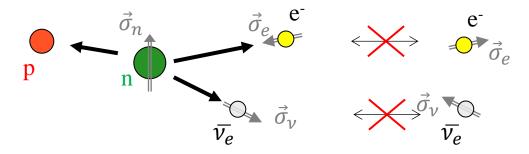


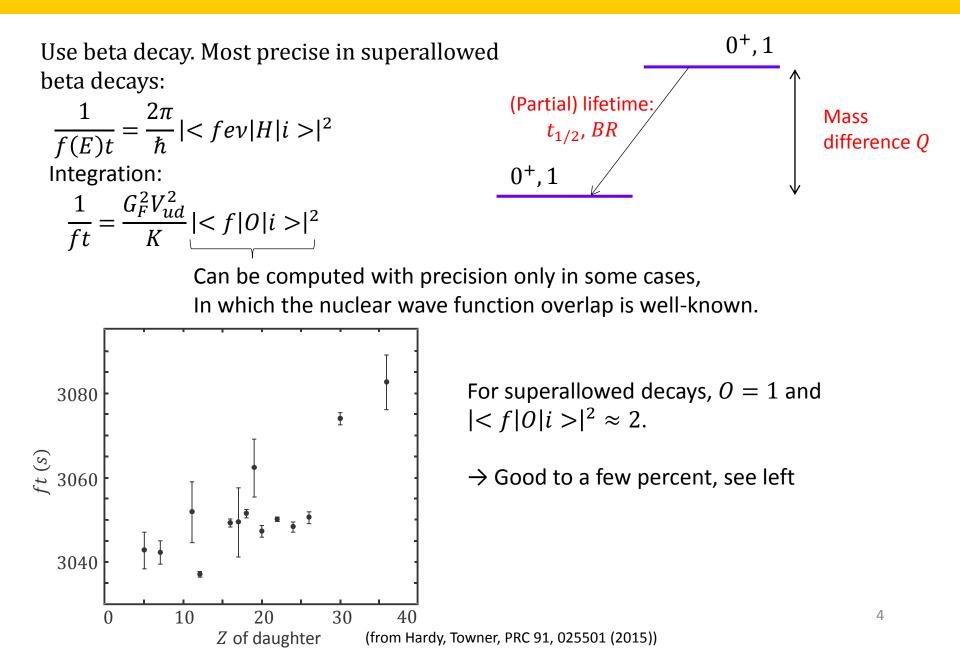
Beyond-standard model physics searches in neutron and nuclear beta decay

Stefan Baeβler

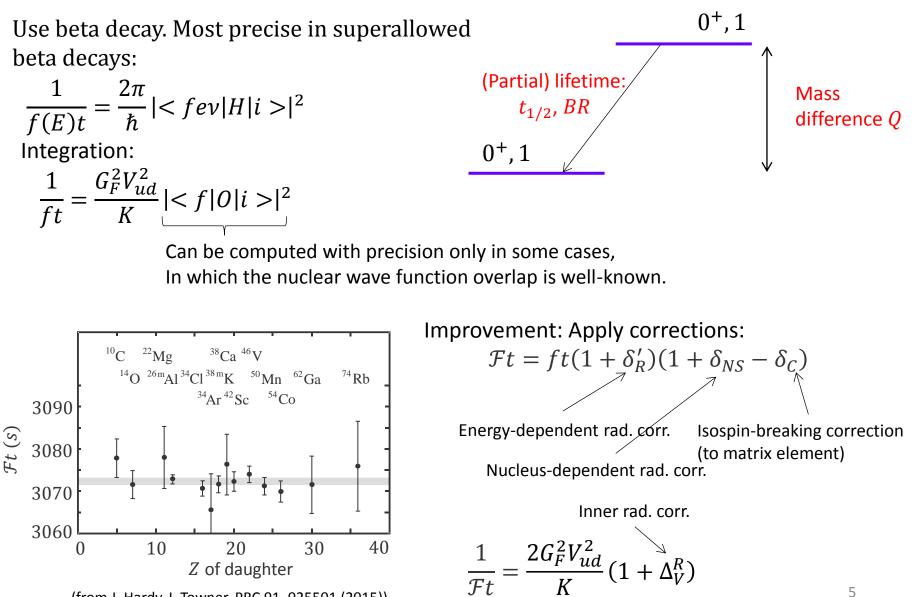
Table of contents


Beyond-standard model physics searches in neutron and nuclear beta decay: 1. Is the Cabbibo Kobayashi Maskawa (CKM) matrix unitary?

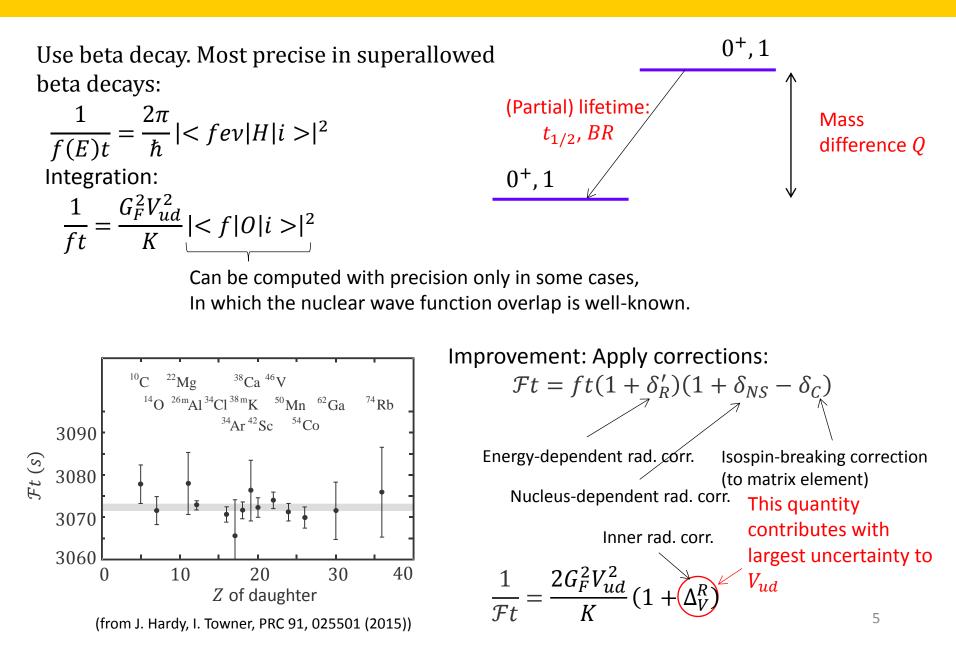
$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \cdot \begin{pmatrix} d\\s\\b \end{pmatrix}$$


Various unitarity tests possible; the most precise one is the one in the first row:

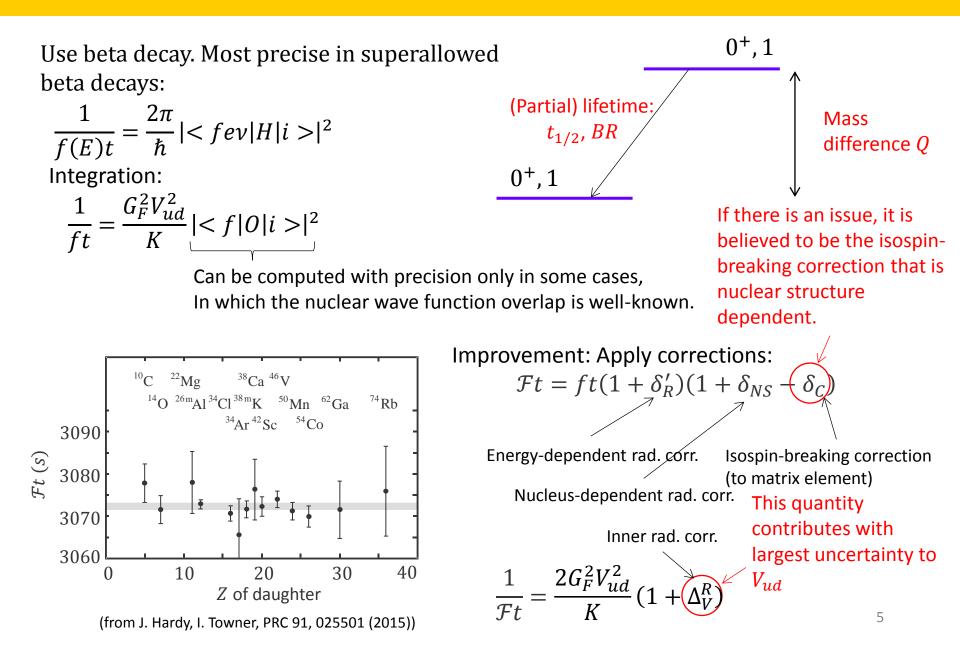
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$


2. V-A structure of weak interaction: Scalar- and tensor (S,T) interactions, which could be mediated by non-standard intermediate bosons, causes beta decays with one of the leptons having the opposite helicity.

Established determination of V_{ud}



Established determination of V_{ud}



⁽from J. Hardy, I. Towner, PRC 91, 025501 (2015))

Established determination of V_{ud}

Established determination of V_{ud}

1. Use Kl3 (Ke3 or Kµ3) semileptonic decays, e.g. $K_L \rightarrow \pi^+ + e^- + \bar{\nu}_e$: $\Gamma_{Kl3} = (known) \cdot |V_{us}f_{+}^{K\pi}(0)|^2 I_K^l(1 + \delta_{EM}^{Kl} + \delta_{SU(2)}^{Kl})$ Correction to phase space integral for charged Kaons Lepton formfactor phase space integral Radiative correction

Current issue: $f_{+}^{K\pi}(0)$ needs to come from theory (Lattice-QCD). Present averages are:

N_f	$f_{+}^{K\pi}(0)$	V _{us}	PDG16 average, based on
2 + 1	0.9677(37)	$0.2237(4)_{exp+RC}(9)_{Lat}$	PRD87, 073012 (2013), JHEP 06, 164 (2015)
2 + 1 + 1	0.9704(24)(22)	$0.22310(74)_{th}(41)_{exp}$	PRL112, 112001 (2014)

1. Use Kl3 (Ke3 or Kµ3) semileptonic decays, e.g. $K_L \rightarrow \pi^+ + e^- + \bar{\nu}_e$:

 $\Gamma_{Kl3} = (known) \cdot |V_{us}f_{+}^{K\pi}(0)|^2 I_K^l (1 + \delta_{EM}^{Kl} + \delta_{SU(2)}^{Kl})$ Correction to phase space integral for charged Kaons
Lepton formfactor phase space integral Radiative correction

Current issue: $f_{+}^{K\pi}(0)$ needs to come from theory (Lattice-QCD). Present averages are:

N _f		$f_{+}^{K\pi}(0)$	V _{us}	PDG16 average, based on
2 +	1	0.9677(37)	$0.2237(4)_{exp+RC}(9)_{Lat}$	PRD87, 073012 (2013), JHEP 06, 164 (2015)
2 + 1	+ 1	0.9704(24)(22)	$0.22310(74)_{th}(41)_{exp}$	PRL112, 112001 (2014)

2. Use ratio of leptonic decays: $K^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}/\bar{\nu}_{\mu}(+\gamma)$ to $\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}/\bar{\nu}_{\mu}(+\gamma)$ $\frac{\Gamma_{K\mu2}}{\Gamma_{\pi\mu2}} = \frac{|V_{us}f_{+}^{K}(0)|^{2}}{|V_{ud}f_{+}^{\pi}(0)|^{2}}(1 + \text{corrections})$ Result is $V_{us} = 0.22540(53)_{exp}(19)_{RC}(49)_{Lat}$

1. Use KI3 (Ke3 or Kµ3) semileptonic decays, e.g. $K_L \rightarrow \pi^+ + e^- + \bar{\nu}_e$:

 $\Gamma_{Kl3} = (known) \cdot |V_{us}f_{+}^{K\pi}(0)|^2 I_K^l (1 + \delta_{EM}^{Kl} + \delta_{SU(2)}^{Kl})$ Correction to phase space integral for charged Kaons
Lepton formfactor phase space integral Radiative correction

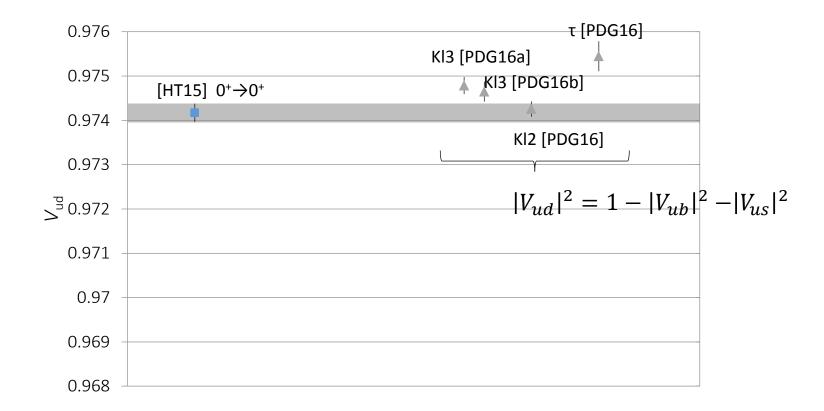
Current issue: $f_{+}^{K\pi}(0)$ needs to come from theory (Lattice-QCD). Present averages are:

N_f	$f_{+}^{K\pi}(0)$	V _{us}	PDG16 average, based on
2 + 1	0.9677(37)	$0.2237(4)_{exp+RC}(9)_{Lat}$	PRD87, 073012 (2013), JHEP 06, 164 (2015)
2 + 1 + 1	0.9704(24)(22)	$0.22310(74)_{th}(41)_{exp}$	PRL112, 112001 (2014)

- 2. Use ratio of leptonic decays: $K^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}/\bar{\nu}_{\mu}(+\gamma)$ to $\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}/\bar{\nu}_{\mu}(+\gamma)$ $\frac{\Gamma_{K\mu2}}{\Gamma_{\pi\mu2}} = \frac{|V_{us}f_{+}^{K}(0)|^{2}}{|V_{ud}f_{+}^{\pi}(0)|^{2}}(1 + \text{corrections})$ Result is $V_{us} = 0.22540(53)_{exp}(19)_{RC}(49)_{Lat}$
- 3. Use hadronic tau decays: E.g., $\tau \rightarrow K + \nu_{\tau}$ $\Gamma \propto |V_{us}|^2$ (with theory input) Result is $V_{us} = 0.2202(15)$

