CONSUNTIVI SCIENTIFICI (BRESCIA)

Luca Venturelli

Università di Brescia

INFN-Pavia

cognome nome	2015)	TIPO	Ricercatori	Tecnologi	FTE	
Artoni Maurizio	assoc	Prof.Assoc	Prof.Associato			
Bianconi Andrea Corradini Maurizio	assoc assoc	Prof.Assoc	Prof.Associato			
Ferroni Matteo	assoc	Ricercator	Ricercatore Univ.			
Leali Marco Lodi Rizzini Evandro	assoc assoc			Х	100	
Mascagna Valerio		Assegnista	Assegnista			
Venturelli Luca	25500	Prof Asso	Prof. Associato			
venturem Luca	ussoe	1101.74550			100	
+ collaboratori Univer	rsita' dell'I	nsubria-Con	no INFN Tries	ite	100	
+ collaboratori Univer ttività teorica (per 201:	rsita' dell'I 5)	nsubria-Con	no INFN Tries	te		
+ collaboratori Univer ttività teorica (per 201: cognome nome	rsita' dell'I 5)	nsubria-Con TIPO	no INFN Tries Ricercatori	te Tecnologi	FTE	

Attività teorica

1) Fisica medica e ambientale : ricerca sugli effetti di lungo periodo da contaminazioni interne di Diossido di Torio radioattivo ; ritrattamento dell'amianto

A.Bianconi, "Bonifiche e sistemi di smaltimento alternative alla discarica", invited talk relativo ai sistemi di ritrattamento dell'amianto al convegno "Una vita in polvere" agli Spedali Civili di BS.

2) Fattori di forma time-like del protone, collaborazione con E.Tomasi-Gustafsson del CEA-Saclay su esperimenti di annichillazione elettrone-positrone in p-pbar o viceversa. In particolare sono stati rianalizzati alcuni dati dell'esperimento Babar.

A.Bianconi ed Egle Tomasi-Gustafsson, Periodic interference structures in the time-like proton form factor, Phys. Rev. Lett. 114, 232301 (2015).

A.Bianconi ed Egle Tomasi-Gustafsson, Phenomenological analysis of near threshold periodic modulations of the proton timelike form factor. Phys. Rev. C 93, 035201 (2016)

3) Deep Inelastic Scattering ed eventi Drell Yan (urto ad alta energia protone-antiprotone oppure pione-protone, in entrambi i casi con produzione inclusive di una coppia elettrone-positrone).

Invited talks a congressi (in particolare: A.Bianconi, "Adaptation of a generator to TMD analysis" al convegno "TMDe2015", settembre 2015, ICTP Trieste.

Consuntivi 2015 Brescia INFN-Pavia 6 giugno 2016

Publications

	Titolo	Rivista	Cit.	INFN	Tot	Ratio	CIVR	Hi-Q
1	The development of the antihydrogen beam detector and the detection of the antih ISI ID della pubblicazione: WOS:000366407000092	J PHYS CONF SER, 635-, 022061 (2015)	0	3	28	11%	0%	NO
2	Scintillating bar detector for antiproton annihilations measurements ISI ID della pubblicazione: WOS:000360770700009	HYPERFINE INTERACT, 233-1-3, (2015)	0	7	7	100%	0%	NO
3	First measurement of the antiproton-nucleus annihilation cross section at 125 keV ISI ID della pubblicazione: WOS:000360770800012	HYPERFINE INTERACT, 234-1-3, (2015)	1	7	16	44%	0%	NO
4	Experimental access to Transition Distribution Amplitudes with the PANDA experim ISI ID della pubblicazione: WOS:000360439700001	EUR PHYS J A, 51 , 107 (2015)	0	55	535	10%	0%	NO
5	The ASACUSA CUSP: an antihydrogen Hyperfine Int	eractio, -, (2015) 0 4 33 12% 1	2%	Nucl	ear F	Physic	s NC	

ASACUSA

Atomic Spectroscopy And Collisions Using Slow Antiprotons

7 countries, 10 institutions, 40 researchers Started in 1997 by merger of PS194, PS205, etc. collaborations. Members active in CERN's antiproton programme since >20 years.

