Searching for New Physics with Displaced Vertex signatures in the ATLAS Detector

Henry Lubatti University of Washington, Seattle

University of Rome, La Sapienza June 24, 2016

Why Long-lived Particles

- Standard Model (SM) completed by discovery Higgs boson in 2012
 - Focused attention on what SM does not address
 - Dark Matter
 - Matter-antimatter asymmetry of our universe
 - Naturalness of electro-weak scale absent obvious TeV-scale signals of physics Beyond the SM (BSM)
- Virtually every theory that extends the SM to address these open issues either allows for or requires long-lived particles
 - Life-times (cτ) can range from a few 100 μm to the Big Bang Nucleosynthesis (BBN) limit of 10⁶ – 10⁸ meters
 - Covering such a large cτ range poses a major experimental challenge
 - Detecting decays displaced from the IP in LHC detectors where triggers designed to select prompt decays presents interesting challenges
- CMS, ATLAS and LHCb experiments have developed new triggers (ATLAS) or improved displaced vertex reconstruction in the inner tracker (CMS and ATLAS) and vertex reconstruction in the muon spectrometer (ATLAS)

Theories with Long-lived Particles

- BSM Theories that extend SM require or allow for LLPs*
 - Mini split supersymmetry (arXiv:1212.6971)
 - Gauge mediation (arXiv:hep-ph/9801271)
 - RPV (R-parity violating) SUSY (arXiv:1309.5957)
 - Models of Baryogenesis (arXiv:1409.6729)
 - Hidden Valleys (arXiv:hep-ph/0605193)
 - Dark Photons (arXiv:1604:00044)
 - Theories of Neutral Naturalness (arXiv:1512.05782)
 - Models generating neutrino masses (arXiv:1604.06099)

* Reference are to a relatively recent paper that contains earlier work.

Signature space of Displaced vertex searches

- Detector signature depends of production and decay operators of a given model
 - Production determines cross section and number and characteristics of associated objects
 - Decay operator coupling determines life time, which is effectively a free parameter
- Common Production modes
 - Production of single object with No associated objects (AOs)

 - Vector Z' mixing with SM gauge bosons kinetic mixing
 - Production of a single object P with an AO Many SUSY models
 - AO jets if results from decay of a colored object
 - AO leptons if LLP produced via EW interactions with SM
- Common detector signatures \Rightarrow generic searches

Focus on neutral LLPs

- Neutral LLPs lead to displaced decays with no track connecting to the IP, a distinguishing signature
 - SM particles predominantly yield prompt decays (good news)
 - SM cross sections very large (eg. QCD jets) (bad news)
- To reduce SM backgrounds most Run 1 ATLAS searches required two identified displaced vertices or one displaced vertex with an associated object
 - Resulted in good rejection of rare SM backgrounds
 - BUT limited the kinematic region and/or lifetime reach
- None the less, many Run 1 searches were able to probe a broad range of the LLP parameter space (LLP-mass, LLP-cτ)
- ATLAS search strategy for displaced decays based on signature driven triggers that are detector dependent

ATLAS Detector

ATLAS Inner Detector

The ID embedded in a 2 Tesla solenoidal magnetic field

ECAL Segmentation

- Allows for Photon ID based on longitudinal and lateral segmentation of the ECAL (shower shapes)
- High granularity in S1 gives in good γ direction and separation power for π⁰ decays to γγ
- Photon direction from shower centroids in layers 1 and 2 gives longitudinal (z) position
- For two γ (eg. H → γγ) combine to improve z-resolution of interaction point (IP)
- For displaced decays get γ direction in layers 1 and 2 to determine z of closest approach

ATLAS Calorimeters

- Electromagnetic Calorimeter (ECAL)
 - Lead accordion with liquid argon
 - Three longitudinal segments
- Hadronic Calorimeter (HCAL)
 - Barrel Fe Scintillator plates with polystyrene
 - Forward Cu Liquid Ar
- Barrel Dimensions
 - ECAL 1.1m < r < 2.25m
 - HCAL 2.25m < r < 4.25m
- Calorimeters cover $|\eta| \leq 3.9$

