

THE TENSOR AND THE SCALAR CHARGES OF THE NUCLEON: IMPACT ON NEW PHYSICS

AURORE COURTOY

How can hadronic physics help BSM search?

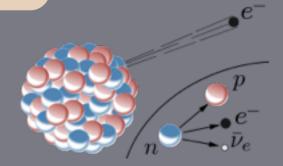
Hadronic observables extraction

Impact on β-decay observables

partially based on Phys.Rev.Lett. 115 (2015) 162001

- **★** Direct search
 - **★ Large-x PDF**
 - \star α_s
- **★** Indirect search
 - ***** Parity Violating DIS
 - ***** Beyond V-A interactions
 - *

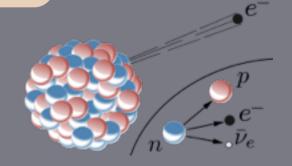
QCD FOR BSM


- **★** Direct search
 - **★ Large-x PDF**
 - \star α_s
- **★** Indirect search
 - ***** Parity Violating DIS
 - ***** Beyond V-A interactions

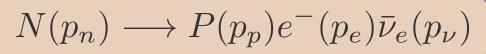
HERE

*

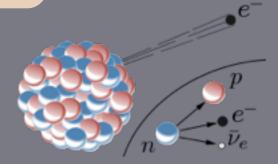
QCD FOR BSM


 $N(p_n) \longrightarrow P(p_p)e^-(p_e)\bar{\nu}_e(p_\nu)$

BETA DECAY IN SM


$$N(p_n) \longrightarrow P(p_p)e^-(p_e)\bar{\nu}_e(p_\nu)$$

can be sketched as



"
$$\left[d \xrightarrow{\Gamma} u e^{-}(p_e)\bar{\nu}_e(p_{\nu})\right] \otimes \left[\langle P|\bar{u} \Gamma d|N\rangle\right]$$
"

BETA DECAY IN SM

$$(d \xrightarrow{\Gamma} u e^{-}(p_e)\bar{\nu}_e(p_{\nu}) \otimes [\langle P|\bar{u} \Gamma d|N\rangle] ,$$

Electroweak: V-A

Proton structure: gv & gA

$$M = -i\frac{G_F}{\sqrt{2}} \,\bar{u}_e \gamma_\mu \left(1 - \gamma^5\right) v_\nu \left\langle p | \bar{u} \gamma^\mu \left(1 - \gamma^5\right) d | n \right\rangle \cos \theta_c$$

BETA DECAY IN SM

Neutron decay rate parameterized:

$$d^{3}\Gamma = \frac{1}{(2\pi)^{5}} \frac{G_{F}^{2} |V_{ud}|^{2}}{2} p_{e} E_{e} (E_{0} - E_{e})^{2} dE_{e} d\Omega_{e} d\Omega_{\nu}$$

$$\times \xi \left[1 + a \frac{\mathbf{p}_{e} \cdot \mathbf{p}_{\nu}}{E_{e} E_{\nu}} + b \frac{m_{e}}{E_{e}} + \mathbf{s}_{n} \left(A \frac{\mathbf{p}_{e}}{E_{e}} + B \frac{\mathbf{p}_{\nu}}{E_{\nu}} + \dots \right) \right]$$

- * Effective Hamiltonian for β-decay
 - Lorentz low energy constants C_{S,P,V,A,T}
 - SM 1 param $\lambda = -C_A/C_V$
 - $a(\lambda)$, $A(\lambda)$, $B(\lambda)$

Talk by Stefan Baessler

BETA DECAY OBSERVABLES

Neutron decay rate parameterized:

$$d^{3}\Gamma = \frac{1}{(2\pi)^{5}} \frac{G_{F}^{2} |V_{ud}|^{2}}{2} p_{e} E_{e} (E_{0} - E_{e})^{2} dE_{e} d\Omega_{e} d\Omega_{\nu}$$

$$\times \xi \left[1 + a \frac{\mathbf{p}_{e} \cdot \mathbf{p}_{\nu}}{E_{e} E_{\nu}} + b \frac{m_{e}}{E_{e}} + \mathbf{s}_{n} \left(A \frac{\mathbf{p}_{e}}{E_{e}} + B \frac{\mathbf{p}_{\nu}}{E_{\nu}} + \dots \right) \right]$$

