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Introduction
Calculations in phenomenology of QFT

Mellin-Barnes representation may be of use for at least two important
questions in the phenomenology of QFT:

@ Perturbative calculations in QFT imply to evaluate numerous Feynman
diagrams often with several masses and momenta. How can we
evaluate them analytically ?

@ Perturbative expressions are series in powers of the coupling constants.

How can we have non-perturbative (i.e. exponentially suppressed)
informations ?
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Introduction

Why using Mellin-Barnes representation?

@ The first observation is that the Mellin transform has the following scale
property
Mf(ax)] (s) = a *MIf(x)](s)

@ Renormalization Group solutions lead to consider asymptotic behaviours
of the diagrams as a In” a. The Mellin transformation kernel is the most
pertinent to obtain this type of asymptotic behaviour.

@ The Mellin-Barnes representation allows expansion in several
parameters and it also gives an explicit formula for the remainder that
permits a control on perturbative and (in some cases) non-perturbative
expansions.
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Introduction

Mellin-Barnes representation
and

Feynman diagrams calculation
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Mellin Transform Definitions  Converse Mapping theorem

One dimensional Mellin Transform

The Mellin transform of a function f and its inverse transform are defined as

c+ioco
Mf(x)](s) = / dx x*f(x) «—  f(x)= 2der xS Mf(x)](s)
0 c—ioco
If and only if
c=Res€la,f] written (a,p) Fundamental strip
It corresponds to the behaviours
_ —a _ -8
f(x) it Oo(x™ %) & f(x) e o(x ") )
1 ™
(1+x) — Snrs (0,1)
. v —s)r(s)
(1+x) — 0 (0,Rev)
™
In(1 + x) — ssnrs (—1,0)
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Mellin Transform Definitions ~ Converse Mapping theorem

The singularities in the complex Mellin’s plan govern completely the
asymptotic behaviour of the associated function

We need to define the singular expansion

From the Laurent series of a function ¢ in p
A_n A_q
©(s) (s_p)n+ teop tht 1(s—p)+

one can build the formal series by summing all over the poles of ¢ of the

singular part:
Afn A—1
Zp (s—p) s—p

this is the singular expansion of ¢ and it is written as

w(s)x;{(s'q_;;)njt---jts’q_w
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Mellin Transform Definitions ~ Converse Mapping theorem

Converse Mapping Theorem

N Re s If f satisfies the condition to have a Mellin
A 3 transform in the fundamental strip (., 3)
° and M [f](s) = O [|s|~"] forn > 1.
o x o

Converse Mapping Theorem

M) (8) = D Con o X)) ~ > %x‘pln”qx

— p\n
p>p,n (S ,0) p>p,n

_ 4 \n—1
MF(X)]n (8) < > (S‘fg)n o ) ~ > (1)_7(1”"”xpln”_1x
p<a,n n i
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A physical example Description Resummation

A physical and practical example: g — 2

Lautrup and de Rafael (1964) Friot, Greynat and de Rafael (2005)

I a2 1dX (0) X
oo O, 8= (5)° [ S0 —one (3
x a2 [Tdx ! 1-—
- (%) /7(1—)()(2 0 a2V
° ’ 1+m—éXZY(1fy)
1 C+iood
. . B ds, s w
Inverse Mellin Representation: Tix = 2i7rX sn~s (0,1)
c—ioco
C+ioco
— « 2 ds mf - ™ ! 25s—1 1—s ! 1+s 1+s
a=(3) /E(F) Snms J, o000 [y )
c—ico
a2 c+ioods m\ ° T \2 1-s
_(E) /ﬂ(m_,%) (sinws) (2+s)(1+2s)(3+2s)
c—ico
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A physical example Description Resummation

c+ioco

5 _((x)z / ds [ m ‘S( w )2 1—s
N [ 2im \ m2 sints/) (2+s)(1+2s)(3+2s)
c

—ioco

2
e For m; = m; then % > 1: Right side of the fundamental strip
i

T \2 1-s
(sin ws) (24 s)(1 +2s)(3 +2s)
() () et (o) 72

then
()L 1 miz| m, 9 miz
a“f(;) a2 T1a0 \e ) "\ ) Taeeoo (2 ) T
m?
e For m; = me then m—; < 1: Left side of the fundamental strip
m
(”)2 1-s _11 25\ 1 =« 1
sins <2+s>(1+2s><3+2s>"EW(‘%);*TE*'”
then

