Neutrino cross sections in the GeV region

Davide Meloni

Dipartimento di Matematica e Fisica, RomaTre

& INFN, Sezione di Roma Tre

Main motivation of this talk

Extracting neutrino oscillation parameters is a difficult experimental task

Main reason:

Nuclear dynamics is complicated

Neutrino flavour conversion

Neutrinos can also be described in terms of mass eigenstates v_i

$$v_{\alpha} \rangle = \sum_{i=1}^{3} U_{\alpha i} v_{i} \rangle$$
 neutrino matrix
matrix

• Simple time evolutions of the vector $v(t) = (v_e(t), v_\mu(t), v_\tau(t))$:

$$i\frac{d}{dt}|v(t)\rangle = H|v(t)\rangle$$
$$H = \frac{1}{2E_{v}}UDiag[0, m_{2}^{2} - m_{1}^{2}, m_{3}^{2} - m_{1}^{2}]U^{dag}$$

there exist a probability of a change of the neutrino flavour

Neutrino flavour conversion

Flavour changing transitions

$$P(\mathbf{v}_{\alpha} \rightarrow \mathbf{v}_{\beta}) = \left| \langle \mathbf{v}_{\beta} | \mathbf{v}_{\alpha}(t) \rangle \right|^{2} = \left| \sum_{j} U_{\beta j} e^{\frac{-i m_{j}^{2} L}{2E_{\nu}}} U_{\alpha j}^{star} \right|^{2}$$

In the case of three neutrinos:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

atmospheric mixing reactor mixing reactor mixing

Summary of the experimental results

SNO

Superkamiokande:
 θ₂₃ ~ 45°

The Super-Kamiokande Detector Linac cave Electronics Entrance Huts 2 km Control Room Inner Tank Detector Water System Outer Mt. Ikeno

 $\Delta m_{12}^2 \sim 7 \times 10^{-5} \text{ eV}^2$ $\Delta m_{23}^2 \sim 2 \times 10^{-3} \text{ eV}^2$

T2K θ₁₃ ~ 9°

- Hierarchy = ?
- δ = ?

Systematics must be under control

Probabilities and events

- Here mainly interested to the Charge Current Quasi Elastic Scattering
- We want to measure mixing parameters, that is to understand transition probabilities

$$P = \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{4 E_v}\right)$$

P's are extracted from the number of expected events

(model)

$$N_{\beta} \sim \Phi_{V_{\alpha}}(E_{V}) \sigma_{V_{\beta}}(E_{V}) \varepsilon_{det.} P_{V_{\alpha} \to V_{\beta}}(\{\Theta\}, E_{V})$$
v flux v cross section Detector v Energy in the

(prediction)

Detector efficiency v Energy in the oscillation probability

Marco Martini, Séminaires LLR, 2015

If E_v is not well reconstructed, mixing parameters extraction is wrong !

Probabilities and events

Extraction of Ev is a quite difficult task:

Neutrino energies are not monochromatic

 Neutrino energies are reconstructed from the final states

the knowledge of the neutrino-nucleus cross section is crucial

 Different mechanisms contribute to the cross section

Probabilities and events

Some models for the CCQE v-nucleus cross sections

• FG = Fermi Gas R. A. Smith, E. J. Moniz, Nucl. Phys. B43 (1972) 605

- SF= Spectral Function O. Benhar et al., Phys. Rev. D 72 (2005) 053005
- RMF=Relativistic mean field J. M. Udias et al., Phys. Rev. C 64, 024614 (2001)

RPA= Random Phase Approximation Martini et al., Phys. Rev. C80, 065501 (2009)

The Relativistic Fermi gas model

- Many MonteCarlo codes (GENIE, NuWro, Neut, Nuance) use some versions of the Fermi model
 - target nucleons are moving (Fermi motion) subject to a nuclear potential (binding energy)
 - the ejected nucleon does not interact with other nucleons (Plane Wave Impulse Approximation)
 - Pauli blocking reduces the available phase space for scattered particle
- In terms of spectral function: probability of removing a nucleon of momentum p, leaving the residual system with excitation energy E

$$P_{RFGM} = \left(\frac{6\pi^2 A}{p_F^3}\right) \Theta\left(p_F - \vec{p}\right) \delta\left(E_{\vec{p}} - E_B + E\right)$$

Fermi momentum

Benhar et al., Nucl. Phys. A789 (2007) 379-402

A more realistic spectral function

- Overwhelming evidence from electron scattering that the energy-momentum distribution of nucleons in the nucleus is quite different from that predicted by Fermi gas
- The most important features is the presence of strong NN correlations

Benhar et al., Nucl.Phys. A579 (1994) 493-517

$$\frac{d^2 \sigma_{IA}}{d\Omega dE_{\ell}} = \int d^3 p \, dE \, P(\mathbf{p}, E) \, \frac{d^2 \sigma_{\text{elem}}}{d\Omega dE_{\ell}}$$
$$\frac{d^2 \sigma_{\text{elem}}}{d\Omega dE_{\ell}} = \frac{G_F^2 \, V_{ud}^2}{32 \, \pi^2} \, \frac{|\mathbf{k}'|}{|\mathbf{k}|} \, \frac{1}{4 \, E_{\mathbf{p}} \, E_{|\mathbf{p}+\mathbf{q}|}} \, L_{\mu\nu} W^{\mu\nu}$$

Important lines: blue and black

A ~20 % effect on a wide range of neutrino energies

Not the end of the story...

Genuine CCQE N D

one nucleon ejected from the nucleus

neutrino energy reconstructed using the kinematic variables of the charged lepton only

> Figures from Marco Martini, talk given at Nufact11

Not the end of the story...