- * Effective Hamiltonian for β-decay
 - Lorentz low energy constants C_{S,P,V,A,T}
 - SM 1param $\lambda = -C_A/C_V$
 - $a(\lambda), A(\lambda), B(\lambda)$

Talk by Stefan Baessler

- **★ b=0** in **SM**
- $\star \quad B \subset b_{\nu} = 0 \text{ in SM}$

sensitivity of neutron beta decay to new physics

BETA DECAY OBSERVABLES

Neutron decay rate parameterized:

$$d^{3}\Gamma = \frac{1}{(2\pi)^{5}} \frac{G_{F}^{2} |V_{ud}|^{2}}{2} p_{e} E_{e} (E_{0} - E_{e})^{2} dE_{e} d\Omega_{e} d\Omega_{\nu}$$

$$\times \xi \left[1 + a \frac{\mathbf{p}_{e} \cdot \mathbf{p}_{\nu}}{E_{e} E_{\nu}} + b \frac{m_{e}}{E_{e}} + \mathbf{s}_{n} \left(A \frac{\mathbf{p}_{e}}{E_{e}} + B \frac{\mathbf{p}_{\nu}}{E_{\nu}} + \dots \right) \right]$$

- **★** b=0 in SM
- ★ $B \subset b_{\nu} = 0$ in SM

- sensitivity of neutron beta decay to new physics

$$b = \frac{2\sqrt{1 - \alpha^2}}{1 + 3\lambda^2} \left[\text{Re}\left(\frac{C_S}{C_V}\right) + 3\lambda^2 \text{Re}\left(\frac{C_T}{C_A}\right) \right]$$

- b sensitive to scalar and tensor LEC
- same for b_v

BETA DECAY OBSERVABLES

★ Extract LEC

$$C_{V} = C_{V}^{\text{SM}} + \delta C_{V}$$

$$C'_{V} = C_{V}^{\text{SM}} + \delta C'_{V}$$

$$C_{A} = C_{A}^{\text{SM}} + \delta C_{A}$$

$$C'_{A} = C_{A}^{\text{SM}} + \delta C'_{A}$$

$$C_{S} = \delta C_{S}$$

$$C'_{S} = \delta C'_{S}$$

$$C_{T} = \delta C_{T}$$

$$C'_{T} = \delta C'_{T}$$

NEW PHYSICS IN δ

$$C_V^{\mathrm{SM}} = g_V$$
 $C_A^{\mathrm{SM}} = -g_A$ λo pretty well known

* from various processes

- **★** decay rate for super allowed $0^+ \rightarrow 0^+$
- * decay rate for beta decay (total, angular correlation in unpolarized & polarized parts)
- * radiative pion decay

Talk by Stefan Baessler

SCALAR & TENSOR INTERACTIONS

* Extract LEC

$$C_{V} = C_{V}^{\text{SM}} + \delta C_{V}$$

$$C'_{V} = C_{V}^{\text{SM}} + \delta C'_{V}$$

$$C_{A} = C_{A}^{\text{SM}} + \delta C_{A}$$

$$C'_{A} = C_{A}^{\text{SM}} + \delta C'_{A}$$

$$C_{S} = \delta C_{S}$$

$$C'_{S} = \delta C'_{S}$$

$$C_{T} = \delta C_{T}$$

$$C'_{T} = \delta C'_{T}$$

* from various processes

- **★** decay rate for super allowed $0^+ \rightarrow 0^+$
- ★ decay rate for beta decay (total, angular c
- * radiative pion decay

NEW PHYSICS IN δ

$$C_V^{\mathrm{SM}} = g_V \ C_A^{\mathrm{SM}} = -g_A$$
 λo pretty well known

Best constraints so far

$$\mathbf{C_S/C_V} = 0.0014(13)$$
 @1 σ

[Hardy et al., PRC91]

$$-0.0026 < {
m C_T/C_A} < 0.0024$$

@95%CL

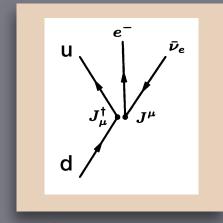
[Pattie et al., PRC88]

