Consuntivi Gruppo IIII

Paolo Pedroni

Con l'indispensabile collaborazione di G. Boca, G. Bonomi, A. Menegolli, N.Zurlo

CSN3 –Status 2015

Linea 1: Quark and hadron dynamics (6 sigle)

Linea 2: Phase transitions of nuclear and hadronic matter (2 sigle)

Linea 3: Nuclear structure and reaction dynamics (8 sigle)

Linea 4: Nuclear astrophysics and interdisciplinary researches (6 sigle)

Ripartizione FTE (480 FTE) (Circa 750 ricercatori) **Ripartizione Budget** (circa 9MEuro)

	CSN3-Pavia	a Situazion	e 2016	Βι	ıdget: 1	.50 kEuro
sigla	nome cognome	TIPO	Ricerc	Tecnol	Pers.	FTE %
AEGIS	Bonomi Germano	assoc		Х		50
	Donzella Antonietta	assoc		Х		50
	Fontana Andrea	dip	х			50
	Pagano Davide	assoc	х			30
	Rotondi Alberto	assoc	х			30
	Zurlo Nicola	assoc	х			100
AEGIS			4	2	6	3.1 TOT
ALICE	Boca Gianluigi	assoc	х			30
	Bonomi Germano	assoc		Х		50
	Costanza Susanna	assoc	х			70
	Rotondi Alberto	assoc	x			50
	Pagano Davide	assoc	х			70
	Zenoni Aldo	assoc		х		40
ALICE-DTZ			4	2	6	3.1 TOT
FAMU	De Bari Antonio	assoc	Х			40
	De Vecchi Carlo	dip		х		50
	Menegolli Alessandro	assoc	х			40
	Rossella Massimo	assoc		Х		20
	Tomaselli Alessandra	assoc		Х		30
FAMU			2	3	5	1.8 TOT
MAMBO	Braghieri Alessandro	dip	х			30
	Costanza Susanna	assoc	Х			30
	Montagna Paolo	assoc	Х			30
	Pedroni Paolo	dip	Х			100
MAMBO			4		4	1.9 TOT
PANDA	Boca Gianluigi	assoc	х			20
	Rotondi Alberto	assoc	Х			20

sigla	nome cognome	TIPO	Ricerc	Tecnol	Pers.	FTE %
ASACUSA	Artoni Maurizio	assoc	Х			30
	Bianconi Andrea	assoc	Х			70
	Leali Marco	assoc		Х		100
	Mascagna Andrea	assoc	Х			100
	Solazzi Luigi	assoc	Х			50
	Venturelli Luca	assoc	х			100
ASACUSA			4	2	6	4.5 TOT
TOTALE						14.8

CONSUNTIVO AEGIS-PV 2015/2016

Pavia, 6 giugno 2016

CdS INFN, Sezione di Pavia

AEgIS in sintesi

AEgIS apparatus

11

Antihydrogen production strategy

• Rydberg H^{*} atoms produced via **charge exchange**

- Temperature of \overline{H} given by the temperature of \overline{p} (goal 100 mK)
- Rydberg H: strong dipole moment → Stark acceleration

Antiproton capture and cooling

- Electrons (~108) loaded in the trap
- Thin Al foil (*degrader*) used to select low energy antiprotons
- p caught and cooled (electron cooling)
 - ~7 K reached
 - 0.1 K goal (laser cooling, ...)
- ~10⁵ \overline{p} catch per spill

13

Positronium formation

- Positronium (Ps) is an exotic atom composed by an e⁻ and a e⁺
- para-Ps(125 ps) and ortho-Ps(142 ns)
- Ps produced via electron capture of e⁺ within a nanoporous silica target

Positronium excitation

Two stages excitation:

- UV (205 nm): n = 1 → 3
- IR (1650-1700 nm): n = 3 → 25 35

S. Mariazzi et al., Phys. Rev. A 78 (2008) 052512

S. Mariazzi et al., NIM B 269 (2011) 1527

Gravity module

Measurement accuracy depends on : '

- number of detected vertices
- detector resolution
- alignment, etc... (systematic unc.)

NEW in 2015 Pbar Beam monitor (MIMOTERA)

Ultrathin (53 micron) pixel detector for the AegIS beam imaging

Operated @10 K

Mounted in front of the trap on a movable support (for e+ and e- trap loading)

NOTE: beam steering is done by us!!!!!

Intensity profile of the pbar beam on the MIMOTERA

Saturation problem: energy deposit too high Signal not linear Still OK for centering the beam Under study with lab tests if the info can be recovered...

Risultati 2015 - positroni e+ transport and Ps formation in the test chamber

e+ focused on the target and accelerated. Total width < 4mm

e+ time distribution at the target

Positronium production in the test chamber

SSPALS (single shot positron annihilation lifetime spectroscopy)^(*) measurements – (*)Cassidy D B et al., *NIMB* 2007, 580, 1338

Average on 10 single shots.