Asakusa, Tokyo

Antiproton Decelerator-AD @CERN

AD is the only source of low-energy antiprotons

All-in-one machine: antiproton capture , deceleration & cooling

AD delivers to the experiments :

- 2-4 10⁷ antiprotons per bunch (150-300 ns length)
- 1 bunch/ 100 s
- Energy = 5.3 MeV (100 MeV/c)

Experiments: - (2015) <u>ALPHA</u>, <u>ATRAP</u>, <u>ASACUSA</u>, <u>AEgIS</u>, BASE - <u>ATHENA</u> (ended), ACE (ended), <u>GBAR</u> (future)

ASACUSA Experiments

1. pHe laser spectroscopy

- 3-body atom made of antiproton, He, and electron.
- Survives for >10 microseconds.
- >1 billion atoms synthesized per day.
- Amenable to high-precision laser and microwave spectroscopy.

pHe laser spectroscopy contributes to mp/me

ASACUSA single photon (final)

ASACUSA single photon (final)

Exp precision 1.3-5 higher; theory-exp agreement improved 5-10 x

ASACUSA antiproton to electron mass ratio

To be published

2-photon experiment at 1.5 K

2016: continuation of 2-photon exp at 1.5 K

p⁴He (n,l)=(36,34)→(34,32) (n,l)=(31,30)->(30,29) **p**³He (n,l)=(30,29)->(29,28)

Goal: antiproton-to-electron mass ratio <3x10⁻¹⁰ (<1 x 10⁻¹⁰ at ELENA)

Why study antihydrogen?

- Precise matter-antimatter comparison \rightarrow CPT test
- Measurement of the gravitational behavior of antimatter \rightarrow WEP test

CPT

CPT invariance is inside the Standard Model

- Assumptions: flat space-time, Lorentz-invariance, local interactions, unitarity, point-like particles
- Consequences:
 - particles/antiparticles: equal mass, lifetime; equal and oppositye charge and magnetic moment
 - atoms/antiatoms: identical energy levels

Standard Model can be extended with CPT violation

CPT violation in Standard Model Extension

Indiana group, Kostelecky et al. (since 1997)

$$(i\gamma^{\mu}D_{\mu} - m - a_{\mu}\gamma^{\mu} - b_{\mu}\gamma_{5}\gamma^{\mu} + \frac{1}{2}H_{\mu\nu}\sigma^{\mu\nu} + ic_{\mu\nu}\gamma^{\mu}D^{\nu} + id_{\mu\nu}\gamma_{5}\gamma^{\mu}D^{\nu})\psi = 0$$

Lorentz Invariance Violating terms

a & b parameters have energy dimensions

CPT Violating terms

No quantitative prediction

Antihydrogen for CPT test

matter-antimatter precise comparison by means of spectroscopy

Method

- (anti)atomic beam
- measure σ₁ at several B's, extrapolate to B = 0
- achievable precision ≤10⁻⁶
 for T ≤ 100 K
- > 100 H
 /s in 1S state needed

Antihydrogen GSHFS Spectroscopy in 2015

- 1. transportation of 20 eV $\overline{\mathbf{p}}$ s to the double-cusp trap
- 2. reconstruction of annihilation vertices with the micromegas detector
- 3. synthesis of \overline{H} atoms formation rate ~15 %
- 4. $\overline{\mathbf{H}}$ transport and detection
- σ₁ hyperfine frequency of <u>ordinary</u> H atoms measured to
 <10 ppb

Antihydrogen GSHFS Spectroscopy in 2015

- 1. transportation of 20 eV $\overline{\mathbf{p}}$ s to the double-cusp trap
- 2. reconstruction of annihilation vertices with the micromegas detector
- 3. synthesis of \overline{H} atoms formation rate ~15 %
- 4. **H** transport and detection

σ₁ hyperfine frequency of <u>ordinary</u> H atoms measured to
 <10 ppb

Two accessible transitions, $\sigma_1 \& \pi_1$

hydrogen σ_1 measured

Best beam value up to date $\nu = 1420.40573(5) \text{ MHz}$ $\frac{\Delta \nu}{\nu} = 3.5 \times 10^{-8}$

Kusch, Phys. Rev. 100, 4, (1955)

Maser experiments

$$\begin{split} \nu &= 1420.405751768(1)\,{\rm MHz} \\ \frac{\Delta\nu}{\nu} &= 7\times10^{-13} \end{split}$$

N.F. Ramsey et al., Quantum Electrodynamics, World Scientific, Singapore, 1990, p. 673 preliminary results: v = 1 420.405 7... MHz statistical error ~3 Hz systematic error ~2 Hz

rel. precision: < 3 ppb

factor >10 better than Kusch et al.