9

HL 24 Aprile 2016

ATLAS Muon Spectrometer (MS)

Air core toroid - magnetic field allows for stand-alone momentum measurements and vertex reconstruction

Trigger Chambers

RPC's in barrel region covering $|\eta| < 1.05$ and TGC's in Forward region $1.05 < |\eta| < 2.4$

Trigger chambers provide second coordinate (φ) for track reconstruction

- Precision Chambers
 - * Monitored Drift Tube (MDT) chambers in barrel and most of forward spectrometer
 - * Barrel MDTs ~ 4.5, 7 and 10 m
 - * Forward MDTs ~ 7.5 and 14 m
 - * MDT chamber has two multilayers (ML) with 3 or 4 layers of MDT tubes
 - * Multilayers separated: up to 32 cm
- $\stackrel{\scriptscriptstyle \leftarrow}{}$ Cathode Strip Chambers (CSC's) for 2.0 < η < 2.7
- * Resolution HL 24 Aprile $\sigma_{pT}/p_T \sim 4\%$ at 50 GeV and ~ 11% at 1 TeV

ATLAS Simulation

ECal

HCal

ATLAS simulation of two displaced decays – Note unique signatures of decays in MS and HCal

> Decay in MS Cluster of His in RPCs

Decay at beginning of HCal Low EM energy deposition

La Sapienza

11

HL 24 Aprile 2016

B

ATLAS LLP trigger for displaced Hadronic Jets

- Signatures of a displaced decay of neutral particle to a hadronic jet
 - Inner Detector displaced vertex with no tracks pointing to IP
 - Trigger under development for Run-2
 - Decay at end of ECal or in Hcal
 - Trigger selects isolated jet with low EM fraction
 - Run-1 rigger selects isolated jet with low EM fraction
 - Large E_{HCal}/E_{EM}, narrow jet and no ID tracks in jet cone
 - TAU40 L1 seed then reconstruct tracks and jet at HLT
 - <u>Isolation</u>: no $p_T > 1$ GeV tracks in $\Delta R < 0.2$ cone around jet axis
 - **E**_T > 30 GeV Jet with $Log_{10} [E_{HCal}/E_{EM}] > 1.2$
 - Beam halo removal: Calorimeter cell timing
 - Run_2 L1 Topo triggers → combine objects from different subsystems
 - Tau30 & no associated EM cluster (once L1 Topo triggers available)
 - Until it is available use L1_Tau_60
 - $E_T > 30 \text{ GeV}$ Jet with $Log_{10}[E_{HCal}/E_{EM}] > 1.2$
 - No $p_T > 2$ GeV tracks in $\Delta R < 0.2$ cone around jet axis
 - Beam Halo Veto (improved in 2016)
 - Dedicated jet cleaning to avoid spikes in the trigger rates due to LAr noise

ATLAS LLP trigger for decays in the muon spectrometer

- Muon Rol cluster trigger selects cluster of tracks in MS
 - The signature of neutral particle decay at end of HCal or in MS
- Trigger selects an isolated cluster of muon Rols (Run-1& Run-2)
 - L1_2MU10
 - **Require 3 (4)** muon Rols in $\Delta R < 0.4$ cone in MS Barrel (endcaps)
 - No tracks with $p_T > 5$ GeV in $\Delta R < 0.4$ cone around the muon cluster direction
 - No $E_T > 30$ GeV jet in a $\Delta R < 0.7$ cone around the muon cluster center with $Log_{10}[E_{HCal}/E_{EM}] < 0.5$
- New Run-2 MS trigger
 - Same first two criteria
 - NO ISOLATION
 - Provides and orthogonal back-ground sample
 - Can be used to compare to "signal Trigger" sample
 - Becomes powerful when used for sample of reconstructed MS vertices
 - More details later
 - Lepton-jet: new narrow-scan μ -trigger (20GeV L1 μ seed; HLT_mu6_Msonly in $\Delta R < 0.5$)