Ps excitation to n=3

Ps excitation to Rydberg states

Positrons in the main magnets

- × Routinely 1-2·10⁷ e⁺ in the 5T C-trap
- e⁺ transfer energy 300 eV (to avoid mag. field reflection)
- Transfer line, catching and cooling almost lossless: E> 95%
- Storage times adequate, good control with RW, no losses

Risultati 2015 - antiprotoni Antiprotons catching&cooling in 2015

1.2% catching efficiency close to simulation results beam: 5. MeV+ materials as energy degraders

Vacuum issue in the main magnet during the 2015 pbar run

cold pbar lifetime (with electrons) 2014 results

Cold pbar storage time in 2015

- Unstable results
- Lifetime few hundreds seconds but decreasing in few days to few tens secs
- Several partial re-heating of the apparatus to regenerate the pumping efficiciency of the cold surfaces
- Leak between OVC and UHV due to a mechanical problem
- It is understood now and fixed (hopefully)

Radial Compression of trapped pbars (2015 run)

MCP

phosphor

C

D

RW on e- and pbar trapped together: Centrifugal separation

Can we compress e- and pbar trapped together? Centrifugal separation expected for pbar and e- in thermal equilibrium in the trap: it requires high density, Low T

Gently heat the electrons to avoid the separation

Find the parameters such that electron compression results in pbar compression

Vortices of antiprotons

Observation of ring decay by vortices: Collective effect It shows that we have reached the plasma regime for cold pbars

Electrons and pbar compression

Radial density (z integrated)

electrons and antiprotons superimposed

Additional results on 2015

Simultaneous work with pbar and e+ in the 5 T magnets

Observed interaction between pbar and e+ in nested traps in the 5T magnet (ATHENA style)

Transfer tests toward the I Tesla

Better online data analysis

Continuous DAQ improovements

Better user interface on the trap control

Organization and preparation of public tools for offline data analysis

Sviluppo delle attività del gruppo di Pavia/Brescia

 Rivelatori esterni: fornitura, installazione, manutenzione, calibrazione e utilizzo dei detectors (PMT e HPD) con supporto officina meccanica e servizio elettronico di Sezione

2. Simulazioni Monte Carlo

- a. Nuovo sistema di degrader (Mimotera)
- b. Inserimento del modulo di simulazione di Hbar in un campo magnetico
- c. Risposta della catena di acquisizione ad alto rate
- (> 1 MHz) per studiare possibili effetti di saturazione
- 3. Riscrittura software di analisi online e sua integrazione con DAQ
- 1 Riscrittura software di analisi offline

Scintillation detectors

Calibration with cosmic rays

AEgIS data acquisition

- a multi-port system has been introduced this year
- it allows to start a new run even though the data from the previous one are still on queue to be written to disk
 - some detectors send all the data at the end of the run causing a delay in the closing of the run
- this multi-process approach has required major changes

AEgIS online software: overview

 provides a set of tools to monitoring the status of data taking in real time

AEgIS online software: configuration

• the online software can be configured from the trap labview program

Multi-process...and multi-thread

New runs are automatically detected and processed

AEgIS online software: the GUI

,

١

Obiettivi per il 2016 Time schedule

- 2016 run starting now
- Goals for 2016

a)Ps formation in I Tesla

b)Pbar into the final trap with high efficiency

c) Ps excitation in I Tesla....??

Hbar formation: 2017

1% g measurement: not before LS2 (we need 100 mK)

Low precision g measurement before LS2: under study.....

AD Schedule 2016 (Version 2.2 May 31rst, 2016)