Talk by Stefan Baessler

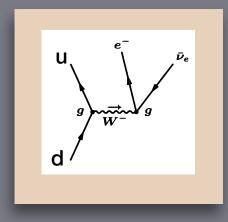
SCALAR & TENSOR INTERACTIONS

- in loops
- mediators of interaction
- •

Low energy

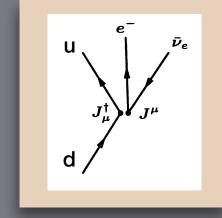

High energy

- Effective field theories for low energy
 - New (heavy) dof integrated out
- ***** Consider all Dirac bilinears for EW interactions
 - 1, γ_5 , $\gamma_{\mu}(1+\gamma_5)$, $\sigma_{\mu\nu}$
 - **Define** "Wilson coefficient" for new interaction


NEW FUNDAMENTAL INTERACTIONS

EFT AT THE QUARK LEVEL $d_j ightarrow u_i l^- \bar{\nu}_l$

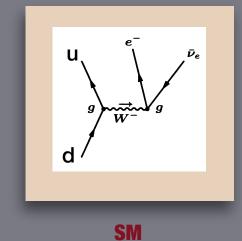
$$\mathcal{L}^{ ext{(eff)}} = \mathcal{L}_{ ext{SM}} + \sum_i rac{1}{\Lambda_i^2} \mathcal{O}_i$$


4-fermion interaction

SM

EFT AT THE QUARK LEVEL $d_j ightarrow u_i l^- \bar{\nu}_l$

$$\mathcal{L}^{ ext{(eff)}} = \mathcal{L}_{ ext{SM}} + \sum_i rac{1}{\Lambda_i^2} \mathcal{O}_i$$


4-fermion interaction

$$\mathcal{L}_{d_{j} \to u_{i}\ell^{-}\bar{\nu}_{\ell}} = \frac{-g^{2}}{2m_{W}^{2}} V_{ij} \Big[\big(1 + [v_{L}]_{\ell\ell ij} \big) \bar{\ell}_{L} \gamma_{\mu} \nu_{\ell L} \bar{u}_{L}^{i} \gamma^{\mu} d_{L}^{j} + [v_{R}]_{\ell\ell ij} \bar{\ell}_{L} \gamma_{\mu} \nu_{\ell L} \bar{u}_{R}^{i} \gamma^{\mu} d_{R}^{j} \\ + [s_{L}]_{\ell\ell ij} \bar{\ell}_{R} \nu_{\ell L} \bar{u}_{R}^{i} d_{L}^{j} + [s_{R}]_{\ell\ell ij} \bar{\ell}_{R} \nu_{\ell L} \bar{u}_{L}^{i} d_{R}^{j} \\ + [t_{L}]_{\ell\ell ij} \bar{\ell}_{R} \sigma_{\mu\nu} \nu_{\ell L} \bar{u}_{R}^{i} \sigma^{\mu\nu} d_{L}^{j} \Big] + \text{h.c.},$$

$$\mathbf{Scalars}$$

$$\mathbf{Tensor}$$

$$\mathbf{\epsilon_{S} \equiv \mathbf{s_{L} + \mathbf{s_{R}}}$$

BETA DECAY IN EFT

[Bhattarchaya et al., PRD85] [Cirigliano et al., NPB 830]

- Redefinition of "new" scale
 - \star effective coupling (rescaled) $\epsilon_{
 m i} \propto {
 m m_W^2}/{\Lambda_{
 m i}^2}$

where mw enters through
$${f G_F}={f g^2}/(4\sqrt{2}m_{f W}^2)$$

* but underlying mechanism not known

SCALE OF NEW PHYSICS

$$(d \xrightarrow{\Gamma} u e^{-}(p_e)\bar{\nu}_e(p_{\nu}) \otimes [\langle P|\bar{u}\Gamma d|N\rangle] ,$$

