Neutron Gun Set-up

Work in progress

Outline

Focalizing on the neutron gun set-up to start with. Today:

- Neutron-gun geometry and He detector configuration from docs
- Some ad-hoc configuration for neutron detectors
- Updated neutron detector support structure
- Plans and to do

Neutron gun geometry-1

• HV fixed to 40 KV,

A look at API 120 paper and docs

Available online at www.sciencedirect.com

Nuclear Instruments and Methods in Physics Research B 241 (2005) 753-758

www.elsevier.com/locate/nimb

The API 120: A portable neutron generator for the associated particle technique

D.L. Chichester *, M. Lemchak, J.D. Simpson

Geometry more clear (?), see later

According to NIM paper scintillator fiber detector for associated particle has both theta and phi readout:

very good angular and energy resolution even if TPC placed close to the gun at the expense of an increased readout channel count

 \rightarrow input for simulation

Reaction kinematics and geometry

<u>D-D reaction</u>: $v_n = 2.2$ cm/ns $v_\alpha = 0.72$ cm/ns

XP85012 (PLANACON®

Photon Detector

25µm MCP-PMT 8x8 Anode 53 mm Square

Neutron gun geometry-2

---- Generator Axis

– – – – – · Target Plane

Accelerator head - one integral assembly

Take associate particle b/w 60° and 120° (?) 2.5 MeV neutron energy at 90°

Neutron Energy (E_3) vs ³He angle (θ_4)

- Tagged neutron in the range of 3He recoil angle b/w 60° and 120°
- Assume 90° in the following

Geometry (parallel recoil)

• Assuming the gun inclined by 45°, parallel recoil ($\theta_R = 0^\circ$) require 45° degree ⁴⁰Ar scattering from the neutron beam line corresponding to 88.6° neutron scattering

⁴⁰Ar recoil T vs ⁴⁰Ar recoil angle

• Inconvenient set-up...

Geometry (transverse recoil - 2)

• Better one

Geometry (transverse recoil – top view)

• Viewing from above

⁴⁰Ar recoil T vs ⁴⁰Ar recoil angle

E₄ [MeV]

 θ_3

Geometry for vertical (other angles)

Geometry (other angle – rear view)

Neutron Spectrometer Support Side view

Neutron Spectrometer Support Front view

Neutron Spectrometer Support Top view

To be continued

- Calculate needed angles in lab frame for different possible geometries of the gun to TPC geometry:
 - Neutron beam angle
 - Neutron beam energy (?)
- Try and cover the interesting region in transverse and parallel recoil with the limited number of neutron detector at hand
- Which recoil energy range ?
 - Sample same recoil energy at different angle?
 - Sample different recoil energies and different angle?
- Fix distances (gun to TPC, TPC to LSc) and set optimal tube size with a simple toy MC;
 - A simple simulation strategy has been agreed with Mauro Caravati hope to have something to show soon