	Wk	Mon	Tue	Wed	Thu	Fri	Sat	Sun	
Apr 4 - Apr 10	14								
Apr 11 - Apr 17	15				AD setting up				
Apr 18 - Apr 24	16	07-1515-2323-07							
Apr 25 - May 1	17	MD AD6 AD3 /	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD2
May 2 - May 8	18	AD3 AD5 AD6	AD3 AD5 AD6	AD3 AD5 AD6	AD3 AD5 AD6	AD3 AD5 AD6	AD3 AD5 AD6	AD3 AD5 AD6	AD2
May 9 - May 15	19	AD3 AD6 AD5	AD3 AD6 AD5	AD3 AD6 AD5	AD3 AD6 AD5	AD3 AD6 AD5	AD3 AD6 AD5	AD3 AD6 AD5	AD2
May 16 - May 22	20	MD AD3 AD5	AD6 AD3 AD5	AD6 <mark>AD3 AD5</mark>	AD6 AD3 AD5	AD6 AD3 AD5	AD6 AD3 AD5	AD6 AD3 AD5	AD2
May 23 - May 29	21	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD2
May 30 - Jun 5	22	AD2 AD5 AD6	AD2 <mark>AD5</mark> AD6	AD2 <mark>AD5</mark> AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD3
Jun 6 - Jun 12	23	MD AD2 AD5	TS AD2 AD5	AD8 AD2 AD5	AD8 AD2 AD5	AD8 AD2 AD5	AD8 AD2 AD5	AD8 AD2 AD5	AD3 AD6
Jun 13 - Jun 19	24	AD3 AD8 AD2 /	AD3 AD8 AD2	AD3 AD8 AD2	AD3 AD8 AD2	AD3 AD8 AD2	AD3 AD8 AD2	AD3 AD8 AD2	AD5 AD6
Jun 20 - Jun 26	25	AD6 AD3 AD8	AD6 AD3 AD8	AD6 AD3 AD8	AD6 AD3 AD8	AD6 AD3 AD8	AD6 AD3 AD8	AD6 AD3 AD8	AD2 AD5
Jun 27 - Jul 3	26	MD AD6 AD3 /	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD2
Jul 4 - Jul 10	27	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD3
Jul 11 - Jul 17	28	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD6
Jul 18 - Jul 24	29	MD AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	ADE
Jul 25 - Jul 31	30	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD2
Aug 1 - Aug 7	31	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD3
Aug 8 - Aug 14	32	MD AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	ADG
Aug 15 - Aug 21	33	AD6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	ADS
Aug 22 - Aug 28	34	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD2
Aug 29 - Sep 4	35	MD AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD3
Sep 5 - Sep 11	36	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD6
Sep 12 - Sep 18	37	AD6 AD3 AD2		TS	AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	AD5
Sep 19 - Sep 25	38	MD AD6 AD3 /	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD2
Sep 26 - Oct 2	39	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD3
Oct 3 - Oct 9	40	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD6
Oct 10 - Oct 16	41	MD AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	ADS
Oct 17 - Oct 23	42	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD2
Oct 24 -Oct 30	43	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD3
Oct 31 - Nov 6	44	MD AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	ADG
Nov 7 - Nov 13	45	AD6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	ADS
		AD physics sto	p November 1	14th 6AM.					

Based on injector schedule V1.6

Consuntivo	fondi	CSN:
------------	-------	------

T

Ш Anno: 2015 Sigla: AEGIS

FTE: 2,5+0,5 Persone (Ricercatori + Tecnologi): 4+1

Missioni							
	Assegnato	Speso	%	Note			
Meetings	4	4	100,00				
Turni o costruzione	15	14,5	96,67				
Conferenze	0	0					
Totale	19	18,5					

		Speso				
Capitolo	Assegnato	Come richiesto	Altro	Variazioni Bilancio	Note	
Consumi	1	0,5	0	-0,5	Storno su inventario e servizi	
Altri Consumi	0	0	0	0		
Costruzione Apparati	0	0	0	0		
Inventario	1	1	0	0		
Licenze	0	0	0	0		
Trasporti	0	0	0	0		
Servizi	3	3	0	0		
Totale	5	4,5	0	-0,5		
te le cifre in kEuro						

A Large Ion Collider Experiment

Gianluigi Boca, Germano Bonomi, Susanna Costanza, Davide Pagano, Alberto Rotondi, Aldo Zenoni
INFN-PV cluster: il 18 dicembre 2016 il board della collaborazione ha approvato l'ingresso in ALICE del cluster INFN-PV, con membri del Dipartimento di Fisica dell'Università di Pavia e del Dipartimento di Ingegneria Meccanica e Industriale dell'Università di Brescia

membri INFN-PV 2016: Gianluigi Boca, Germano Bonomi, Susanna Costanza, Davide Pagano, Alberto Rotondi, Aldo Zenoni (3.1 FTE)

attività in cui abbiamo iniziato a contribuire:

- simulazione del chip pALPIDE per l'upgrade dell'Inner Tracking Silicon detector
- analisi dei dati (decadimento di mesoni charmati D⁰)
- QA delle produzioni MC e di ricostruzione

PIXEL DETECTOR SIMULATION

In collaborazione con i colleghi di Torino (M. Masera et al) e Trieste (S. Piano et al.) siamo impegnati nella caratterizzazione e simulazione della risposta dei chip pALPIDE per l'upgrade del rivelatore a pixel ITS.

Essendo disponibile solo la risposta digitale per i nuovi chip, una prima versione completamente parametrizzata della simulazione è stata sviluppata e rilasciata nel software dell'esperimento. Infine, in contatto con il gruppo del CERN, responsabile dello sviluppo dei nuovi chip, stiamo organizzando una presa dati dedicata per ultimare la caratterizzazione del chip ed il conseguente tuning della simulazione.