$$C_{\text{SM}} = \frac{G_F}{\sqrt{2}} V_{ud} \left(g_V - g_A \right)$$

$$C_{\rm S} = \frac{G_F}{\sqrt{2}} \, V_{ud} \, g_S \epsilon_S$$

$$C_{\rm T} = \frac{G_F}{\sqrt{2}} \, V_{ud} \, 4 \, g_T \epsilon_T$$

NEW BSM S & T INTERACTIONS

$$(c \left[d \xrightarrow{\Gamma} u e^{-}(p_e) \bar{\nu}_e(p_{\nu}) \right] \otimes \left[\langle P | \bar{u} \Gamma d | N \rangle \right] ,$$

$$C_{\text{SM}} = \frac{G_F}{\sqrt{2}} V_{ud} \left(g_V - g_A \right)$$

$$C_{\rm S} = \frac{G_F}{\sqrt{2}} \, V_{ud} \, g_S \epsilon_S$$

$$C_{\mathrm{T}} = \frac{G_F}{\sqrt{2}} \, V_{ud} \, 4 \, g_T \epsilon_T$$

NEW BSM S & T INTERACTIONS

New LEC factorized into hadronic contribution & new EW interaction

"
$$\left[d \xrightarrow{\Gamma} u e^{-}(p_e)\bar{\nu}_e(p_{\nu})\right] \otimes \left[\langle P|\bar{u} \Gamma d|N\rangle\right] "$$

$$C_{\text{SM}} = \frac{G_F}{\sqrt{2}} V_{ud} \left(g_V - g_A \right)$$

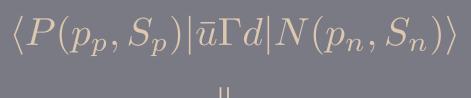
$$G_T$$
 $|g_S\epsilon_S|=0.0014\pm0.0013$ @16 $|g_T\epsilon_T|<6\cdot10^{-4}$ @95%CL

NEW BSM S & T INTERACTIONS

New LEC factorized into hadronic contribution & new EW interaction

"
$$\left[d \xrightarrow{\Gamma} u e^{-}(p_e)\bar{\nu}_e(p_{\nu})\right] \otimes \left[\langle P|\bar{u} \Gamma d|N\rangle\right]$$
"

$$C_{\text{SM}} = \frac{G_F}{\sqrt{2}} V_{ud} \left(g_V - g_A \right)$$


$$G_T$$
 $|g_S\epsilon_S|=0.0014\pm0.0013$ @15 $|g_T\epsilon_T|<6\cdot10^{-4}$ @95%CL

NEW BSM S & T INTERACTIONS

Precision with which the NEW COUPLINGS can be measured depend on the knowledge of hadronic charges

New LEC factorized into hadronic contribution & new EW interaction

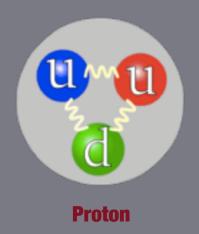
Neutron

nn

FORM FACTORS

$$\langle P(p_p, S_p) | \bar{u} \gamma_{\mu} d | N(p_n, S_n) \rangle = g_V(t) \ \bar{u}_P \gamma_{\mu} u_N + \mathcal{O}(\sqrt{t}/M)$$

$$\langle P(p_p, S_p) | \bar{u}\sigma_{\mu\nu} d | N(p_n, S_n) \rangle = g_T(t, Q^2) \ \bar{u}_P \sigma_{\mu\nu} u_N$$


Isovector vector FF

Isovector tensor FF

When $t \rightarrow 0$, g(0)≡charge

 $t=(p_n-p_p)^2$ Q² RGE scale

MATCHING AT HADRONIC LEVEL

Neutron

FORM FACTORS

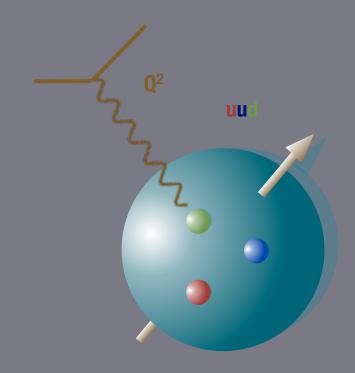
$$\langle P(p_p, S_p) | \bar{u} \gamma_\mu d | N(p_n, S_n) \rangle = g_V(t) \ \bar{u}_P \gamma_\mu u_N + \mathcal{O}(\sqrt{t}/M)$$