Signature driven triggers

ATLAS Displaced Vertex reconstruction

- Custom ID and MS displaced vertex reconstruction algorithms developed and used in several Run-1 ATLAS analyses
 - Two ID displaced vertex reconstruction algorithms used in Run-1
 - Modification of IP vertex reconstruction algorithm
 - Modifications of secondary vertex reconstruction algorithm used for B-decays
 - Require a calorimeter jet consistent with displaced vertex

ATLAS Displaced Vertex reconstruction

MS stand-alone vertex reconstruction (JINST 9 P02001, arXiv:1311.7070) G. Ciapetti, HL

In barrel MS track segments formed in the two layers of muon chamber are combined to form a "tracklet" that are Grouped (cone algorithm).

These tracklets are back extrapolated and an iterative fit made to get vertex position.

Analyses need to define "good vertex" Criteria (Jet isolation, MDT/TGC activity...)

MS vertex reconstruction used for the ATLAS Run-1 searches for displaced hadronic jets decaying in MS

NEW Run- 2 MS vertex reconstruction run on every event accepted by an ATLAS trigger – part of data stream

Rol Cluster Trigger and MS vertex reconstruction efficiencies

Run-1 trigger and MS vertex reconstruction efficiencies

Vertex

Run-1

Searches requiring two displaced decays

- Two low EM fraction (EMF) jets (decays in the HCal)
- Two reconstructed displaced vertices
 - 2MS vertices or MS vertex plus ID vertex
- Sensitive to Higgs decaying to long-lived scalar pairs
- No evidence for two vertex events in the Run-1 data set limits for Higgs decay to long-lived scalar pairs, Stealth SUSY and heavy Z' decay (long-lived particles indicated by double lines)

Trigger	Applicable topologies	Benchmarks
Muon RoI Cluster	IDVx+MSVx, 2MSVx	Scalar boson, Stealth SUSY
$\text{Jet} + E_{\text{T}}^{\text{miss}}$	2IDVx, IDVx+MSVx, 2MSVx	Z'

Scalar boson mass [GeV]	$\pi_{\rm v} {\rm mass} {\rm [GeV]}$		
100	10, 25		
125	10, 25, 40		
140	10, 20, 40		
300	50		
600	50,150		
900	50, 150		
Z'mass [TeV]	$\pi_{\rm v}$ mass [GeV]		
1	50		
2	50		
2	120		
\tilde{g} mass [GeV]	\tilde{S}, S mass [GeV]		
110	100, 90		
250	100, 90		
500	100, 90		
800	100, 90		
1200	100.90		

18

HL 24 Aprile 2016

Run-1 Results

- 2MS vertices or MS vertex plus ID vertex [arXiv:1504.03634, Phys. Rev D92, 012010 (2015)]
 - π_v proper decay lengths excluded at 95% CL assuming 30%, 15%, 5%, or 1% BR for m_H = 125 GeV.

$m_{\pi_{\rm v}}$	Excluded $c\tau$ range [m]			
$[\mathrm{GeV}]$	$1\% \ BR$	$5\% \ \mathrm{BR}$	$15\%~\mathrm{BR}$	30 % BR
10	no limit	0.24 - 4.2	0.16 - 8.1	0.12 - 11.8
25	1.10 - 5.35	0.43 - 18.1	0.28 - 32.8	0.22 - 46.7
40	2.82 - 7.45	1.04 - 30.4	0.68 - 55.5	0.52 - 79.2

• $\sigma \times BR$ 95% CL limits for scalar boson samples: m_{ϕ} = 300 GeV, 600 GeV, and 900 GeV

Run-1 Results

2MS vertices or MS vertex plus ID vertex [arXiv:1504.03634, Phys. Rev D92, 012010 (2015)]