1. Use KI3 (Ke3 or Kµ3) semileptonic decays, e.g. $K_L \rightarrow \pi^+ + e^- + \bar{\nu}_e$:

 $\Gamma_{Kl3} = (known) \cdot |V_{us}f_{+}^{K\pi}(0)|^2 I_K^l (1 + \delta_{EM}^{Kl} + \delta_{SU(2)}^{Kl})$ Correction to phase space integral for charged Kaons
Lepton formfactor phase space integral Radiative correction


Current issue: $f_{+}^{K\pi}(0)$ needs to come from theory (Lattice-QCD). Present averages are:

N _f	$f_{+}^{K\pi}(0)$	V _{us}	PDG16 average, based on
2 + 1	0.9677(37)	$0.2237(4)_{exp+RC}(9)_{Lat}$	PRD87, 073012 (2013), JHEP 06, 164 (2015)
2+1+1	0.9704(24)(22)	$0.22310(74)_{th}(41)_{exp}$	PRL112, 112001 (2014)

- 2. Use ratio of leptonic decays: $K^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}/\bar{\nu}_{\mu}(+\gamma)$ to $\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}/\bar{\nu}_{\mu}(+\gamma)$ $\frac{\Gamma_{K\mu2}}{\Gamma_{\pi\mu2}} = \frac{|V_{us}f_{+}^{K}(0)|^{2}}{|V_{ud}f_{+}^{\pi}(0)|^{2}}(1 + \text{corrections})$ Result is $V_{us} = 0.22540(53)_{exp}(19)_{RC}(49)_{Lat}$
- 3. Use hadronic tau decays: E.g., $\tau \rightarrow K + \nu_{\tau}$ $\Gamma \propto |V_{us}|^2$ (with theory input) Result is $V_{us} = 0.2202(15)$

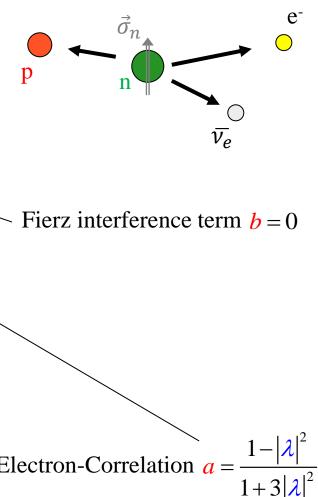
NB: I haven't talked about V_{ub} . V_{ub} is determined from decays of B/D mesons. Its value, $V_{ub} = 4.12(37)(9) \cdot 10^{-3}$ is controversial, but small enough to be neglected here.

Test of CKM unitarity in the first row.

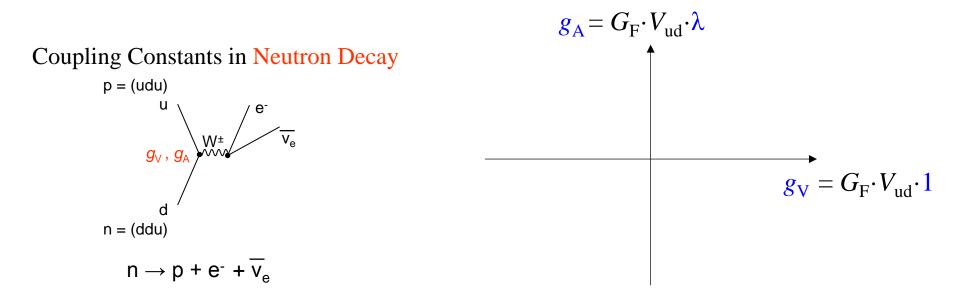
CKM Unitarity test $(|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1)$ was perfect for a decade, after being off for even longer (Kaon experiment has moved). Now, updates of lattice calculations of the Kaon form factors put agreement in question.

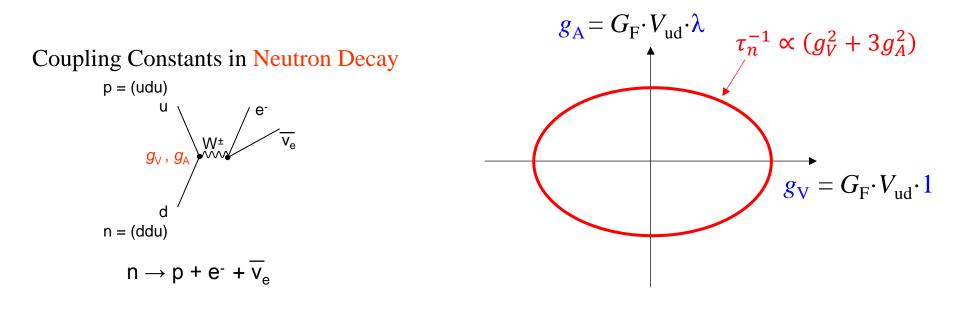
Observables in Neutron Beta Decay

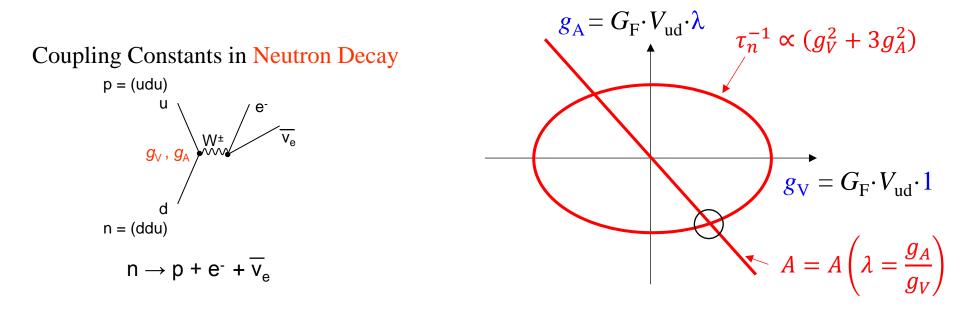
 $\cdot \left\{ 1 + \frac{a}{E_e} \frac{p_e \cdot p_v}{E_e E_u} + \frac{b}{E_e} \frac{m_e}{E_e} \right\}$

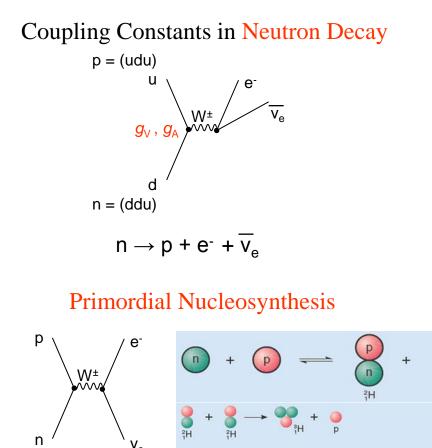

 $\frac{\vec{p}_{e}}{E_{e}} + \frac{B}{E_{v}} + D \frac{\vec{p}_{e} \times \vec{p}_{v}}{E_{e}E_{v}}$

Observables in neutron beta decay, as a function of generally possible coupling constants (assuming only Lorentz-Invariance):


Jackson et al., PR 106, 517 (1957), C. F. v.Weizsäcker, Z. f. Phys. 102,572 (1936), M. Fierz, Z. f. Phys. 105, 553 (1937)