Isovector vector FF

$$\langle P(p_p, S_p) | \bar{u}\sigma_{\mu\nu} d | N(p_n, S_n) \rangle = g_T(t, Q^2) \ \bar{u}_P \sigma_{\mu\nu} u_N$$

karagetor tensor FF

When $t\rightarrow 0$, $g(0)\equiv charge$

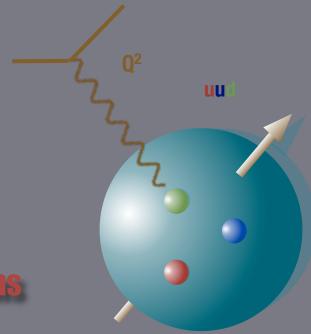

 $t = (p_n - p_p)^2$ Q² RGE scale

MATCHING AT HADRONIC LEVEL

- Nonlocal matrix element for proton structure
 - **★** Parton Distribution Functions
 - built from Lorentz symmetry from vectors at hand
 - defined in Bjorken scaling
 - nonperturbative objects
 - 1st principle related to "charges"

Fundamental charges for γ_{μ} & $\gamma_{\mu}\gamma_{5}$ only

Structural charges for the others

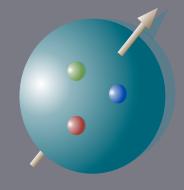

HADRONIC STRUCTURE

- Nonlocal matrix element for proton structure
 - Parton Distribution Functions
 - built from Lorentz symmetry from vectors at hand
 - defined in Bjorken scaling
 - nonperturbative objects
 - 1st principle related to "charges"

Fundamental charges for γ_{μ} & $\gamma_{\mu}\gamma_{5}$ only

Structural charges for the others

Scalar & tensor charge accessible through sum rules of Parton Distributions


HADRONIC STRUCTURE

Kinematics of the Bjorken scaling $Q^2 \rightarrow \infty$ $p.q \rightarrow \infty$ $Q^2/2p.q = x = finite$

To leading *twist*:

PDFs $oxtimes f_1^q(x)$, $g_1^q(x)$, $h_1^q(x)$ Dirac operator oxtimes Vector Axial-vector Tensor

Charges oxtimes GV, oxtimes GA, oxtimes GT

PDF AT LEADING TWIST

Lorentz structure
Discrete symmetries
Vectors at hand...

To leading *twist*:

 $\int_{-1}^{1} dx \, h_1^{u_V - d_V}(x) = g_T$

Kinematics of the Bjorken scaling $\begin{array}{c} Q^2 {\to} \infty \\ p.q {\to} \infty \\ Q^2/2p.q {=} x {=} finite \end{array}$