EIEN

25 9 n, 2+7r2 me
36 ' 19600 \ m? 4 m,
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A physical example Description  Resummation

Exact solution

Flajolet et al. (1994) Friot et Grunberg JHEP 0709:002 (2007)

Those two expansions of the anomaly are the exact representation for
2
r= u >1andr= % < 1 because in the rest of the two asymptotic series

2
ml‘- 13

L7]
a, =Y Copr"In’r+R(T)
np

there are no exponential corrections

+T+iT d 5 1
. as s ™ — S
IR(T)I = 2ir | (simrs) (2+ s)(1 +2s)(3+2s)
T—iT
ST AT T T L en) @ L 2T

Am) = o(r)

Therefore the resummation of all the contributions from each poles is
convergent and give the exact function.
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A physical example Description  Resummation

Resummation

It is easy to perform resummations with the Mellin representation, in our
example on right-side

Al

1 1

$+n] (s—pp
11 5 1 1
@+n2  4(1+n? 4(E+n?]s-p

T \? 1-s > 1 11
(35:) =X s tare
sinwts /) (24 s)(1+ 2s)(3 + 2s) 24+n 43 +n

2

1

oo

p:

And using the Converse Mapping Theorem ( with r = % > 1) we have the
"
convergent expression by identification of the series as "usual” functions

A (4,28 50(3.2,3) 1 Inr
au_<7r> {717r+ P P +§\/7ArcCoth(\/7>Inr7?

3 5 3.2 > 1 5. (1
+§rln(r)7§r ArcCoth(ﬁ)lnrfrIn 177 Inr+ rLiz P
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A physical example e ion Resummation

Using the Converse Mapping Theorem ( with r = ,T;z_% < 1) we have the

expression
a\2[ 25 =2 572 44 5 3
a,= | — B A T —+—\|rP+Zro(r2:
“<w){36 4 + 4 et *t3 T2
13 5 1 3 1
—=r’'® (r,2,= | — =Inr+ =rinr + =+/rArcTanh r
4 (2) g+ grinr+ g VrAcTa (v7)
5 3/2 2 1 2.2 2,
7§r ArcTanh (\/F) Inr—r°In(1 —r)Inr+ 5r In"r — r°Liz (r)
N 119 72
/z‘?
\
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Multi-dimensional Mellin Transform

We define the n-dimensional Mellin transform of a function f as
M(f](s1, ..., Sn) i/ dxy / dxn xf“1 xSV (L Xn)
0 0

and its inverse transformation

. ds ds, _ _
f(X1,. .., Xn) = F;r E:X1S1,..XnSnM[f](s1,...,sn)
cy+iR cn+iR

This inversion formula is of course valid in the fundamental polyhedra defined
as all the constraintson ¢ = (¢, ..., ¢,) where the Mellin transform is
completely analytic.

If we want to extend the Converse Mapping Theorem to the multi-dimensional
case we need to introduce "briefly” the Grothendieck Residue theory.
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MDMT Def GR MDCMTh Sing. TL CS Phys.

A few words on Grothendieck Residues theory

P. Griffiths, J.Harris, Principles of Algebraic Geometry, Wyley NYC 1978
A.K. Tsikh et al., hep-th 9609215

To simplify, we are considering the case of only 2 different scales i.e. 2
complex variables: s and ¢

One way to see the residues in multi-dimensional complex analysis is to
consider the quantity (for any h completely analytic)

h(s, t) ¢ h(s, t) ds dt . yg
01(5,1) ¢2(5, 1) 2 o1(5,0) ea(s, D) 2in " 2im  Jo

All the curves, the divisors, in the 4-dimension complex space given by —
je1.2]

Res(o,0)

D = {(s, 1) € €2, gi(s, t) = o}

have intersections points in this space. They provide the calculation of the
residue in a summation over
N b

Jjelt,2]
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MDMT Def GR MDCMTh Sing. TL CS Phys

Multi-dimensional Converse Mapping Theorem

J.-Ph. Aguilar, D. Greynat and E. de Rafael, Phys. Rev. D 77, 093010 (2008)

Idea: If you combine the calculation of the Grothendieck residues and the
multi-dimensional Jordan lemma you can define sectors in complex space
where the x; are bigger or smaller than 1, these sectors then allowing to
generate the complete asymptotic behaviour in each variables.