6 GeV pions (normal incidence)

In collaborazione con una collega di Torino (E. Botta), siamo impegnati nel task di Quality Assurance per il rivelatore ITS: si tratta di effettuare controlli periodici (*trending*) per valutare le prestazioni e il funzionamento del rivelatore ITS, in corrispondenza dei vari step di calibrazione e ricostruzione dei dati raccolti a LHC.

I controlli vanno effettuati anche sulle produzioni Monte Carlo ancorate a specifici set di dati. Oltre al *trending*, è necessario effettuare controlli sui singoli runs (*check*) e fare un confronto diretto tra ogni file di dati e il corrispondente file simulato.

Meeting a cadenza settimanale durante i quali relazionare sulle produzioni che si sono rese disponibili.

ANALISI

Measurement of charm production at central rapidity in proton-proton collisions at $\sqrt{s} = 7$ TeV

The ALICE collaboration¹

ABSTRACT: The p_t -differential inclusive production cross sections of the prompt charmed mesons D⁰, D⁺, and D^{*+} in the rapidity range |y| < 0.5 were measured in proton-proton collisions at $\sqrt{s} = 7$ TeV at the LHC using the ALICE detector. Reconstructing the decays D⁰ $\rightarrow K^-\pi^+$, D⁺ $\rightarrow K^-\pi^+\pi^+$, D^{*+} $\rightarrow D^0\pi^+$, and their charge conjugates, about 8,400 D⁰, 2,900 D⁺, and 2,600 D^{*+} mesons with $1 < p_t < 24$ GeV/*c* were counted, after selection cuts, in a data sample of 3.14×10^8 events collected with a minimum-bias trigger (integrated luminosity $L_{\rm int} = 5$ nb⁻¹). The results are described within uncertainties by predictions based on perturbative QCD.

In collaborazione con i colleghi di Padova (A. $\frac{9}{2}$ Dainese et al.) abbiamo iniziato l'analisi dei dati pp 150 per la misura della sezione d'urto di produzione (inclusiva, in funzione di p_T) di mesoni charmati. 100

Ad aprile ci hanno ufficialmente assegnato nei dati pp@8TeV il canale $D^o \to K^- \pi^+$

Produzione di mesoni charmati in pp (nel 2012 pubblicati i dati a 7 TeV - ora analisi dei dati a 8 TeV)

N

00

 $D^o \rightarrow K^- \pi^+$ $D^+ \rightarrow K^- \pi^+ \pi^+$ $D^{*+} \rightarrow D^o \pi^+$

Consuntivi FAMU 2015

CdS, 6 giugno 2016

Motivazioni: il puzzle del raggio del protone Misura dello splitting iperfine (HFS) nello stato base dell'idrogeno muonico.

Il raggio Zemach del protone dal HFS del $(\mu^-p)_{1S}$

- Esperimento basato sul Lamb Shift nel μ -p al PSI (2010): r_{ch}= 0.84089(39) fm
- Discrepanza di 7σ da CODATA-2010: $r_{ch}=0.87750(510)$ fm

basato su scattering e-p e spettroscopia H.

Necessità di una misura conclusiva: FAMU @RIKEN-RAL muon facility.

Struttura del protone

Si considerano le distribuzioni di carica, $\rho_E(r)$ e magnetica, $\rho_M(r)$.

Solo due dei loro momenti sono direttamente legati a quantità osservabili:

 $\begin{aligned} r_{ch} &= (\int \rho_E(r) r^2 d^3 r)^{1/2} : \Delta E_{LS} = 206.0669(25) - 5.2275(10) r_{ch}^2 meV \\ R_Z &= \int (\int \rho_E(r') \rho_M(r-r') d^3 r') r d^3 r : \end{aligned}$

 $\Delta E^{HFS}_{2S} = 22.9843(30) - 0.1621(10) R_{Z} meV$ $\Delta E^{HFS}_{1S} = 184.087X - 1.281Y R_{Z} meV$ La teoria prevede X \approx 15, Y < 10.

Metodologia

- L'atomo di µp assorbe un fotone da un laser IR alla lunghezza d'onda della risonanza $\lambda_0 = hc/DE^{1S}_{HFS} \approx 6.8 \mu m$ della transizione da singoletto a tripletto (spin flip).
- Quando l'atomo viene de-eccitato collisionalmente allo stato 1S, viene accelerato di 0.12 eV (\approx 2/3 dell'energia di transizione iperfine).
- Questa sequenza di processi viene rivelata tramite i prodotti di reazioni la cui rate dipende dalla velocita' del µp.
- In particolare, viene osservato il trasferimento del μ dal protone a nuclei di un gas pesante appropriato, che abbia una dipendenza importante dell'energia dalla rate di trasferimento.
- Il trasferimento del μ è identificato da raggi X caratteristici emessi durante la diseccitazione dell'atomo muonico piu pesante.
- λ_0 (da cui si ricava ΔE^{1S}_{HFS}) viene identificata dalla risposta massimale.