20_

RPV SUSY LLP Searches

- Extensive Analysis with no observed events
- Require DV with hi-p_T μ or e that comes from DV, missing E_T and one DV per event
 - Limits for various scenarios

ATLAS Non-pointing Photon Search

- Gauge mediated SUSY Breaking (GMSB) R-parity conserving
 - **b** lightest neutralino $\tilde{\chi}_1^0$ is the NLSP, with finite lifetime
 - decays $\tilde{\chi}_1^0 \rightarrow \gamma \widetilde{G}$

ATLAS Run-1 - 8 TeV Phys. Rev. D. 90, 112005 (2014) 20.3 fb⁻¹

- Signature: displaced, non-pointing gamma arrives late and MET from \tilde{G}
- Snowmass Points and Slopes parameter set 8 (SPS8) interpretation

- LAr energy deposition in first two ECal layers gives measure of displacement from IP; identifies displaced photon candidate
- Set limits in context of GMSB SP8 model for region of (Λ , τ_{NLSP}) space

Potentially longer path plus slow NLSP gives late arrival Use ECal timing information

EM shower pointing and Timing resolution

- In limit of large energy deposits have 256 ps (299 ps) for High (Medium) gain
- Time resolution: contribution of \approx 220 ps from LHC bunch-spread along the beamline.
- Data are in good agreement with the background only fit and no evidence for nonpointing and delayed photons is observed.
- Set limits in context of GMSB SP8 model for region of (Λ, τ_{NLSP}) space

ECAL Segmentation

- Allows for Photon ID based on longitudinal and lateral segmentation of the ECAL (shower shapes)
- High granularity in S1 gives in good γ direction and separation power for π⁰ decays to γγ
- Photon direction from shower centroids in layers 1 and 2 gives longitudinal (z) position
- For two γ (eg. H → γγ) combine to improve z-resolution of interaction point (IP)
- For displaced decays get y direction in layers 1 and 2 to determine z of closest approach

Exclusion Limit – GMSB SPS8 model

95% CL exclusion limits for 0.25 < t < 100 ns and 80 < Λ < 300

Displaced lepton-jets Run-1Results

Displaced Lepton-Jets
arXiv:1409.0746
JHEP11(2014)088

G. Ciapetti, S. Giagu

- kinetic mixing of light γ_d with SM γ through vector portal
- ATLAS search based on FRVZ bench marks: JHEP 05 (2010) 077 [arXiv:1002.2952]

- Searched for $2\gamma_d$ and $4\gamma_d$ decaying to lepton jets
- Used a lepton-jet gun to simulate individual displaced LJs from one γ_d decay and hidden scalar s_d $\rightarrow \gamma_d \gamma_d$
- Generate efficiency maps uniform in p₁, η, and decay position with LJ gun samples that are independent of a specific model

Type 0: all $\gamma_d \rightarrow \mu$'s Type 1: $1\gamma_d \rightarrow ee \text{ or } \pi\pi$, $1\gamma_d \rightarrow 2\mu$ Type 2: all $\gamma_d \rightarrow ee \text{ or } \pi\pi$

Displaced lepton-jets Run-1Results

- Main Backgrounds are cosmic and QCD jets
 - Used empty bunches to determine cosmic background

Data Type	Events in B	Events in C	Events in D	Expected Events in A
Cosmic-ray data	0	0	60 ± 13	40 ± 10
Data (cosmic rays subtracted)	362 ± 19	99 ± 10	19 ± 16	70 ± 58

- QCD jets is irreducible background evaluated using ABCD method where ∆¢ is azimuthal angle between the two lepton jet
- Data is consistent with expected backgrounds
- Type2-Type2 have largest background most sensitive limit by excluding these events

