2; α = GΛ/3 ∼ 10−120

which is suitable parameter for perturbative expansion

One can write the action as

S =

∫

M

B IJ ∧ FIJ −
α

4
BIJ ∧ J IJ

with J IJ = BKLǫ
IJKL4 a “source”.

This action contains quadratic term and an external source term;
suitable for definition of generating functional and hence
“perturbation theory over a topological background”
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