Performed by E.Widmann group (SMI)

soon to be published

precision π_1 measurement planned in 2016

Antihydrogen GSHFS Spectroscopy in 2015

- 1. transportation of 20 eV \overline{p} s to the double-cusp trap
- 2. reconstruction of annihilation vertices with the micromegas detector
- 3. synthesis of \overline{H} atoms formation rate ~15 %
- 4. **H** transport and detection
- 5. σ_1 hyperfine frequency of <u>ordinary</u> H atoms measured to <10 ppb

Consuntivi 2015 Brescia INFN-Pavia 6 giugno 2016

minimize energy deposition to the e⁺ plasma

optimizing $\overline{\mathbf{p}}$ -extraction scheme

Consuntivi 2015 Brescia INFN-Pavia 6 giugno 2016

Antihydrogen GSHFS Spectroscopy in 2015

- 1. transportation of 20 eV ps to the double-cusp trap
- 2. reconstruction of annihilation vertices with the micromegas detector
- 3. synthesis of \overline{H} atoms formation rate ~15 %
- 4. **H** transport and detection
- 5. σ_1 hyperfine frequency of <u>ordinary</u> H atoms measured to <10 ppb

micromegas around the 2-cusp vacuum tube

time evolution of annihilation positions during \overline{p} -e⁺ mixing

Antihydrogen GSHFS Spectroscopy in 2015

- 1. transportation of 20 eV ps to the double-cusp trap
- 2. reconstruction of annihilation vertices with the micromegas detector
- 3. synthesis of \overline{H} atoms formation rate ~15 %
- 4. **H** transport and detection
- 5. σ_1 hyperfine frequency of ordinary H atoms measured to <10 ppb

with 20 eV \overline{p} s - high \overline{H} formation rate in early times

with 20 eV \overline{p} s - high \overline{H} formation rate in early times

Field ionizer chamber between cusp & cavity

with 20 eV \overline{p} s - high \overline{H} formation rate in early times

Antihydrogen GSHFS Spectroscopy in 2015

- 1. transportation of 20 eV ps to the double-cusp trap
- 2. reconstruction of annihilation vertices with the micromegas detector
- 3. synthesis of \overline{H} atoms formation rate ~15 %
- 4. **H** transport and detection
- σ₁ hyperfine frequency of <u>ordinary</u> H atoms measured to
 <10 ppb

H detector @ 3.7m (Solid angle ~0.004%)

cosmic vs \overline{H} (\overline{p})

BGO energy deposit and hodoscope opening angle

H GSHFS Spectroscopy: 2015 summary

- 1. \overline{H} atom formation rate ~15 % with 300k \overline{p} s at 20 eV & 7x10⁷ e+s
- 2. \overline{H} detection scheme perfected
- σ₁ hyperfine frequency of <u>ordinary</u> H atoms measured to <10 ppb
- 4. Currently, ~1 \overline{H} detected / mixing cycle (~15 min) x10 \overline{H}_{gs} rate needed for spectroscopy

Next steps

Study and improve the beam features (Hbar rate, temperature, n-states,...)

Perform the measurement

Achievable resolution:

- better than 10^{-6} for T < 100 K

Expectation

D=10 cm, v=1 km/s (100K) 1/T=10 kHz \rightarrow linewidth resolution δv (FWHM) = 0.8/T $\rightarrow \delta v / v = 8x10^{-6}$ \rightarrow Resonance center resolution = 10⁻⁷

Achievable resolution:

- better than 10^{-6} for T < 100 K
- 100 Hbar/s in 1S state needed (in 4 π) \rightarrow event rate=1/min.