Let us consider the following example

IO, =) | [

S x Cs+IiR ct+iR

NG <4me) <mﬁ>_t (6+13s+48%) T(t)F(1 — 1) (2 — )

3 \m m | $(2+s)(3+s) tr(4—21)
2
Ms+1)r2-s)yrl+2s—2t)r(2—s+t) ds A dt
M(s+32) r3+s—t
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Fundamental polyhedra and pertinent sector

Im s, Imt¢

=
Ret
Ret
—~ 7
Z T~ Re s
Re s
i’
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MDMT Def GR MDCMTh Sing. TL CS Phys

There are two kinds of singularities

The first kind: only vertical and horizontal divisors (at least 2 or more)
The 2-form w can be rewritten as (n and m are positive integers)

_ h(s.t)

= o as A dt

Therefore, using the Cauchy formula, we have obviously

_ 1 a"m=2 (s, t)
~ (n=1)I(m—1)! 9sn—Totm—T

RCS(O’()) w
(0,0)

| A\

The second kind: at least one oblique divisor
The 2-form w can be rewritten as (for example)

h(s,t)

For calculating the residue in this case we need more: the Transformation
Law.

ot
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The Transformation Law

The Transformation Law

For U c C€? an open set containing (0, 0)

_ (#1(s,0) _ (9:(s t)) ; . 2
If o = (@2(87 t)) and g = (gz(s, f) analytic mappings from U to C

and ¢~ '(0,0) =g '(0,0) =0
If it exists an analytic matrix A such that: g = A ¢ then

h(s, t) h(s,t)detA(s, t)

R — 7 ___dsAdt=R — 2 — ' ZdsAdt
00 55, 1) (s, 1) 200 "gi(5.1) ge(s.)
Example:
h(s, t)
ReS(oyo) mds A dt

we take

S\ [(1—Pst s’ s’

e) = s @ eus o) sty

N——
ig =A i(p

detA=8*+t+sP+12 -1
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Sing.

TL CS Phys

Therefore
h(s, t)
RCS(O’o) 3 t(—S n t) ds A dt
3 2 2 3 45
= Reso.0) (s, 1) =2 t:ft’; T2 o ndt
11 1
= Res(o,0) h(s, t) =t B + — St + 2P + =T ds A dt
h(s, t) 10°h(s, t) 10°h(s, t) 19%h(s, t)
Reso0) s+ 9N = 3 g5t oo 2 0s0F | TETor |
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Convergence sectors

dZ1 d22 21 7 2 2,
./ _/ 2/7r 2 Ui e F(=z)M(z)F (-2)T ()T (z1 + z2 + 1)
c+iRd+iR
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Coming back to our physical example

O, () [ [

” X Cs+iR c;+iR

Mo, -1
=000 4o g
e s3t
Re(s) _ e // /l:
| | % 2y ((4m =S (N raias—an ri1—siy
. 7 +25— —s+
AN ) ho, -1 (s, )= ( mge> (é) B v Err —
y //// / HK /// ><r2(1+sjr(2—sj(6+13s+452) r2@E—H)ri+nre—t)
i N % @+s)(s+3) (3 +s) (—1+H2 T(6-21)
. . ? . ReSO 1 1 9 h0_1)
, /// /// /// 0,— ) 2 832
. X (0,0)
2 2
a(eer) _ (g)4 m, 1 |092 mu log Tl n72 61 n 2 2
" by m2 135 m2 135 35 m2 2430 ' 405
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Th Sing.

0, (@ [

p c1+iR c+iR

Along the line t = —2:
_ h(o,_z)(s, t)

w = ds A dt
s St(—s+t)
Re(s) il A
1 e AL _ 2 ¢
5 am2\ 7% (m2 27 [(5425—20)(1—stt)
A ‘ ho,—2)(s, )= <Tﬁe) (é) 5 T Geen
y //// . HK /// < (6+135+4s2)F2(14s)F(2—s) T(A+H)F(B3—1) 2(4—1)
e L (@+s)@+9)r (3 +) (—1+0(—2+1)2 T(8-20)
3 3 3
Res w— 10%he,—2)(s; 1) 10%he,—2)(s; 1) 10%he,—2)(s; 1)
©=2% 727 9520t 2 osof EE
(0,0) (0,0) (0,0)
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Def GR MDCMTh
Easily now the contribution to the anomaly is

Sing. TL CS Phys.

a0 ()" ()
1 p= m

=

oM (1 m.o 37 \ 2™
1260 °9 ne (420 °9 7> + 22100 ) 9 me

22050 °% mz " 2630500

L8 oM (x 229213 m,
19600 log® 5 630 12348000 2
w2 30026659 }
+

1 _u 37 m, 40783
+<420 o0 7% * 53050 >

m
1512 5186160000

m\* m o m
m_i Iogﬁglgﬁog—i

+. 40

- (;’:)4 0.0027486(9)

J.-Ph. Aguilar, D. Greynat and E. de Rafael, Phys.Rev.D77 (2008)
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Mellin-Barnes representation

and

asymptotic improvement of perturbative
expansion
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Open Problems

@ In QFT we have to deal with presumably divergent non-Borel summable
series and expected asymptotic.