	All LJ pair types	TYPE2-TYPE2 LJs excluded
Data	119	29
Cosmic rays	$40 \pm 11 \pm 9$	$29 \pm 9 \pm 29$
Multi-jets (ABCD)	$70\pm58\pm11$	$12 \pm 9 \pm 2$
Total background	$110 \pm 59 \pm 14$	$41 \pm 12 \pm 29$

No Type2-Type2

FRVZ model	Excluded $c\tau$ [mm] BR(10%)
$H \to 2\gamma_{\rm d} + X$	$14 \le c\tau \le 140$
$H \to 4\gamma_{\rm d} + X$	$15 \le c\tau \le 260$

Run-1

Results obtained from the lepton-gun MC efficiencies

28

ATLAS limits in the global ϵ vs $m_{\gamma d}$ plot NB: ATLAS result depend on BRs and are for specific final states.

La Sapienza

Prompt lepton-jets Run-1 results

- Prompt Lepton-Jets [JHEP02(2016)062, arXiv:1511.05542]
 - Benchmark models:

29

SUSY production of dark χ

FRVZ Higgs-portal

- **Two scenarios** $\gamma_d \rightarrow ee$, $\mu\mu$ or $\pi\pi$ and $s_d \rightarrow \gamma_d \gamma_d$
- Event selection: requires 2 LJs from combinations of e-jet (eLJ), μ-jet (μLJ), mixed (eμLJ) where jet ≥ 2 tracks

6 categories of events:
 eLJ-eLJ, μLJ-μLJ, eLJ- μLJ
 eLj-e μLJ, μLJ-e μLJ, e μLJ-eμLJ

- γ_d high boost small opening angles
- μ LJ requires at least two muons with $p_T > 10$ GeV within $\Delta R = 0.5$ of LJ

from π^{o}

Use EM-Cal

segmentation to

separate electrons

Prompt Lepton Jets Run-1 results

- Main SM backgrounds from OCD jets
 - Use ABCD method to determine SM backgrounds

For each of the 6 categories of events have 2 "uncorrelated" variables

No deviations from SM expectations – set 95% CL

Channel	Background (ABCD-likelihood method)	Background (total)	Observed events in data
eLJ–eLJ	2.9 ± 0.9	4.4 ± 1.3	6
muLJ–muLJ	2.9 ± 0.6	4.4 ± 1.1	4
eLJ-muLJ	6.7 ± 1.4	7.1 ± 1.4	2
eLJ-emuLJ	7.8 ± 2.0	7.8 ± 2.0	5
muLJ-emuLJ	20.2 ± 4.5	20.3 ± 4.5	14
emuLJ-emuLJ	1.3 ± 0.8	1.9 ± 0.9	0

Prompt Lepton-jets Run-1 Results

Sensitive to very small cτ

NB the ϵ vs m_{yd} results from both prompt and displaced LJs is model dependent (FRVZ)

Run-2 displaced analysis – can we do better

- Current displaced decay searches either
 - (I) Require two displaced object per event
 - Works only for LLPs that are produced in pairs

- reduced lifetime sensitivity - scales like $1/(c\tau)^2$

- (II) Require one displaced vertex plus an associated high energy object (m, MET..)
 - OK for SUSY models but not for many other BSM models

e.g. RPV with long-lived neutralino

Single vertex analyses – New approach

- No SM displaced objects, but plenty of jet production
 - Main source of background for LLP searches is from jets that fake a displaced object in HCal or punch through to MS and reconstruct as a displaced vertex that look exactly like expected signal
 - Requiring 2 reconstructed displaced vertices in MS (Run-1) kills this background
- MS displaced decay in MS trigger selection

arXiv:1605.0274 A. Coccaro, D. Curtin, J. Shelton, H, Russell, HL MS Rol cluster trigger selects cluster of isolated MS activity

Orthogonal MS Rol nonisolated cluster trigger selects events rejected by the Rol cluster trigger

Note Life-time reach of 2 vertrex analysis scales like

 $1/(c\tau)^{2}$, while for single vertex scales like $1/c\tau$

New Strategy

HL 24 Aprile 2016

New Strategy

- Use non-iso-region events to estimate number of expected iso region events from SM backgrounds.
- Divide events into a control region and signal region using in addition a variable Y (e.g., number of leptons, MET...)