Future improvements

1° improvement (Ramsey separated oscillatory fields):

Linewidth reduced by D/L

Antihydrogen fountain:

- -trapping and laser cooling
- Ramsey method with L=1m

 $\Delta f \sim 3 \text{ Hz}, \Delta f/f \sim 2 \times 10^{-9}$

Future

ELENA decelerator:

5.3 MeV → 100 keV

- x 100 pbars trapping efficiencies
- 4 experiments can run in parallel

3. Collision experiments

Nuclear collisions with antiprotons

Physics motivations

Some topics of interest:

• Cosmology: matter-antimatter asymmetry in the Universe

(One possibility is that antimatter is distributed non-homogeneously in the Universe within the so-called "islands" of antimatter . In the border region between matter and antimatter, the role of annihilation is important.)

- Search of resonances
- Determine the interaction parameters
- Probe the external region of nucleus

(both potential models and phenomenological analyses state that the annihilations occur in a thin region placed just outside the nuclear volume: neutron/proton ratio or the extraction energy of the peripheral nucleons can be determined)

Existing data

2011

Antinucleon annihilation σ on nuclei

Existing data

p___[MeV/c]

Antinucleon annihilation σ on nuclei

Some problems

1°) No resonance detected.

2°) "inversion" (σ_{ann} 's on light nuclei cross each other at 50 MeV/c)

3°) exp. σ_{ann} 's are too high compared to the expectations

At 300-400 MeV/c σ_{ann} for pbar and nbar are similar (as expected) but are higher than what expected from optical potential

4°) nbar σ_{ann} looks like pbar σ_{ann} also at very low energy

At very low energy it is expected:

$$\sigma_{ann}(\overline{p}A) > \sigma_{ann}(\overline{n}A)$$
 due to the Coulomb attraction by nucleus

Some problems

1°) No resonance detected.

2°) "inversion" (σ_{ann} 's on light nuclei cross each other at 50 MeV/c)

3°) exp. σ_{ann} 's are too high compared to the expectations

At 300-400 MeV/c σ_{ann} for pbar and nbar are similar (as expected) but are higher what expected from optical potential

4°) nbar σ_{ann} looks like pbar σ_{ann} also at very low energy At very low energy it is expected: $\sigma_{ann}(\overline{p}A) > \sigma_{ann}(\overline{n}A)$ due to the Coulomb attraction by nucleus

Calculations based on optical potential (Friedman) which fits well antiprotonic atoms

More antiproton data are needed for direct data-to-data comparisons

New (2015) measurement of pbar σ_{ann} performed by ASACUSA

Technique of the σ_{ann} measurement

Scintillaror bars module

Consuntivi 2015 Brescia INFN-Pavia 6 giugno 2016

 σ_{ann} set-up

$\overline{p}\,$ annihilation times

annihilations on the target clearly appear

\overline{p} annihilation times

\overline{p} annihilation times

Inner modules

antiproton σ_{ann} on carbon at 5.3 MeV

antinucleon reaction/annihilation cross section on nuclei

Consuntivi 2015 Brescia INFN-Pavia 6 giugno 2016

Possible extension of the measurement

At 5.3 MeV (AD)

 Monte Carlo simulations show that σ_{ann} measurements even with medium-heavy targets are feasible at AD with the present apparatus and technique

• Also pbar nuclear elastic σ could be measured (but more difficult)

Conclusions

Antiproton-C σ_{ann} measurement at 5.3 MeV has been performed by ASACUSA at the end of 2015

The result of a preliminary analysis shows a qualitatively agreement with the existing (antineutron) data.

The final result is expected to be more precise and could be used as a benchmark to understand the σ_{ann} (E, A) at low energies.

The present technique can be used even with heavier targets (if the 5.3 MeV antiproton beam will be available ...)

Measurements at lower energies (0.1 MeV) will be possible with ELENA, as already demonstrated by ASACUSA.

Summary

In 2015, ASACUSA achieved:

-Transfer of 20 eV pbars to the mixing trap: pbar-to Hbar conversion=15%

- hidrogen GSHFS measured (<10 ppb)
- Finished data taking and analysis for single-photon laser spectroscopy of $\overline{p}He,$ cooled to ~1.5K.
- Started 2-photon spectroscopy of $\overline{p}He~$ at 1.5K
- Collected good data for \overline{p} annihilation σ measurement on carbon @5.3 MeV

In 2016, ASACUSA plans to carry out

- towards \overline{H} ground-state hyperfine spectroscopy

- Continuation of 2-photon spectroscopy of \overline{p} He at 1.5K