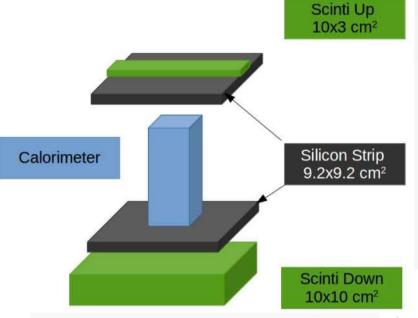
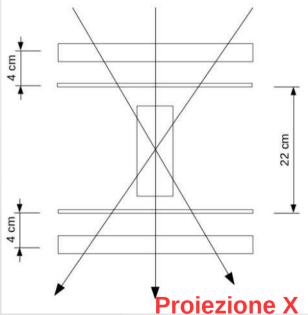
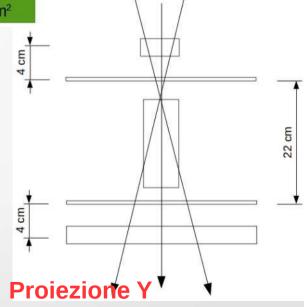
Prototipo SCENTT – Test Cosmici



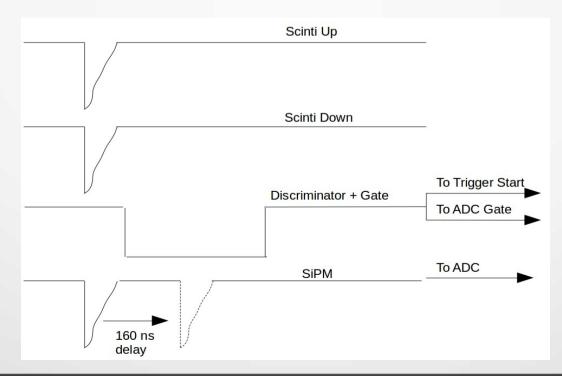
- Prototipo assemblato da INFN Bologna
 - Tyvek come superficie riflettente fra le tile
 - Copertura esterna di Mylar
 - Fibre WLS BCF-91A
 - Maschera di adattamento Fibre SiPM, montati su PCB custom
 - SiPM da 15, 20, e 30 um di cella (al momento testati solo quelli da 20 um)



II Setup

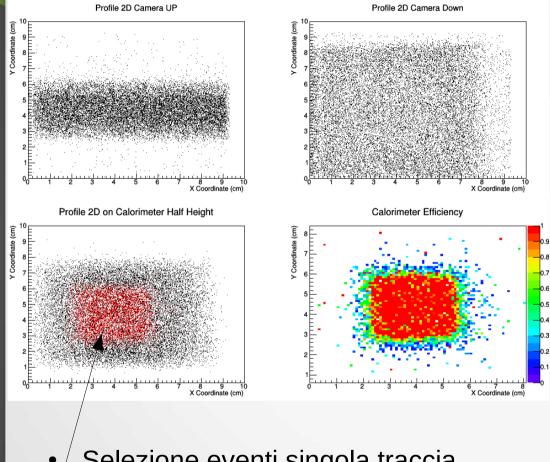

2 scintillatori in coincidenza per selezionare i raggi cosmici (...il piu' possibile...) passanti attraverso il calorimetro

2 rivelatori a microstrip per il tracciamento delle particelle e gli studi di efficienza

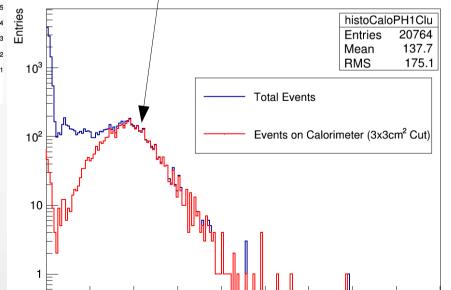


Proiezioni laterali +
distanze (ridotte al
minimo per ottimizzare
per quanto possibile il
flusso di cosmici
passanti)

Data Acquisition


- Basata su VME:
 - 2 moduli custom per la lettura delle camere al silicio
 - 1 modulo ADC ad integrazione di carica V792 (CAEN)
- 1 scheda discreta per generare trigger + coincidenza e il gate di integrazione
- Segnali dei SiPM ritardati di 160ns per matchare i timing

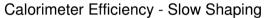
Cosa abbiamo testato

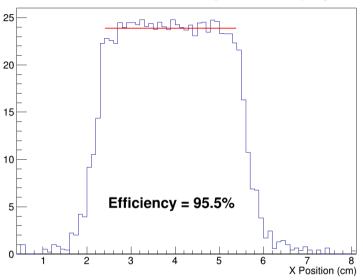

- FBK ci ha fornito dei prototipi di SiPM con celle da:
 - 15 um
 - 20 um (cella piu' adatta ?)
 - 30 um
- Abbiamo usato 2 tipi diversi di lettura AC coupled:
 - Slow Shaping (condensatore da 10 nF in uscita, ~180ns di shaping time, segnale piu' alto)
 - Fast Shaping (condensatore da 150 pF, ~35 ns di shaping, segnale piu' attenuato)
- 2 maschere di accoppiamento fibre/PCB
- Bias fisso a 35V (~7V overvoltage)

Risultati: cella da 20 um

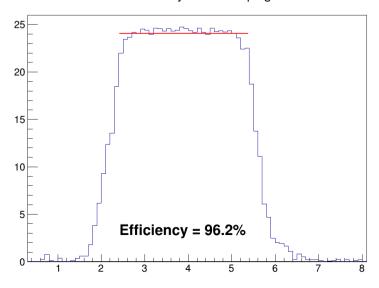
Trovata la posizione del calorimetro, faccio un taglio in posizione per trovare la Pulse Height degli eventi passanti

SiPM Pulse Height

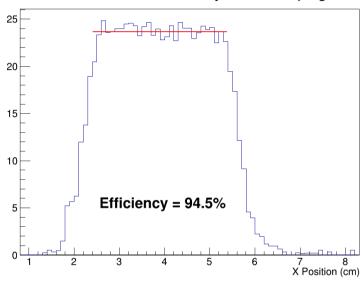

1200

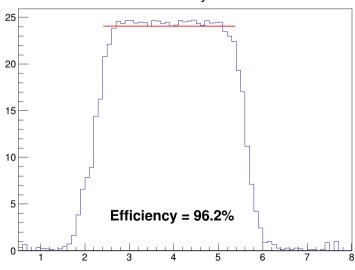

1600

ADC


- Selezione eventi singola traccia
- Uso un taglio generico sulla soglia (e.g. 100 ADC) per trovare la posizione del calorimetro in X-Y

Risultati: cella da 20 um




Calorimeter Efficiency - Fast Shaping New Mask

Calorimeter Efficiency - Fast Shaping

Calorimeter Efficiency - Painted Tiles

Risultati: summary

SiPM	Efficiency	Pulse Height	S/N Ratio	Statistics
20 um (Slow Shaping)	95.5%	366 ADC	9.7	21k events
20 um (Fast Shaping)	94.5%	140 ADC	7.7	17k events
20 um (Fast Shaping, new mask)	96.2%	138 ADC	8.1	44k events
20 um (Fast Shaping, Painted Tiles	96.2%	131 ADC	8.7	38k events

$$S/N = \frac{Mean_{signal}}{RMS_{pede}}$$