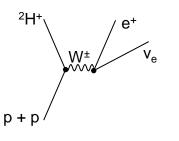

 $+ec{\sigma}_{_{
m n}}\cdot$


 $d\Gamma \propto \rho(E_{\rm e}) \cdot \left(1 + 3|\lambda|^2\right)$



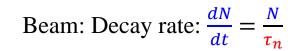
Beta-Asymmetry
$$A = -2 \frac{|\lambda|^2 + \text{Re }\lambda}{1+3|\lambda|^2}$$

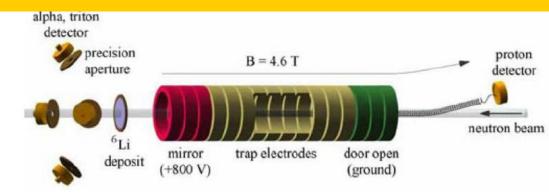
Neutrino-Electron-Correlation $a = \frac{1-|\lambda|^2}{1+3|\lambda|^2}$
Neutron lifetime $\tau_n^{-1} = \frac{2\pi}{\hbar} G_F^2 V_{ud}^2 (1+3|\lambda|^2) \int \rho(E_e)$
8

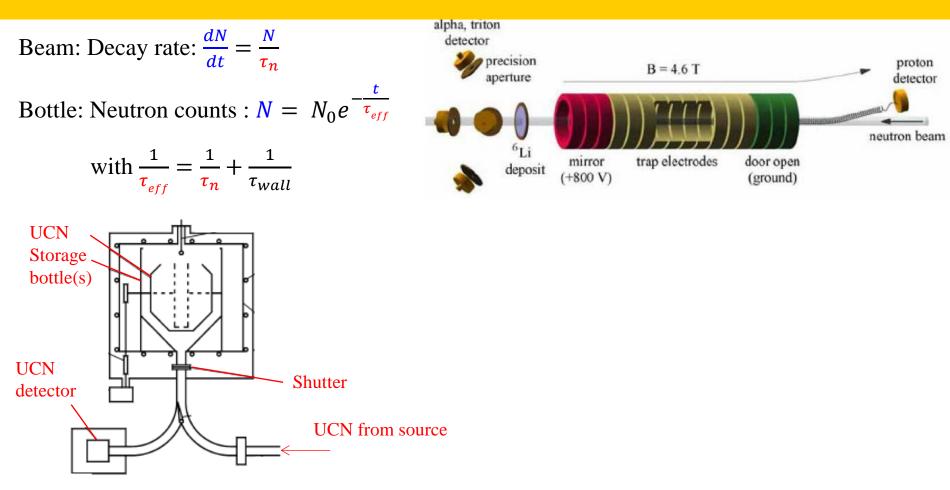


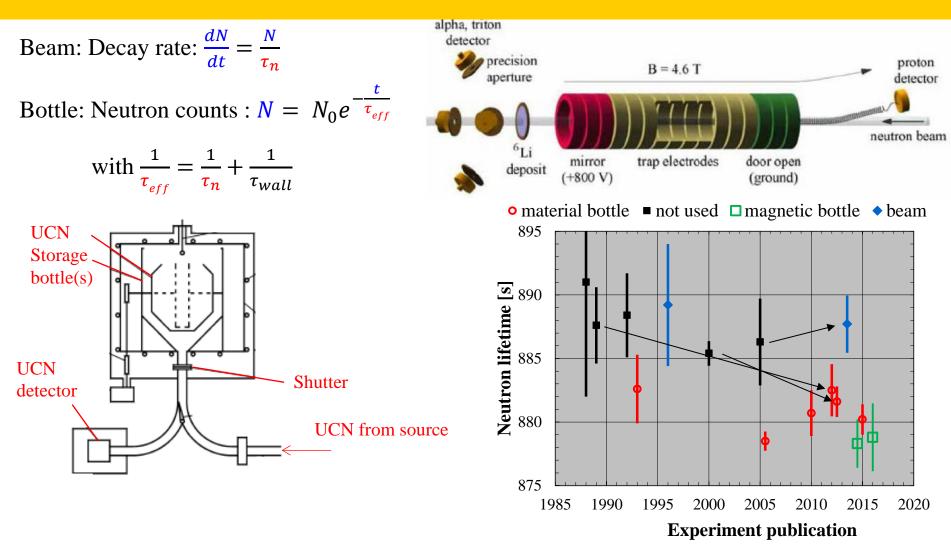
 $g_{A} = G_{F} \cdot V_{ud} \cdot \lambda$ $\tau_{n}^{-1} \propto (g_{V}^{2} + 3g_{A}^{2})$ $g_{V} = G_{F} \cdot V_{ud} \cdot 1$ $A = A \left(\lambda = \frac{g_{A}}{g_{V}}\right)$