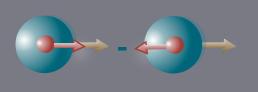
PDFs 🛛

Charges ⊠

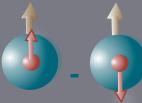
$$f_1^q(x)$$
,

$$g_1^q(x)$$
,

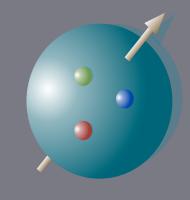
$$h_1^q(x)$$

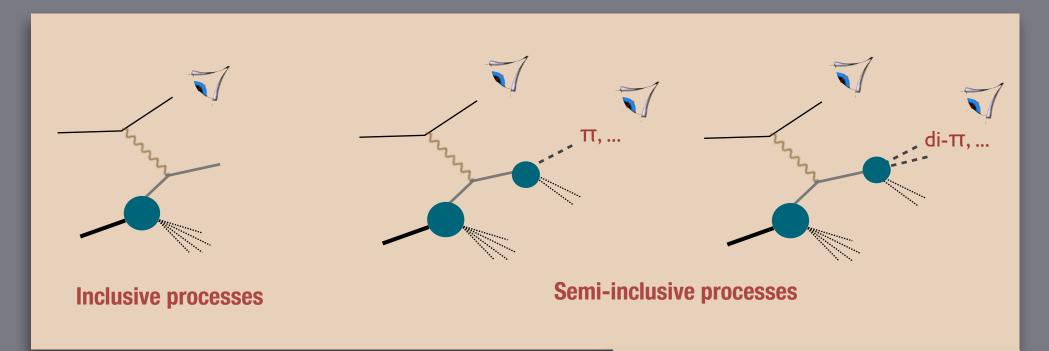

Dirac operator \boxtimes

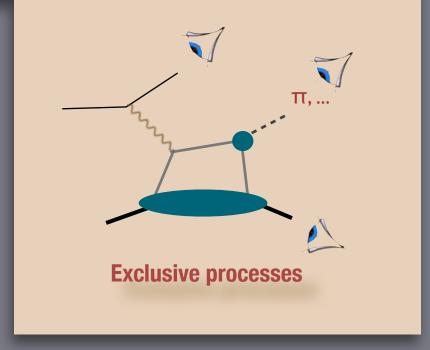
Vector


Axial-vector

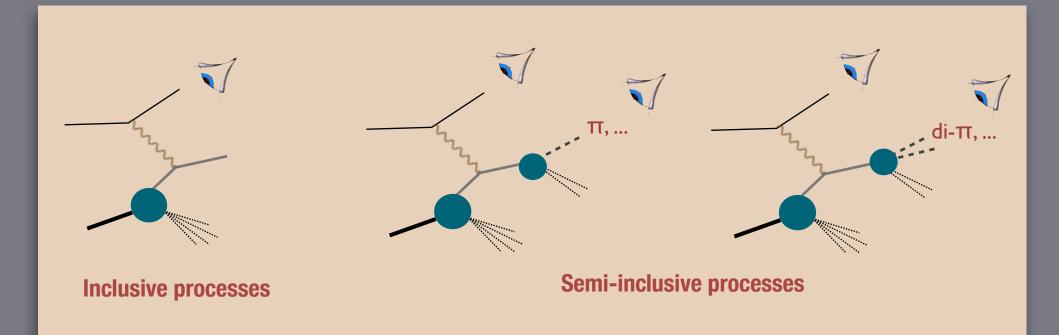
Tensor

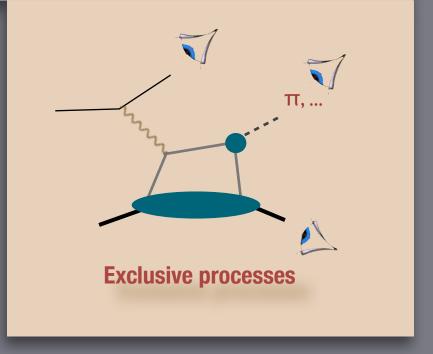


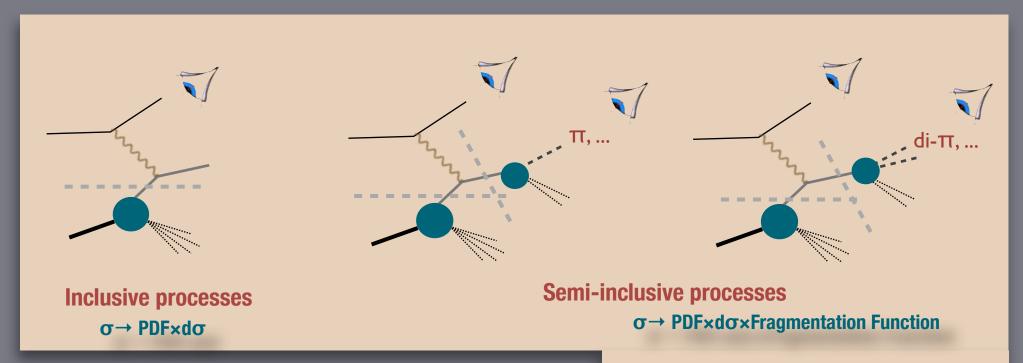

ga,

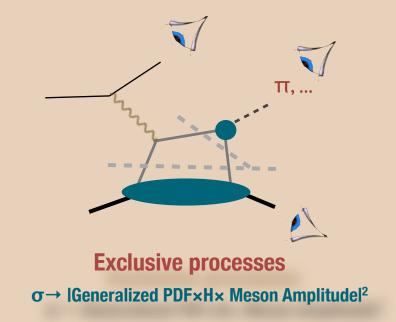


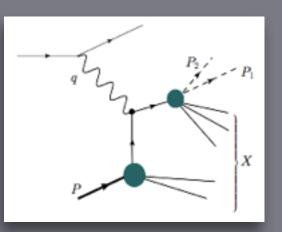
gt