La Collaborazione FAMU (2015)

Responsabile Nazionale: Andrea Vacchi (INFN Trieste)

Sezione	Resp. locale	FTE ricerc.	FTE tecnologi/tecn.	FTE tot	
Bologna	G. Baldazzi	2.1	0.3	2.4/10	
Milano	R. Ramponi	0.1	0.0	0.1/1	
Milano Bicocca	M. Bonesini	3.1	0.7	3.8/8	
Pavia	A. Menegolli	1.1	0.4	1.5/5	
Roma III	L. Tortora	1.2	0.3	1.5/4	
Trieste	A. Vacchi	5.1	0.4	5.5/11	

Run FAMU 2014: primi risultati

A. Adamczak et al., "Steps towards the hyperfine splitting measurement of the muonic hydrogen ground state: pulsed muon beam and detection system characterization", Journal of Instrumentation, Volume 11, May 2016.

RUN FAMU 2015/2016

- Test run su fascio di muoni a RIKEN RAL (dicembre 2015 e febbraio 2016) per misura di rate trasferimento di muoni da idrogeno muonico ad atomi pesanti: sono state variate pressione, la temperatura e la concentrazione dei nuclei in diverse miscele di gas.
- ≻ Test rivelatori (LaBr3, Pr:LUAG, HPGe).
- Test monitor dei muoni del fascio (odoscopio).

FAMU-PV: anagrafica 2015

A. De Bari	Ricerc. Universitario	0.4	
A. Menegolli	Ricerc. Universitario	0.4	Responsabile locale
R. Nardò	Tecnologo Universitario	0.2	
M. Rossella	Tecnologo INFN	0.2	
A. Tomaselli	Ricerc. Universitario	0.3	Dipart. di Ing. Industriale e dell'Informazione
TOTALE		1.5	

Finanziamenti 2015:

- Missioni 9k euro;
- Apparati 4k euro.

Attività FAMU-PV 2015

Attività di caratterizzazione di cristalli di $Lu_3Al_5O_{12}$:Pr (Pr:LuAG) e CeCAAG come rivelatori X (14 x 14 x 13 mm³), in vista della realizzazione di un array di cristalli da inserire nel setup del test run 2015 a RIKEN-RAL.

Pr:LuAG accoppiato alla finestra di un PMT Hamamatsu R11065, alloggiato assieme alla sorgente di 137Cs in un supporto disegnato da Milano Bicocca e realizzato con la stampante 3D di Sezione.

Primi test sul cristallo "nudo" (primavera 2015)

Il picco del ¹³⁷Cs a 662 keV è ben risolto, ma la risoluzione in energia con PrLuAG è ~ 13%, con NaI ~ 6%. In letteratura si trova riportata una risoluzione in energia di circa 5% con PrLuAG a 662 keV.

- Misure di auto-assorbimento di Pr:LuAG in collaborazione con il gruppo di spettroscopia Raman.

- Test per deposito di riflettore $BaSO_4$ in collaborazione con il Dipartimento di Chimica Fisica per migliorare l'efficienza di raccolta della luce e quindi la risoluzione in energia.

- Depositi finali di vernice riflettente $BaSO_4$ e assemblaggio di 5 rivelatori costituiti da 5 cristalli letti da array di SiPMs (in collaborazione con Milano Bicocca).

Test sul cristallo+riflettore+SiPM array (autunno 2015)

Il picco del ¹³⁷Cs a 662 keV è ancora ben risolto, e la risoluzione in energia con CeCAAG è \sim 4% (sinistra) e con Pr:LuAG \sim 7%. In letteratura si trova riportata una risoluzione in energia di circa 5% con PrLuAG a 662 keV letto da PMTs e circa 10% letto da SiPMs.

Installazione 5 Pr:LuAG e 1 CeCAAG e presa dati presso RIKEN-RAL nei test run di Dicembre 2015 (3 giorni) e Febbraio 2016 (6 giorni). Analisi dati raccolti con i nuovi cristalli in corso.

Attività FAMU-PV 2015: nuovo monitor di fascio

- 2 piani x/y di fibre scintillanti BCF12 (<u>diametro 1 mm</u>) lette da SiPM Advansid 1x1 mm² con celle da 40 μm.
- Boards per alloggiamento SiPM disegnate e realizzate dal Servizio Elettronico della Sezione di Pavia. Meccanica stampata su stampante 3D a Pavia su CAD di INFN Milano Bicocca.

Profilo del fascio (X,Y) misurato dall'odoscopio a 61 MeV/c. RMS del fascio < 1 cm in entrambe le coordinate.