Two nucleons ejected

If you only measure the charged lepton, a lot of information is lost and one assigns such events to the true QE sample

Cross section computations must include such effects

A good example

model based on Martini et al., Phys. Rev. C81, 045502 (2010) Martini et al., Phys. Rev. C80, 065501 (2009)

Multi-nucleon emission taken into account

Miniboone data of cross section on Carbon is explained thanks to these new effects

Davide Meloni

Impact of nuclear effects in the extraction of oscillation parameters

• An example: the v disappearance channel

Coloma and Huber, 1307.1243

- a *quantitative* estimate of the impact of nuclear effects in the determination of $\theta_{_{23}}$ and $\Delta m_{_{23}}^2$

$$P(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{\mu}) = 1 - \sin^2(2\theta_{23}) \sin^2\left(\Delta m^2 \frac{L}{4E}\right)$$

Truly QE events (in the absence of nuclear effects)

$$N_{i}^{QE} = \sigma^{QE}(E_{i}) \phi(E_{i}) P_{\mu\mu}(E_{i})$$

$$N_i^{QE-like} = \sum_j M_{ij}^{QE} N_j^{QE}$$

Migration matrix: prob. that an event with a E^{true} in the bin j ends up being reconstructed in the energy bin i (an almost diagonal matrix)

Impact of nuclear effects in the extraction of oscillation parameters

- non-QE with pion production where π is absorbed in the nucleus is not detected

These events are added in the QE sample

$$N_{i}^{QE-like} = \sum_{j} M_{ij}^{QE} N_{j}^{QE} + \sum_{non-QE} \sum_{j} M_{ij}^{non-QE} N_{j}^{non-QE}$$

$$\swarrow$$
non-QE processes

Mij from Ankowski et al., Phys.Rev. D92 (2015) no.7, 073014

Phys.Rev. D92 (2015) no.7, 073014

QE vs QE-like

- Distribution of QE-like and truly-QE events as a function of the reconstructed E₁
- Mean E=600 MeV, 5 years of data taking at nominal exposure in WC, $v_{\mu} \rightarrow v_{\mu}$ channel

Davide Meloni

Disappearance at T2K

- Input values: $\theta_{23} = 45^{\circ}$, $\Delta m_{31}^2 = 2.45 \times 10^{-3} \text{ eV}^2$
- Check the ability to reconstruct such <u>true</u> values
- <u>true</u> rates computed according to:

$$N_{i}^{QE-like} = \sum_{j} M_{ij}^{QE} N_{j}^{QE} + \sum_{non-QE} \sum_{j} M_{ij}^{non-QE} N_{j}^{non-QE}$$

the fit to the true rates is done using

$$N_{i}^{test}(\alpha) = \alpha N_{i}^{QE} + (1 - \alpha) N_{i}^{QE-like}$$

Two extreme situations

Nuclear effects completely ignored: α =1

Nuclear effects perfectly known: α =0

Disappearance at T2K

- Effects of a near detector included
- + α =0.3 still in the 1 σ range
- + interestingly enough:

$$\frac{(\Delta m_{23}^2)^{\alpha=0} - (\Delta m_{23}^2)^{\alpha=1}}{(\Delta m_{23}^2)^{\alpha=0}} \sim 0.02$$

$$\frac{(\theta_{23})^{\alpha=0} - (\theta_{23})^{\alpha=1}}{(\theta_{23})^{\alpha=0}} \sim 0.1$$

Conclusions

- Neutrino-nucleus cross sections strongly depend on the assumed nuclear model; huge effort in the community to systematically take them into consideration
- Relevant impact on the extraction of mixing parameters; huge effort in the community to systematically evaluate the uncertainties related to nuclear effects

Backup slides

The MECM model

model based on Martini et al., Phys. Rev. C81, 045502 (2010) Martini et al., Phys. Rev. C80, 065501 (2009)

- Nuclear response function calculated in random phase approximation
- Multinucleon emission taken into account

The MECM model

model based on Martini et al., Phys. Rev. C81, 045502 (2010) Martini et al., Phys. Rev. C80, 065501 (2009)

- Nuclear response function calculated in random phase approximation
- Multinucleon emission taken into account

More on the uncertainty on neutrino energy reconstruction

O.Benhar and D.Meloni, Phys.Rev.D 80, 073003 (2009) O.Benhar and N.Rocco, arXiv:1310.3869

From the requirement of having a CCQE process:

$$E_{\nu} = \frac{M_{p}^{2} - m_{\mu}^{2} - E_{n}^{2} + 2E_{\mu}E_{n} - 2\mathbf{k}_{\mu} \cdot \mathbf{p}_{n} + |\mathbf{p}_{n}|^{2}}{2(E_{n} - E_{\mu} + |\mathbf{k}_{\mu}|\cos\theta_{\mu} - |\mathbf{p}_{n}|\cos\theta_{n})},$$

subscript "n" refers to the struck neutron

 E_{ν} not uniquely determined by E_{μ} and θ_{μ} but distributes according to the energy and momentum distribution on the struck neutron

 E_{v} depends on the nuclear model employed for the target ground state

More on the uncertainty on neutrino energy reconstruction

Davide Meloni

• $|\overline{p}_n|$ and E can be sampled from the probability distribution

 $|\overline{p}_n|^2 P(\overline{p}_n, E)$ Fermi gas (FG) SF: O.Benhar et al., Phys.Rev.D 72, 053005 (2005) • 2×10^4 pairs of $(|\overline{p}_n|, E)$ shifted towards higher energy by ~ 20 MeV, with respect to the FG results, and exhibit a tail extending to very large values of Ev

θ_{13} and δ discovery potentials

• At a standard beta-beam: $(\gamma; L) = (100; 130 \text{ Km})$