@ But asymptotic to what ?
@ One more difficulty: the general terms of the expansions are unknown.

@ Consequence: theoretical errors are not under control then how can we
find new physics effects in precision physics ?
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Introduction to the method

The general term of a divergent (and supposed asymptotic) perturbative
series is known.

Find non perturbative effects directly from the perturbative series.

@ Terminant functions theory Dingle 1973

@ Exponential improvement of asymptotic series : MB hyperasymptotic
theory. Paris et al.’90, Berry 1989
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Asymptotic analysis 0-dim example Perturbative expansion Numerical analysis

0—dimensional euclidean example

Let us consider the 0—dimensional euclidean action S with a unit mass

LT
S< gt + 0

and the associated generating functional

Z(j) = b /+oodq5e_s+j¢ = i /+ood¢ e—%cbz—%qﬁ“-%—/@ﬁ
ver J_w Vor ) o
with A € CandRe\ >0 |
We will focus on the vacuum-vacuum transitions
1 s 142 A 44
Z 0 = — d e_ECb —mlﬁ
O)=—=) @&
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Asymptotic analysis 0-dim example Perturbative expansion Numerical analysis

Perturbative expansion

Taking A small, one has the perturbative expansion of Z(0)

1 (=T (3 +2k) /A\* 35 385 .
200) ~ =y 2% (—) 8>\+@>\ ~3075 O

then this is a divergent series.

Let us define S and R,

2(0) No\/_z( 1)" ;Eu +2k)< ) i ( + 2k) (6)k

—~ gPert.
7Sn—1

R,
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Asymptotic analysis 0-dim example Perturbative expansion Numerical analysis

Numerical analysis

From now, for all numerical calculations, we fix
A = 1. Mathematica gives with 8 decimal x

iSii X
precision 5 - X % .o x < xogssssms

Z(0)],_ 3 ~ 0.96556048...

Choosing a resummation procedure for the perturbative series leads to the
property that |Ra| < |un| and |Rx| < |Us—1]. One then has

n—1

1 1
Z(0) = Zuk+ §|Un| + §|Un| ;
k=0

here
Z(O)\A:% = 0.96555187 + 0.00140990

The central value corresponds to the standard Stieltjes approximation which
is given, for the rank 7 defined Vn, |u,| < |un|

n—1
1
Z2(0)=> u+ AGIE
k=0
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Scheme

2(0) |
. Analytic approach / \ Formal approach
Mellin-Barnes Mapping : Perturbative
Representation I Expansion
MB - Remainder |: . Remainder (tail) }:

__________ \\ \ / _____________________

Exp. improvement : Non-perturbative ’

Expansion

v

Iterative procedure
Hyperasymptotic expansions J
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Analytic approach
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Hyperasymptotic Theory Initial remarks  Construction of the remainder The iterative procedure

Mellin-Barnes Hyperasymptotic Theory

Main Idea

Construct an exponentially small remainder with its inverse Mellin-Barnes
representation (non perturbative in \).

The first step is to obtain an inverse Mellin-Barnes representation of Z(0):

Cag ds (A 4\ °
e #” = Sin <m¢4> r(s) .

c+iR

with (0, +oc) and | arg A| < Z. Then we obtain the following results

Z(0) = %MB% (%)75 r(s)r (% = 23)

with {0, 1) and |arg \| < 3£ (Analytic continuation). earis et a1. 0's
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Hyperasymptotic Theory Initial remarks  Construction of the remainder The iterative procedure

Im s

| | Applying the Cauchy’s theorem on the integral
: : over s inside a rectangle horizontally sized n,
! ! Res One can prove that

- LG [ 2 () (32
therefore
e [ el

c—n+iR
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Hyperasymptotic Theory

Using the Stirling's formula: | (o +i7)] = O(|7-|"‘%e‘%‘”)

T—
and majoring the integrand one has  raris et a1. 90's
X" -
| n|njoo ? O(e nnn C)

Superasymptotic Theorem

When || is small, there exist ag > 0 and |bg| < oo so that if

ao

n= =
Al

+ bo

then R, is exponentially small in A (non perturbative).