PDF AT LEADING TWIST

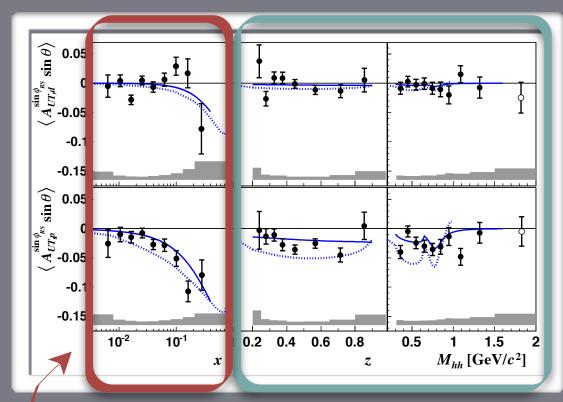



ACCESS TO DISTRIBUTION FUNCTIONS


DEFINITION AND FACTORIZATION


ACCESS TO DISTRIBUTION FUNCTIONS

DEFINITION AND FACTORIZATION


ACCESS TO DISTRIBUTION FUNCTIONS

TRIPTIC OF TARGET SPIN ASYMMETRY SIDIS PRODUCTION OF PION PAIRS @ COMPASS & HERMES

2002-4 Deuteron Data

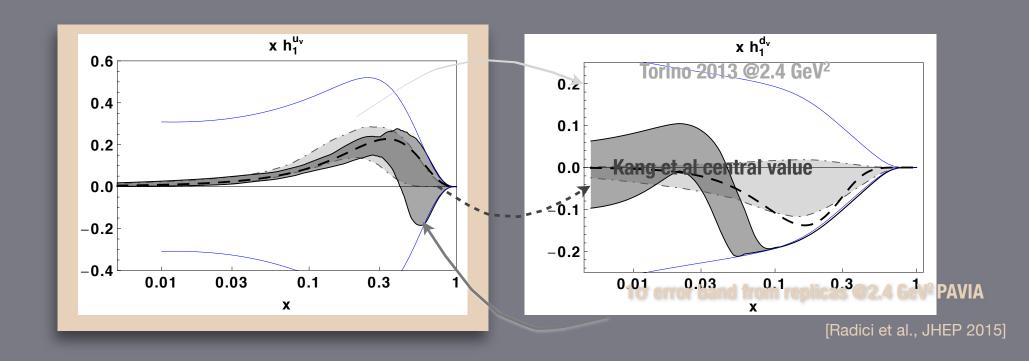
2007 Proton Data

x-dependence only from Transversity

[A.C., et al, PRL 2012, JHEP 2013, 2015]

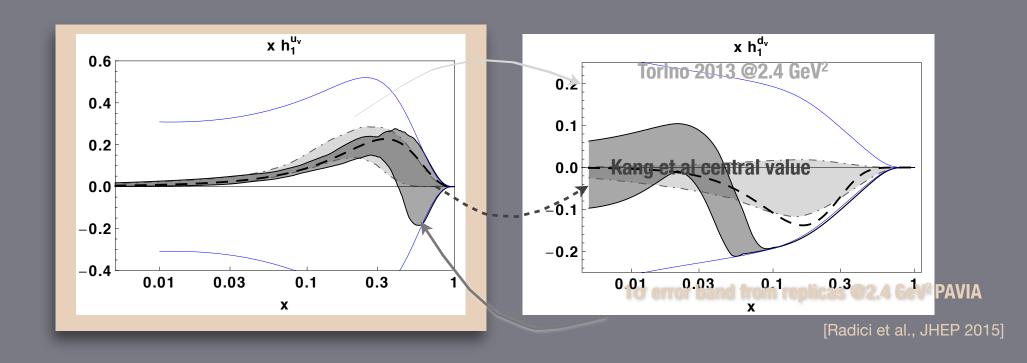
(z, M_h)-dpdence determined by DiFF from Belle