Attività FAMU-PV 2015: elettronica per Germanio MiB

- Disegno e realizzazione da parte del Servizio Elettronico dello stadio di pre-amplificazione per i rivelatori a Germanio di INFN Milano Bicocca in vista dei test run autunno 2016 e 2017.
- I rivelatori al Germanio utilizzati in FAMU sono GEM-Profile-S della Ortec, con tempo di salita di circa 200 ns.

- Esempio di segnale acquisito durante i run di FAMU a RIKEN-RAL con l'attuale elettronica di amplificazione Ortec:

- tempo di salita elevato, non permette di distinguere tra fotoni X primari e ritardati.

Serve una risoluzione temporale di qualche decina di ns.

Time (ns)

- Il gruppo FAMU-PV ha iniziato a sviluppare un pre-amplificatore per arrivare a tempi di salita sotto i 100 ns. I test sono iniziati con la realizzazione di un pre-amplificatore simil Ortec da utilizzare come punto di partenza:

- Il circuito, disegnato e realizzato presso la Sezione INFN di Pavia, è stato montato sul detector HPGe a Milano Bicocca e testato con:

1) sorgente di Cs-137, riga 661.66KeV: ampiezza misurata in uscita circa 270 mV

2) sorgente Co-60, riga 1173KeV: ampiezza misurata in uscita circa 520 mV

In entrambi i casi il segnale presenta un rise time di ~ 170 ns ed un fall time di ~ 100 μ sec.

- Inoltre: studio preliminare di elettronica a basso rumore per amplificazione/shaping per cristalli PrLuAG e LaBr3 con lettura array SiPMs (vedi preventivi 2017).

Conferenze 2015

M. Rossella et al., "*Characterization of PrLuAG scintillating crystals for X-ray spectroscopy*", presented at the 13th Pisa Meeting on Advanced Detectors (Frontier Detectors for Frontier Physics), 24-30 May 2015 La Biodola, Isola d'Elba (Italy)

Pubblicazioni

A. Adamczak et al., "Steps towards the hyperfine splitting measurement of the muonic hydrogen ground state: pulsed muon beam and detection system characterization", Journal of Instrumentation, Volume 11, May 2016.

MAMBO

MAMiBOnn

Studio di fotoreazioni indotte su nucleoni e nuclei utilizzando gli acceleratori

 MAMI E_γ ≤ 1.6 GeV (Mainz) A2 Collaboration (spokepersons : A. Thomas Mainz (circa 80 persone) P. Pedroni INFN-PV)
 ELSA E_γ ≤ 3.0 GeV (Bonn) BGO-OD collaboration (spokepersons : H. Schmieden Bonn (circa 60 persone) P. LeviSandri INFN-LNF)

Sezioni INFN Partecipanti: CT (Me), ISS, LNF, PV, RM2, TO

COLLABORAZIONE MAMBO

Responsabile Nazionale: ALESSIA FANTINI

Sezioni INFN partecipanti:

ROMA TOV	Responsabile Locale	RACHELE DI SALVO
LNF	Responsabile Locale	PAOLO LEVI SANDRI
MESSINA	Responsabile Locale	GIUSEPPE MANDAGLIO
PAVIA	Responsabile Locale	PAOLO PEDRONI
ISS-RM	Responsabile Locale	FRANCESCO GHIO
TORINO	Responsabile Locale	GIANPIERO GERVINO

24 ricercatori; 12.1 FTE

MAMBO- Physics Topics

(mainly involving low cross sections and/or precision measurements)

•Threshold meson production: (test of LET/ ChPT):

Strangeness ($\gamma N \rightarrow \Lambda K$)

 π^0 meson photoproduction at threshold

• Ambiguity free amplitude analysis of meson photoproduction

Requires Double polarization measurements:

 $\gamma N \rightarrow N\pi(\pi)$; N η (ρ ,...) channels

- Tests of fundamental symmetries (C,CP,CPT...) (Rare) η, η[/] decays
- In medium properties of hadrons & nuclear physics: Meson photo production on nuclei
- Search for "missing" baryon resonances

Vector meson (ϕ , ω) photo production

Use of state-the-art technology (circularly and linearly polarised photon beams; longitudinally and transverse polrised proton/deuteron/3He targets) is required

MAMBO – Mainz- Rivelatore

 4π Photon Spectrometer @ MAMI

MAMBO – Bonn - Apparato

Attività svolta 2015-2016

Mainz : -) manutenzione camere a fili

 -) Prese dati con butanolo (deuterato) (polarizzazione longitudinale e trasversale del bersaglio)
 (gran parte del programma di misura per proposal con

(gran parte del programma di misura per proposal con spokepersons INFN-PV)

- Bonn : -) Continuazione commissioning di parti del set-up di rivelazione (MRPCs)
 -) Prime prese dati con buona parte del set-up funzionante
 - -) Manutenzione e commissioning a Bonn del sistema MWPCs
 - -) Test in fascio e con raggi cosmici delle camere a fili