4
o0 (e (2)7)
[A|—0 3

and for a, = 2, we have the Optimal Truncation Scheme i.e. the smallest

remainder .
IRy = o(e*ﬁw).
n—oo

Here,
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Hyperasymptotic Theory Initial remarks  Construction of the remainder The iterative procedure

The iterative procedure

Main Idea

It is possible to construct more and more exponentially small remainders
order by order in the expansion of Rj.

With the duplication formula

r2z)= 2?;;1 r(z)r (z + 1)

we can rewrite the remainder as

ox T+ (t+9)
An m/_ /2m (5) sinnt F(4t+1) :

—c+n+iR

We introduce now the main tool : the inverse factorial expansion.
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Hyperasymptotic Theory Initial remarks  Construction of the remainder The iterative procedure

The inverse factorial expansion

Barnes’ lemma

Fs+al(s+b) [dtT(t+c—al(t+c—bl(s+9—t)r(-t)
r(s+c) ~ J 2ix r(c—a)(c—b)

iR

withd =a-+b—c.

| \

Inverse factorial expansion

M—1 Vi
r(sﬁ(‘;g*b Z( ' (e~ a) (c—b) (s +9—))
J=
dt T(t+c—a)l(t+c—b)(s+9— ) (—t)
) 2ir F(c—a)l(c—b)

M>Re(a—c)+d6, M>Re(b—c)+d, M >Re(s+9)
for0<d<1and|args| < 3
0.1ver 1995

-
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Hyperasymptotic Theory Initial remarks  Construction of the remainder The iterative procedure

One has in our example,

1 3 m—1 .
MDD Sy are- e [ o9

j=0 c+m+iR

H——Lm71(—1)/A- /i 3\ r(t—j)+AR
(Y. y 2ir \2x) sinnt )=+ Fom

=e —cn+iR
with
dt . ds (3 -t or
Ao 71'\/_ 2ir 2/7T <2)\> sinwt CHC.
—c+n+iR)
X( C+m+IIR)
3 —n—c .
Yet, we have (m < n), |Ry, m| = o <’§ en(n_m)nmmm+c§>
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Hyperasymptotic Theory Initial remarks  Construction of the remainder The iterative procedure

Optimal Truncation Scheme

FOr m= % + b1 ) we haVe Paris et al. 90’'s

_agtnanz A =2
|Rnm| = O [Ale BY aw(ao_aﬂ BY
T A|=0 1

R = ofe T (22 ™
" Al=o0 3

We can optimize the remainders in two ways, first satisfying the condition on
R, and then optimizing R, m or optimizing directly Rp m:

Rn=O() Rnm = O(")

OTS1  a=2 a=2 e 7 e ~zaT(H+n2)
2 4

3 _3

OTS 2 a =3 a; = 3 = [Ale  TAT

o
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Hyperasymptotic Theory Initial remarks  Construction of the remainder The iterative procedure

Hyperasymptotic expansion of Z(0) at first hyperasymptotic level

n—1 k
20) = (- 174 ()
k=0

m—1 —t
1 Vi dt 3 T g
T a2 ,0(_1) A / 2ir (5) sinm‘r(t_j)

/= —c+n+iR

1 a ds /3\' =«
by o " o (ﬁ) S el =)
(—C+n+iR)
X (—c+m+iR)
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Hyperasymptotic Theory Initial remarks  Construction of the remainder The iterative procedure

OTS1 at first hyperasymptotic level
(2] 3\
Z(0) = Z (-1 Ak( 2)\)

1 =, 4va d (3\ ' =« .
‘—Wg;(‘” A / 2ir (5) snt ()
7c+[ﬁ}+in{

_3(1+In2)
+O< |Ale ZW)
-

OTS2 at first hyperasymptotic level

_%\/E > (—1Y A 3/ sztT <%>_t sinat’ (7))

w,
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Hyperasymptotic Theory Initial remarks  Construction of the remainder The iterative procedure

lterations...