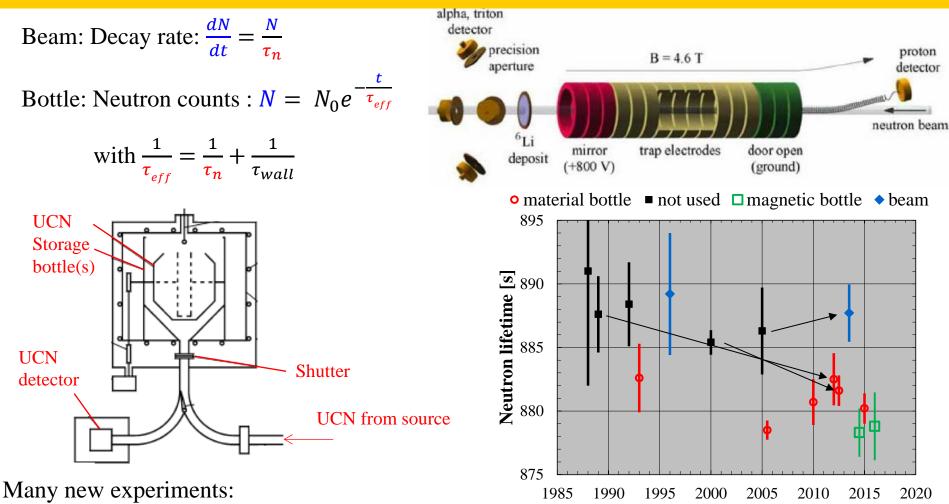
Solar cycle

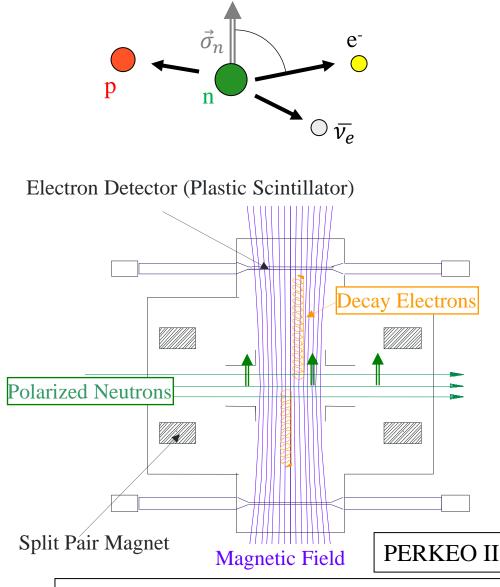

 $p + p \rightarrow {}^{2}H^{+} + e^{+} + v_{e}$

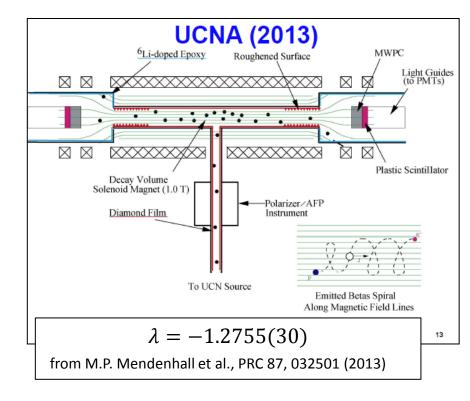



Start of Big Bang Nucleosynthesis, Primordial ⁴He abundance


 $n + v_e \leftrightarrow p + e^-$

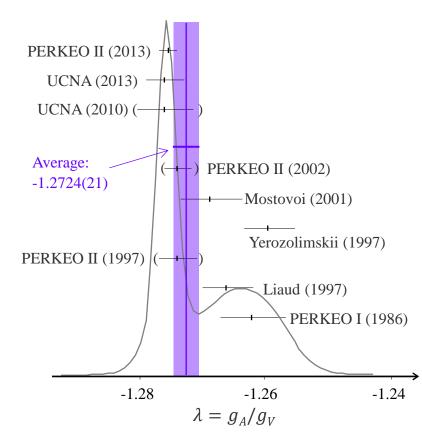

Start of Solar Cycle, determines amount of Solar Neutrinos





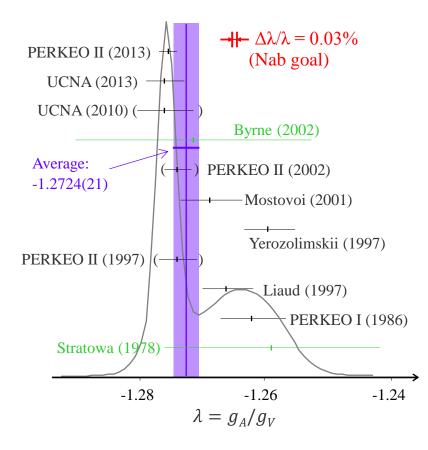
- Somehow improved material bottles (e.g. Serebrov et al.)
- **Experiment** publication
- Magnetic bottles (e.g. UCNτ, C.-Y. Liu et al., LANL; τSPECT, W. Heil, M. Beck et al., TRIGA Mainz; HOPE, O. Zimmer et al., ILL Grenoble, PENELOPE, S. Paul et al., TU München)
- Beam Lifetime (only at NIST)

The Beta Asymmetry

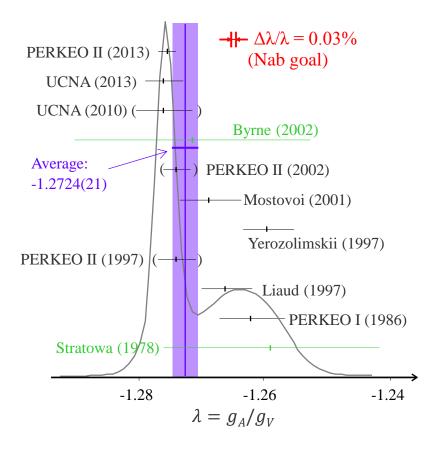


Note: The PERKEO III collaboration plans to release their beta asymmetry result, with $\frac{\Delta A}{A} \sim 2 \cdot 10^{-3}$, corresponding to $\frac{\delta \lambda}{\lambda} \sim 7 \cdot 10^{-4}$, any day now.

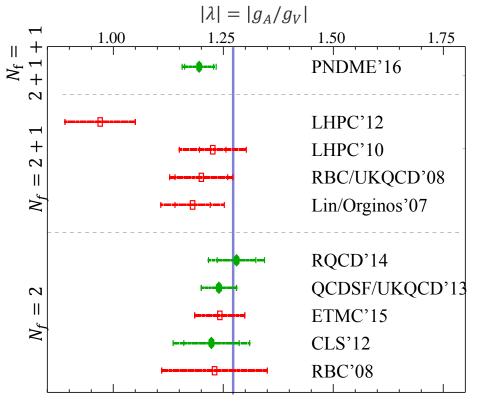
 $\lambda = -1.2748(+13/-14)$ from D. Mund et al., PRL 110, 172502 (2013)


Determination of coupling constants

Determination of ratio $\lambda = g_A/g_V$ from $A = -2(\operatorname{Re} \lambda + |\lambda|^2)/(1 + 3|\lambda|^2)$ or $a = (1 - |\lambda|^2)/(1 + 3|\lambda|^2)$:

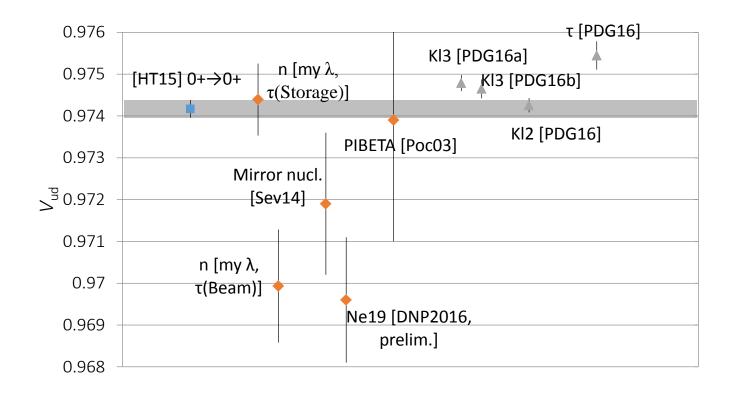

Determination of coupling constants

Determination of ratio $\lambda = g_A/g_V$ from $A = -2(\operatorname{Re} \lambda + |\lambda|^2)/(1 + 3|\lambda|^2)$ or $a = (1 - |\lambda|^2)/(1 + 3|\lambda|^2)$:

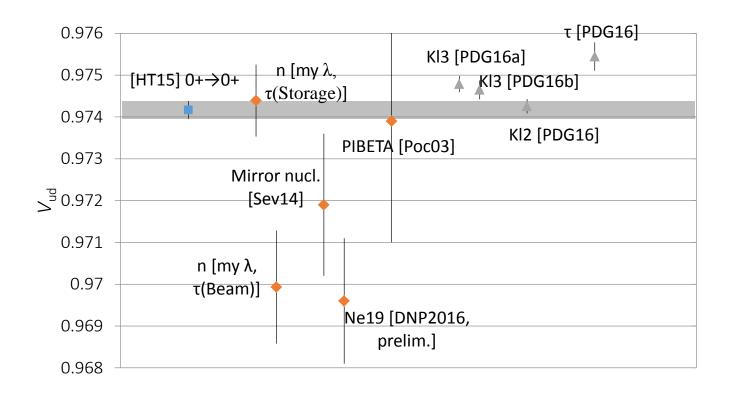


Determination of coupling constants

Determination of ratio $\lambda = g_A/g_V$ from $A = -2(\operatorname{Re} \lambda + |\lambda|^2)/(1 + 3|\lambda|^2)$ or $a = (1 - |\lambda|^2)/(1 + 3|\lambda|^2)$:



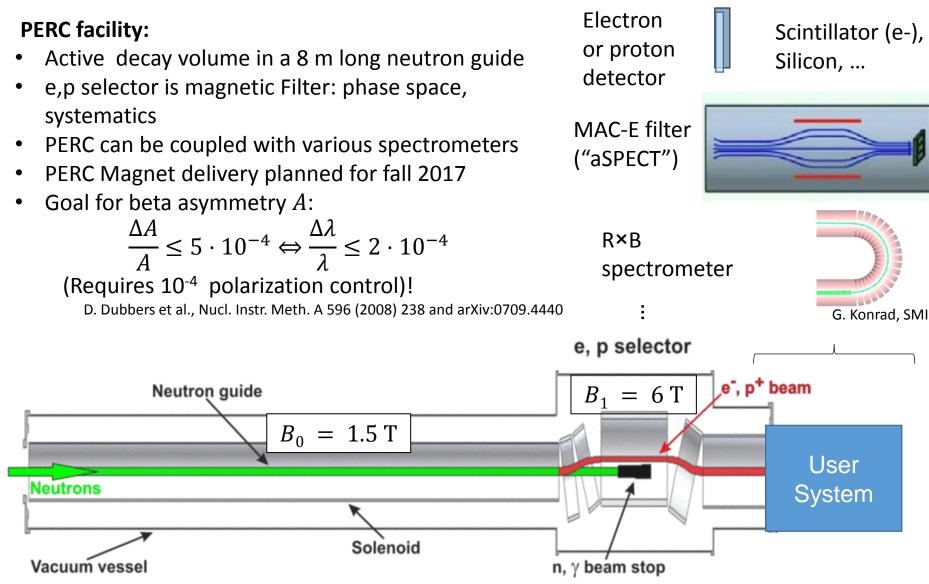
Note: λ should be fixed by standard model. However, precision of its calculation from first principles is insufficient:



Most recent 2+1+1 flavor Lattice-QCD result from PNDME: T. Bhattacharya et al., PRD 94, 054508 (2016)

Test of CKM unitarity in the first row.

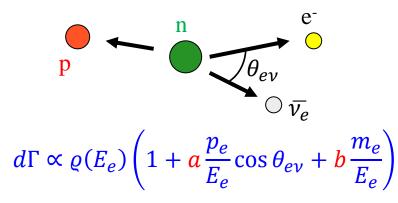
Test of CKM unitarity in the first row.


For neutron data to be competitive with superallowed decays, one wants:

1. $\Delta \tau_n / \tau_n \sim 0.3 \text{ s}$

(Neutron lifetime experiment underway were discussed earlier)

2. $\Delta\lambda/\lambda \sim 3 \cdot 10^{-4}$

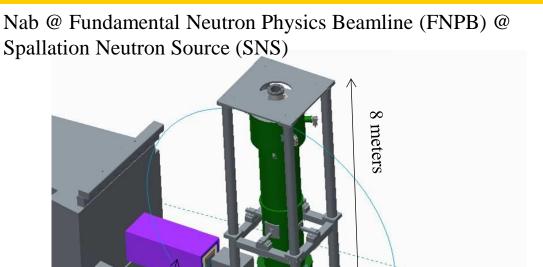

The PERC facility @ FRM II

Idea of Nab @ SNS

Cold Neutron

Beam from left

- Kinematics in Infinite Nuclear Mass Approximation:
- Energy Conservation:


$$E_{\nu} = E_{e,max} - E_e$$

• Momentum Conservation:

$$p_p^2 = p_e^2 + p_v^2 + 2p_e p_v \cos \theta_{ev}$$

Goal: Determine p_p^2 , E_e spectrum $\frac{\Delta a}{a} \le 10^{-3} \Leftrightarrow \frac{\Delta \lambda}{\lambda} \le 3 \cdot 10^{-4}$

 $(p_p \text{ is inferred from proton time-of-flight})$

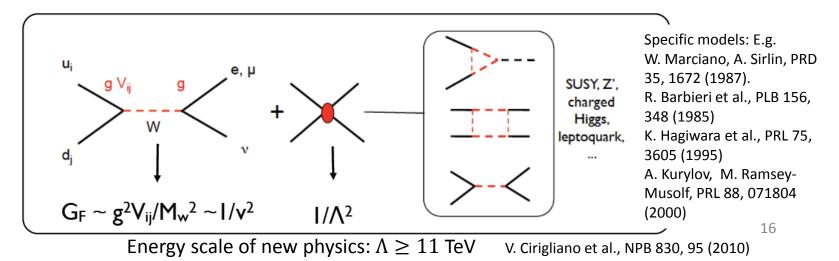
General Idea: J.D. Bowman, Journ. Res. NIST 110, 40 (2005) Original configuration: D. Počanić et al., NIM A 611, 211 (2009) Asymmetric configuration: S. Baeßler et al., J. Phys. G 41, 114003 (2014)

What if the test of CKM unitarity fails?

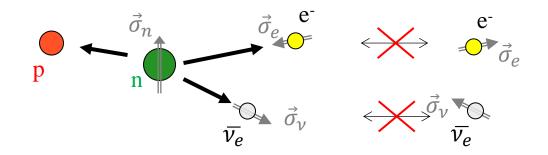
Like all precision measurements, a failure of the unitarity test would not point to a single cause: Various possibilities exist, among those are:

1. Heavy quarks:

$$\begin{pmatrix} d'\\s'\\b'\\D' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} & V_{uD}\\V_{cd} & V_{cs} & V_{cb} & V_{cD}\\V_{td} & V_{ts} & V_{tb} & V_{tD}\\V_{Ed} & V_{Es} & V_{Eb} & V_{ED} \end{pmatrix} \cdot \begin{pmatrix} d\\s\\b\\D \end{pmatrix}$$


2. Exotic muon decays:

$$|V_{uD}|^2 = 1 - |V_{ub}|^2 - |V_{us}|^2 - |V_{ud}|^2$$

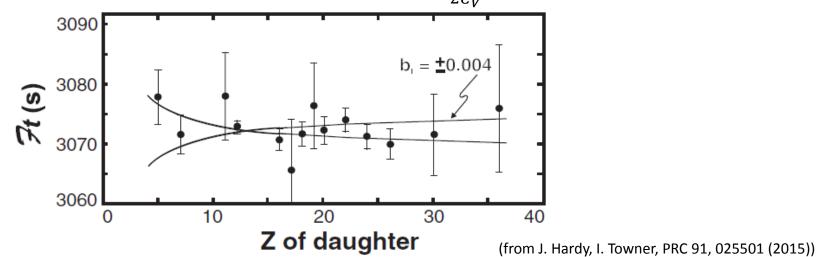

W. Marciano, A. Sirlin, PRL 56, 22 (1986) P. Langacker, D. London, PRD 38, 886 (1988)

All direct determinations of V_{ud} use G_F from muon lifetime. If the muon had additional decay modes ($\mu \rightarrow X + Y + \cdots$), G_F (and V_{ud}) would be determined wrong. E.g., $\mu^+ \rightarrow e^+ + \bar{\nu}_e + \nu_\mu$ (wrong neutrinos) would be very relevant for neutrino factories. K.S. Babu and S. Pakvasa, hep-ph/0204236

3. (Semi-)leptonic decays of nuclei through something other than exchange of W^{\pm} bosons:

Search for effective scalar (S) and tensor (T) interaction

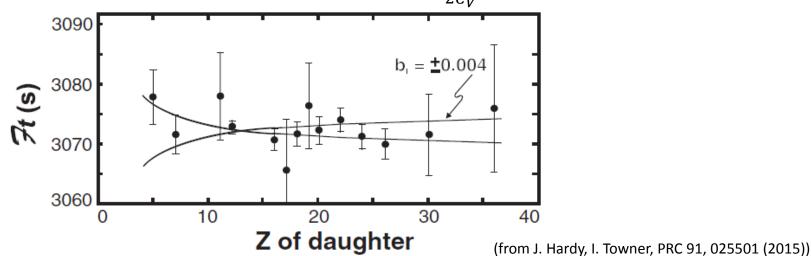
Traditional low energy effective Lagrangian:


$$\begin{aligned} \mathcal{L}_{eff} &= - \begin{bmatrix} C_V \bar{e} \gamma_\mu \nu_e \cdot \bar{p} \gamma^\mu n - C_V' \bar{e} \gamma_\mu \gamma_5 \nu_e \cdot \bar{p} \gamma^\mu n \\ &- (C_A \bar{e} \gamma_\mu \gamma_5 \nu_e \cdot \bar{p} \gamma^\mu \gamma_5 n - C_A' \bar{e} \gamma_\mu \nu_e \cdot \bar{p} \gamma^\mu \gamma_5 n) \\ &+ C_S \bar{e} \nu_e \cdot \bar{p} n - C_S' \bar{e} \gamma_5 \nu_e \cdot \bar{p} n \\ &+ C_T \bar{e} \sigma_{\mu\nu} \nu_e \cdot \bar{p} \sigma^{\mu\nu} n - C_T' \bar{e} \sigma_{\mu\nu} \gamma_5 \nu_e \cdot \bar{p} \sigma^{\mu\nu} n \\ &+ C_P \cdot \bar{e} \gamma_5 \nu_e \cdot \bar{p} \gamma_5 n - C_P' \cdot \bar{e} \nu_e \cdot \bar{p} \gamma_5 n \\ &+ \text{h.c.} \end{bmatrix} \end{aligned}$$

- In SM, $C_V = C'_V = 1$, $C_A = C'_A = \lambda$, all others zero.
- The Fierz term is unique in that it is the only term that is first-order sensitive to S,T

Decay rate
$$\propto \varrho(E) \left(1 + b \frac{m_e}{E}\right)$$

Search for effective scalar (S) and tensor (T) interaction


1. Low-Energy search for scalar current: Determine Fierz term $b_F = -(C_S + C'_S)/C_V$ in superallowed Fermi decays: J. Hardy, I. Towner find $\frac{C_S + C'_S}{2C_V} = 0.0014(21)$ (90% CL)

Improvements possible with measurements using light nuclei

Search for effective scalar (S) and tensor (T) interaction

1. Low-Energy search for scalar current: Determine Fierz term $b_F = -(C_S + C'_S)/C_V$ in superallowed Fermi decays: J. Hardy, I. Towner find $\frac{C_S + C'_S}{2C_V} = 0.0014(21)$ (90% CL)

Improvements possible with measurements using light nuclei

2. Using this, and combination of $\mathcal{F}t^{-1} \propto \left(1 + b_F \frac{\gamma m_e}{E}\right)$, $\tau_n^{-1} \propto (1 + 3\lambda^2) \left(1 + b_n \frac{m_e}{E}\right)$ with

$$b_n \propto \left[\frac{C_S + C'_S}{C_V} + 3\frac{C_T + C'_T}{C_A}\right]$$
, and beta symmetry $A = A_0 / \left(1 + b_n \frac{m_e}{E}\right)$ (for λ):
R.W. Pattie et al. get $\frac{C_T + C'_T}{2C_A} = -0.0007(27)$ (90% CL)

from R.W. Pattie Jr., PRC 88, 048501 (2013) & PRC 92, 069902(E) (2015)

SB 2016 update: $\frac{C_T + C'_T}{2C_A} = -0.0009(24)$ (90% CL) after G. Konrad, ArXiV:1007:3027 Resolution of neutron lifetime issue would give large improvement.

Effective field theory for beta decay at quark level

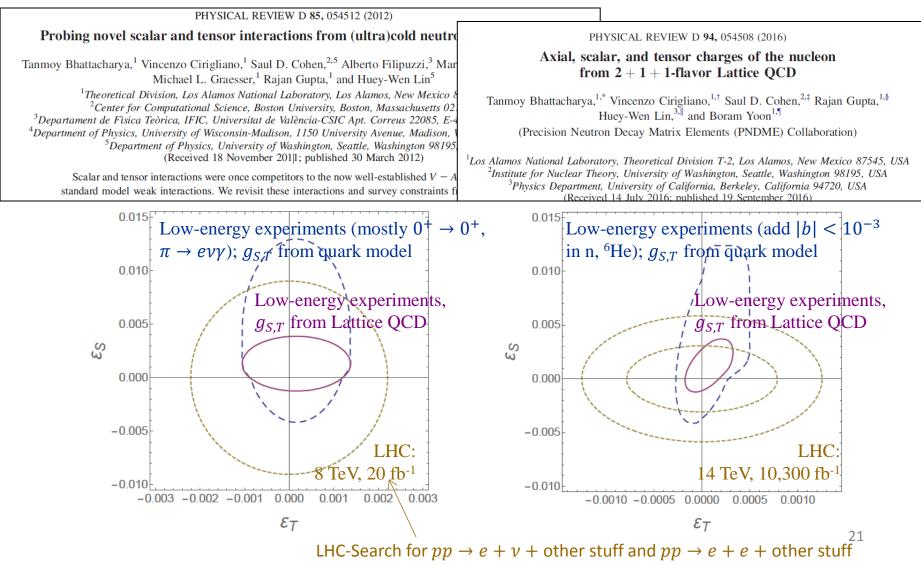
Effective low-energy Lagrangian:

$$\mathcal{L}_{eff} = -\frac{G_F V_{ud}}{\sqrt{2}} \begin{bmatrix} (1 + \epsilon_L) \cdot \bar{e} \gamma_\mu (1 - \gamma_5) v_e \cdot \bar{u} \gamma^\mu (1 - \gamma_5) d & \text{Unobservable,} \\ + \epsilon_R \cdot \bar{e} \gamma_\mu (1 - \gamma_5) v_e \cdot \bar{u} \gamma^\mu (1 + \gamma_5) d & \text{suppressed with} \\ + \epsilon_S \cdot \bar{e} (1 - \gamma_5) v_e \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d & \text{Unobservable, all} \\ + \epsilon_T \cdot \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) v_e \cdot \bar{u} \gamma_5 d & \text{Unobservable, all} \\ - \epsilon_P \cdot \bar{e} \gamma_\mu (1 - \gamma_5) v_e \cdot \bar{u} \gamma_5 d & \text{corr. coeff. only} \\ + \text{ terms with } \tilde{\epsilon} \text{ that involve righthanded } v_e & \text{sensitive in second} \\ + h.c. \end{bmatrix}$$