There are many more predicted states than observed

Observables for $\gamma N(\rightarrow N^*) \rightarrow N\pi$ photoproduction

Photon polarization		Target polarization		Recoil nucleon polarization		Target and Recoil polarizations					
		X	У	Z(beam)	X	У'	Z'	X' X	X' Z	Z' X	Z' Z
unpolarized linear Circular	σ Σ	- H F	(-P		- O _× C _×	P (-T) -	O _x C _z	T_× (-L _z) -	L _× (T _z) -	T _z (L _x) -	(-T _x)

- **1** unpolarized measurement
- **3** single polarization measurements
- **12 double polarization measurements**

both on the proton and the neutron

The measurement of 7 (8) (properly chosen) observables is necessary to <u>unambiguously</u> (in a model independent way) determine the scattering amplitudes ("complete analysis")

Single and Double Polarised Experiments

Excitation Spectrum

- 1.- Longitudinal PT: a) E and G of Meson Photoproduction off protons
 b) E and G of Meson Photoproduction off neutrons
- 2.- Transverse PT: a) T and F of Meson Photoproduction off protons
 b) T and F of Meson Photoproduction off neutrons

Additional measurements on Fundamental Properties

- 1.- Long. and trans. PT: Spin Polarisabilities and polarisibilities in Compton process
- 2.- Transverse PT: Transverse asymmetries T and F in π -photoproduction in the threshold region $\rightarrow m_u - m_d$

Simultaneous measurement of G and E for π^0 production (F.Afzal, K.Spieker)

Black Circles - new MAMI Measurement, red triangles Bonn CBELSA, green triangles older data.

The Impact of New Polarization Data from Bonn, Mainz and Jefferson Laboratory on $\gamma p \to \pi N$ Multipoles

A.V. Anisovich^{1,2}, R. Beck^{1a}, M. Döring^{3,4}, M. Gottschall¹, J. Hartmann¹, V. Kashevarov⁵, E. Klempt¹, Ulf-G. Meißner^{1,6},⁷ V. Nikonov^{1,2}, M. Ostrick⁵, D. Rönchen^{1,6b}, A. Sarantsev^{1,2}, I. Strakovsky³, A. Thiel¹, L. Tiator⁵, U. Thoma¹, R. Workman³, Y. Wunderlich¹

arXiv:1604.05704

We find that the new data force the multipoles to get closer to each other, the variance is reduced by about a factor of two.

Even more important seems to be that the multipoles converge to similar values in the region of leading resonances while the "background" and the contribution of higher-mass resonances remain less constrained by the new data. Clearly, the aim is to get very similar answers also in the mass range which contains higher-mass resonances. This task will require more precise data, in particular more precise data on polarization observables. Asymmetries T and F in $\gamma p \rightarrow p\pi^0$ at threshold

Study of the dynamic consequences of $m_d - m_u > 0$.

and ChPT calculations [V.Bernard, N.Kaiser, and U.G.Meissner,

Eur. Phys. J. A11, 209 (2001)] of ImE0+.

Threshold π^0 photoproduction on transverse polarised protons at MAMI, S.Schumann et al., PLB 750 (2015) 252-258

Fig. 5. Imaginary part of E_{0+} from single-energy fits to σ_T . Data points show experimental results with statistical uncertainties (error bars) and absolute systematic uncertainties (grey shaded band). The lines are the DMT model prediction (solid), the naïve parametrisation of Eq. (1) with constant $\beta = 3.35 \cdot 10^{-3}/m_{\pi^+}$ (short-dashed), a prediction of Gasparyan, Lutz [38] (long-dashed), the ChPT4 description in Ref. [8] (dashed-dotted), and a HBChPT4 calculation from Ref. [11] (dotted), scaled by a factor 3.35/2.71 to match the unitary value of β at the $n\pi^+$ threshold.

Main problem: Low energitic recoil particles do not escape the target and do not reach the detector.

Insert for the January-February 2016 Beamtime.

Results from Bonn

$\gamma p \rightarrow K^+ \Sigma^0$ with no initial particle Identification

BGO-OD (preliminary), CLAS: B. Dey, et al., Phys. Rev. C82 025202 (2010) SAPHIR: K.-H. Glander et al., Eur. Phys. J. A19 251 (2004), LEPS: M. Sumihama et al., Phys. Rev. C73 035214 (2006)

MWPCs Commissioning

Solved a Relevant Problem on wire PreaAmplifiers card (low efficiency / a lot of noise)

This was found to be due to some serious bug in the PA card design and construction whose effect gets magnified by the relevant noise present inside the BGO-OD front-end electronic chain. This outcome could very hardly be foreseen just from the very first tests performed some time ago in Pavia.