35

HL 24 Aprile 2016

ABCD Method

Can use ABCD method to estimate background in signal region

Rescaling function $r_{noiso \rightarrow iso} = N_C/N_D$

Choice of Y depends on search goals –tailored To a specific model or class of models

Comparing rescaling functions

- Using this approach can get rescaling functions with different kinematics such as $M_{eff} = \sum |p_{Ti}| + \sum |-p_{Ti}| = H_T + H_{T(miss)}$
 - Differential rescaling function r_{non-iso→iso} allows for estimate of SM background events in iso-region by using the non-iso-region events

 $\frac{d\sigma_{\rm iso}^{SM}}{dx_1 dx_2 \dots} \approx \frac{d\sigma_{\rm non-iso}}{dx_1 dx_2 \dots} \cdot r_{\rm non-iso \to iso}(x_1, x_2, \dots)$ $r_{\rm noiso} \rightarrow iso(M_{\rm eff})^{\rm C} = N_{\rm C}(M_{\rm eff})/N_{\rm D}(M_{\rm eff}) \text{ Control Region}$

 $r_{noiso} \rightarrow iso} (M_{eff})^{S} = N_{A}(M_{eff})/N_{B}(M_{eff})$ Signal Region SR_Y

r_{non-iso→iso} measured from data

Distribution of ratio of ratios $R(M_{eff}) = \frac{r_{noiso \to iso}^{S}(M_{eff})}{r_{noiso \to iso}^{C}(M_{eff})}$

Search for excesses (bump hunting)!!!

Searching for ultra Long-lived Particles

- MATHUSLA Detector Massive Timing Hodoscope for Ultra Stable neutral pArticles (arXiv:1606.06298v1 - J-P. Chou, D. Curtain, HL)
 - Dedicated detector sensitive to long-lived neutral long-lived particles with life times up to the Big Bang Nucleosynthesis (BBN) limit (10⁷ – 10⁸ meters) for the HL-LHC
 - A large volume detector located on the surface above and somewhat displaced from ATLAS or CMS interaction point
 - HL-LHC will produce order of $N_h = 1.5 \times 10^8$ Higgs Bosons
 - Observed decays: $N_{obs} \sim N_h \cdot Br(h \rightarrow ULLP \rightarrow SM) \cdot \varepsilon_{geom} \cdot \frac{L}{bc\tau}$
 - L-size of detector along ULLP direction of travel
 - $\bullet \epsilon_{geom}$ geometrical acceptance
 - $b(Lorentz \ boost) \sim \frac{m_h}{nm_x} \leq 3$ for Higgs boson decaying to $n = 2 \ m_X \geq 20 \ GeV$
 - **Requires** $L \sim (20 \text{ m}) \left(\frac{b}{3}\right) \left(\frac{0.1}{\epsilon_{\text{geometric}}}\right) \frac{0.3}{\text{Br}(h \to \text{ULLP})}.$
 - To collect a few ULLP decays with cτ ~10⁷ m requires a 20 meter detector along direction of travel of ULLP and about 10% geometrical acceptance

MATHUSLA Surface Detector

Placing MATHUSLA surface above ATLAS or CMS provides shielding from pp interaction particles but requires a very large detector

LHC detector

- To establish a displaced decays requires tracking and good cosmic background rejection
 - RPCs planes can be attractive choice for trcking and vertex reconstruction
 - Scintillator planes for redundant background 20m rejection and timing
- Could implement a small scale unit and place over ATLAS or CMS during Run 2 for background rejection tests

Comparing rescaling functions

Standard Model (SM)

40

La Sapienza

HL 24 Aprile 2016

Comparing rescaling functions

Standard Model (SM)

41

La Sapienza

HL 24 Aprile 2016