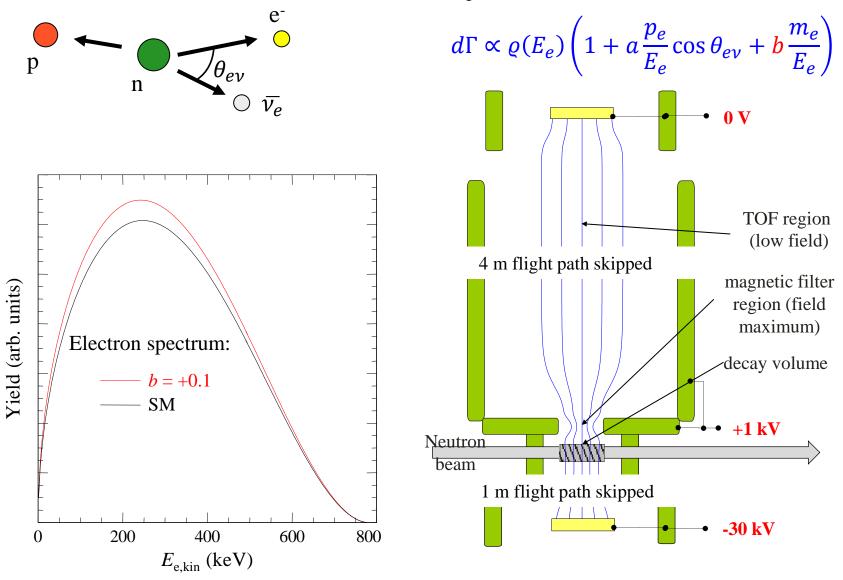
Connection with traditional coupling constants from nuclear and neutron physics:

$$\frac{C_V + C_V'}{2} = \frac{G_F V_{ud}}{\sqrt{2}} g_V (1 + \epsilon_L + \epsilon_R)$$

$$\frac{C_A + C_A'}{2} = -\frac{G_F V_{ud}}{\sqrt{2}} g_A (1 + \epsilon_L - \epsilon_R)$$

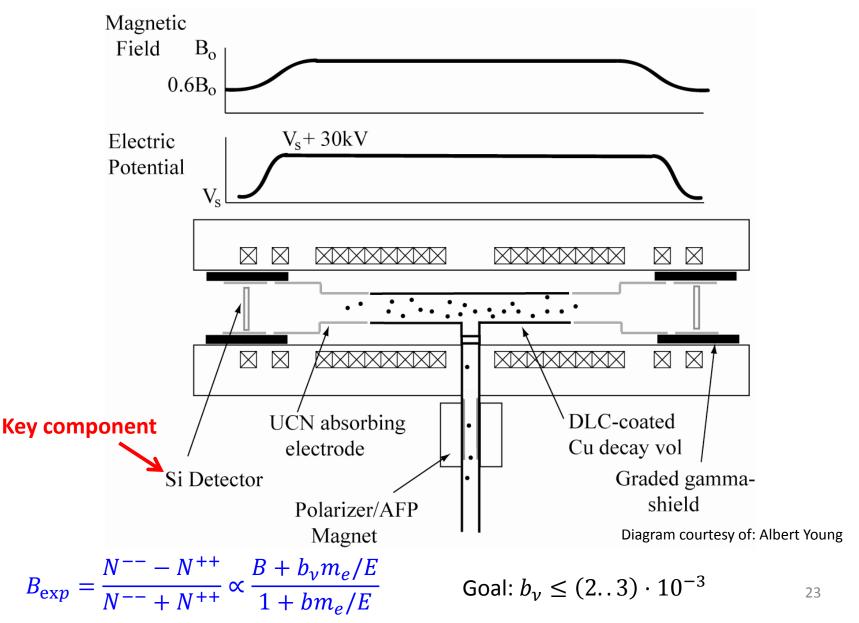

$$\frac{C_S + C_S'}{2} = \frac{G_F V_{ud}}{\sqrt{2}} g_S \epsilon_S$$

$$\frac{C_T + C_T'}{2} = \frac{G_F V_{ud}}{\sqrt{2}} 4g_T \epsilon_T$$


$$\frac{C_T + C_T'}{2} = \frac{G_F V_{ud}}{\sqrt{2}} 4g_T \epsilon_T$$

Scalar(S) and tensor(T) interactions in beta decay

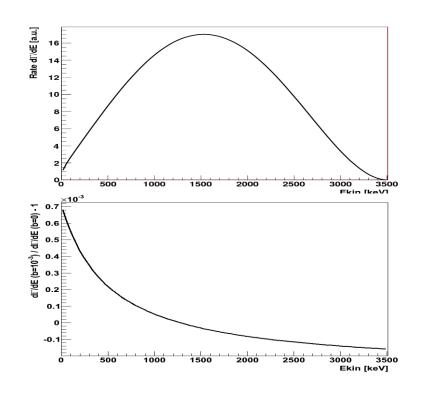
Other searches for Beyond Standard Model Physics: S,T interactions (fermions with "wrong" helicity), e.g. through W' bosons; weak magnetism; second class currents; ...



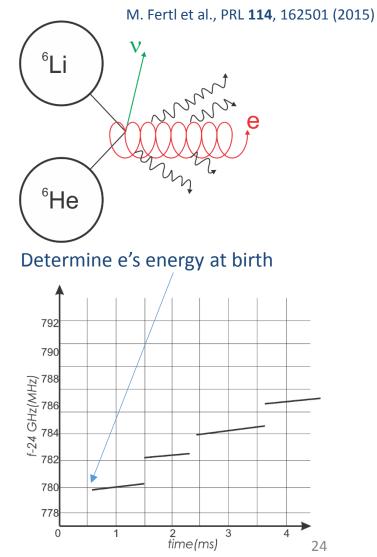
The determination of the Fierz Interference term b in neutron decay with Nab

Goal: $b_n \le 3 \cdot 10^{-3}$

The determination of the Fierz Interference term b_{ν} in neutron decay with UCNB @ LANL



Fierz interference term b from He-6 beta decay


M. Fertl¹, A. Garcia¹, M. Guigue⁴, P. Kammel¹, A. Leredde², P. Mueller², R.G.H. Robertson¹, G. Rybka¹, G. Savard², D. Stancil³, M. Sternberg¹, H.E. Swanson¹, B.A. Vandeevender⁴, A. Young³

¹University of Washington, ²Argonne National Lab, ³North Carolina State University, ⁴Pacific Northwest National Laboratory

Goal: measure "little b" to 10^{-3} or better in ⁶He Statistics not a problem.

Use cyclotron radiation spectroscopy. Similar to Project 8 setup for tritium decay.

Summary and outlook

- Measurement of coupling constants in weak interaction allows test of the unitarity of the CKM matrix is most precisely done in the first row; some tension (again). Substantial improvement of precision not in sight.
- Measurement of Fierz term in beta decay allows the search for new physics that manifests itself at low energies as scalar and/or tensor interaction. This is competitive to searches at LHC, and experimental improvements are likely in the near future.
- The latter needs form factors (g_s and g_T) to connect nuclear and quark-level description. Recent work in theory (Lattice QCD) determined them at the 10% level. Experimental verification desirable.

Summary and outlook

- Measurement of coupling constants in weak interaction allows test of the unitarity of the CKM matrix is most precisely done in the first row; some tension (again). Substantial improvement of precision not in sight.
- Measurement of Fierz term in beta decay allows the search for new physics that manifests itself at low energies as scalar and/or tensor interaction. This is competitive to searches at LHC, and experimental improvements are likely in the near future.
- The latter needs form factors (g_s and g_T) to connect nuclear and quark-level description. Recent work in theory (Lattice QCD) determined them at the 10% level. Experimental verification desirable.

Thank you for your attention!