The modified card, even with some tuning to be still completed, is basically giving the expected performances. Three main different types of modifications were performed

- Filtering of the input signals
- Better signal amplification (the TRA402 negative input is used instead of the positive one)
- Better shaping of the amplified signal

Soluzione trovata grazie al grosso lavoro di **Domenico Calabrò** ed ai preziosi suggerimenti di **Roberto Nardò**

MWPCs Commissioning

Modified card

Publications (refereed journals)

2011: 4 (1 PLB)
2012: 4 (1 PLB)
2013 10 (2 PRL; 4 PLB)
2014 11 (4 PRL; 1 PLB)
2015 10 (1 PRL; 2 PLB)

Attività prevista 2016-2017

> Mainz : -) manutenzione camere a fili

- -) Prese dati con bersaglio polarizzato attivo
- -) Prese dati con bersagli protone/deuterio non polarizzati (misura osservabile P; scattering Compton)
- -) test nuovo rivelatore di Tagging (352 scintillatori)
- Bonn : -) Completamento commissioning camere a fili
 - -) Inizio dei runs di misura veri e propri
 - -) manutenzione camere a fili

Attività del gruppo di Pavia di PANDA, giugno 2015-giugno 2016

- PANDA nel 2015 ha avuto un revival in Germania a fine settembre 2015, con il suo 'reinserimento' tra i 4 'pillars' del progetto FAIR.
- Ora la presa dati e' prevista ufficialmente nel 2022 ma con interaction rate inizialmente ridotta (2 MHz) e programma di fisica inizialmente ridimensionato. Anche il detector pertanto non sara' finanziato completamente per <u>il</u> 2022.
- L'attivita' del gruppo di Pavia e' consistita nel completamento del software per il Pattern Recognition, per le tracce primarie nella parte centrale del rivelatore (dicembre 2015).
- Rimane la responsabilita' per il software del Pattern Recognition.
- Rimangono le partecipazione al Pubblication Commitee e nel Collaboration Board di PANDA.

PANDA detector

Pattern recognition for STT

Efficiency of the Pattern recognition code with the use of both a road finding and a Hough transform algorithms has been shown to be satisfactory in the ideal situation (no pileup)

In case of pileup caused by the 20 MHz interaction rate:

- the efficiency of finding all true hits belonging to a track decreases
- the presence of spurious hits increases;
- many ghost tracks are found

Improvements of the Pattern Recognition software for the MVD + STT trackers in case of the pileup are needed: - modifications of the code to **improve the PR perfomances** - finalisation of **«cleanup**» procedures

Improved PR performances

MC Box Generator; % of reconstructed tracks ('reconstructed track' means tracks found associated to a MC truth track)

p (GeV/c)	Tracks/event	# good gen. tracks	% rec. Tracks
0.3	1	3981	99.1
0.3	4	3986	98.8
0.3	8	3983	97.6
1.0	1	3871	99.4
1.0	4	3874	98.9
1.0	8	in efficiency	98.5
2.0	THE perfor	rmance	99.6
2.0 EX	CELLENTF	3858	99.4
2.0	8	3866	98.8
5.0	1	3872	99.5
5.0	4	3831	99.5
10.0	1	3886	99.5

Scheme of the cleanup task

Use the XY positions of the hits to eliminate spurious tracks not having all the hits they should

- Subdivide track in arcs crossing a ≻ certain STT axial straw sector 50 -SciTil hit Δ pixel - Require continuity of hits in each Stt **strip** continuity of sector hits in track Exception: allow 1 axial STT missing hit Mvd hits overall due to expected 98 % straw efficiency Require that the track has the 0.00000 AA-0-P entrance/exit hits (boundary hits) -50 50 Exception: most external hit is not Х necessarily required to touch the boundary (very forward tracks) - Require hit in the SciTil system when track reached that continuity of Require continuity of hits in the MVD -50 hits in track system

Scheme of the cleanup task

Use the z\$positions of the skew hits to eliminate spurious tracks not having all the hits they should.

- There is only one skew straw sector so require continuity of skew hits (track STT hits can have only one missing STT hit overall axial + skew)
- First and last hit in skew sector must be at boundary

Exception: for very forward tracks last hit may not be at the boundary if also there are not hits in the outer axial sector)

- Continuity of hits at the boundaries between axial and skew straws.

Beamtime overview

Small prototype of the Straw Tube Tracker (STT) in Jülich available for tests with beam @ COSY

- Prototype with FADC readout
- Placed in the Big Karl area
- Proton and Deuteron beams provided by COSY (July 2014, October 2014, Dec 2014):
 - 0.6 GeV/c
 - 1.0 GeV/c
 - 1.3 GeV/c
 - 2.0 GeV/c

Operation conditions (same as the PANDA STT ones):

- ArCO₂ (90/10) mixture
- 2 bar absolute pressure
- HV = 1800 V, 1850 V

Susanna Costanza