We have shown that it is possible to write the remainder as

m—1 —t
1 i A a (3 T (-]
\@,»:ZOH) A / 2in (2/\) st ()

—Cc+n+iR
dl‘ ds 3\"!
oY f(s)r(t—

71'\/_ / 2!7r ir (2)\> P (8)r(t—1s)
C+FI+I]R
X( C+m+I]R)

where £(s) = rEsr(s+9r(s+3) 1 T(s+ydr(s+§ =

r&r@ ™2 F(s+1) sints

Yet applying the Inverse factorial expansion one has

Functional equation

m/2sinTs

c+m’ —i IR

1 = dt
f(s) = ———=—0 [Z(—U’A, r(s—1) + > (1) F(s—t)]
1=0

Then using this expression of f in R, one may get straightforwardly a
hyperasymptotic expansions at an arbitrary hyperasymptotic level.
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Formal approach
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The starting point is now the expression of Z(0) as a divergent series

a0, LTG0y 1 ST e o

- S}’crti =R,

n—

Using the duplication formula,

We can apply the Inverse factorial expansion for

k+Drk+23) =
( ?(‘Qig)“) = AT + 2 Hs) (K~ s)
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Resummation

Resummation and terminant function

The remainder is then

LI VP Y
o= /s LA T N (=2 )
1 —2x\"
+m f(s Zr(k—s ( 3 )

c+m+i ]R

One can now perform a Borel resummation on the two infinite sums in Ry,

o[Sro-n ()] -ro-n (-5) wr (3)

The function A, is known as a terminant function, here pingie 1973
Ae(x) = x“e*T (=1, x)
where -
Ma,x) = / dyy*'e™
X

is the incomplete Gamma function.
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Resummation

Therefore performing the summation, one has the expansion (m < n)

6

—1
2(0):LZ(_1)kr(%+2k) (é)k

D o % Sy A (Y (—npier 2
s en ;O( WAL= (F ) T(=n+it+1 5

c+m+i R

3)

ﬂ;\%ne% /%(%)_s f(s)r(n—s)r<—n+s+1,5

where the sub-dominant terms appear explicitly through the expression of the

tail of the series.

Using the MB representation of the incomplete Gamma function we have

exactly the hyperasymptotic expansion of Z(0) at first level obtained in the

analytic approach.
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Resurgence phenomenon

Resurgence phenomenon

If we consider a few terms in the perturbative expansion of Z(0)

1 35 385 .,
Z(O) =1 gh+ g5\ ~ o7+

we have the same coefficient in the non-perturbative expansion of R, as

R — D" &
/2
x {1 r(5)r( 4, %) —1§)\ r(4)r <—3, 2%)

35 3\ 385 ., 3
+3ga? TN ( ’2)\) 3072" r(2)r< 1’2)\)+ }
.

This resurgence phenomenon also appears in higher order hyperasymptotic
levels.
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Numerics
Numerical analysis

| [ n [ m [ m [ m |
T A= | ]2
oTS1 (2 Lal=4 | =2 | 5l=1
3 [gxl=4 | laxl=2 | [gxl=1][gx]=0
1] 51=9 | [gql=4
Ots2 2 [5l=13] []=9 |[[1=14
3 Ixl=18 | [gxl=18] [x]=9 | [gx]=4
| [ 1200 [ S [ Sa [ Sw | Sw |
| Mathematica | [ 0.965560481.. | | | | |
0.96555187

Pertur. expa.
+0.001410990

1 | 0.96552297 0.9638 | 0.0017
OTS 1 2 | 0.96556492 0.9638 | 0.0017 0.000041
3 | 0.96556492 0.9638 | 0.0017 0.000041 0
1 | 0.965562911 0.9696 | -0.0040
OTS 2 2 | 0.965560477 1.0573 | -0.0917 | 0.0000061
3 | 0.965560486 -27.696 | 28.662 | -0.0001292 | 9 x 1077

D. Greynat MB Applications



Numerics

e Numerical stability Olver et al. '95

It has been proven that it is possible to obtain numerical stability by choosing
another OTS, taking
n+1—j
n+1
For the third hyperasymptotic level we have

a =

n=2=8 m=286 m = 4 m' =2

and
Z(0) = 0.965560480

e An numerical evaluation on the Riemann surface

For A =e'"§, we have

Mathematica 1.05995021 — 0.00758472 i
Stieljes 1.06098837 + 0/ - 0.00140990
S5+ SHF 1.05990083 — 0.00752794 i
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CONCLUSIONS

@ The Mellin Barnes representation is a perfect tool to obtain asymptotic
expansions of Feynman diagrams containing one or several scales. It
assures the calculation at any order and under certain conditions the
exact representation.

@ The Mellin Barnes representation is also a powerful instrument to deal
with perturbative divergent series and their resummation. It allows also
through the hyperasymptotic method to get non perturbative
contributions directly from the perturbative expansion itself.
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