[A.C., Bacchetta, Radici, Bianconi, Phys.Rev. D85]


EXAMPLE OF DATA & EXTRACTION

* Semi-inclusive processes

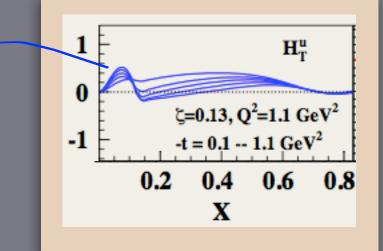
* $eN \rightarrow e \pi X$ Torino et al

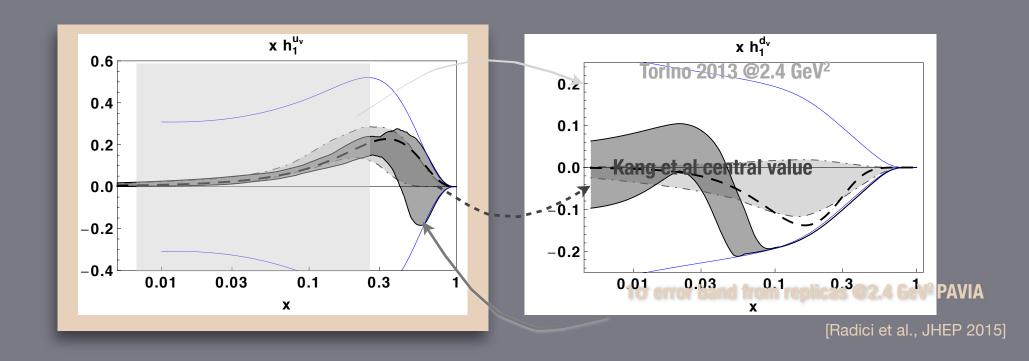

* $eN \rightarrow e(\pi\pi) X$ Pavia et al

★ Exclusive: $eP \rightarrow e \pi^0 P$ GGL

***** Semi-inclusive processes

- * $eN \rightarrow e \pi X$ Torino et al
- * $eN \rightarrow e(\pi\pi) X$ Pavia et al
- * Exclusive: $eP \rightarrow e \pi^0 P$ GGL



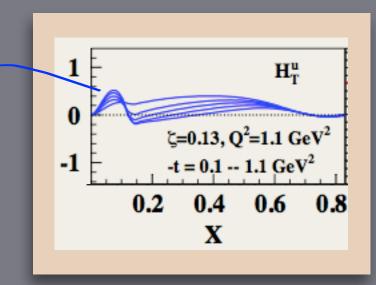

* Semi-inclusive processes

 \star eN→e π X

- **Torino et al**
- * eN→e (ππ) X
- Pavia et al
- **★** Exclusive: $eP \rightarrow e π^0 P$

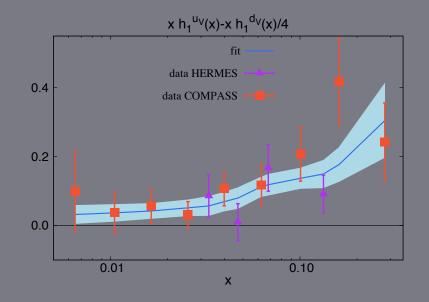
GGL

- * Semi-inclusive processes
 - \star eN→e π X

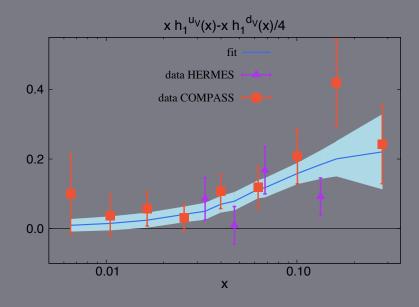

Torino et al

* eN→e (ππ) X

Pavia et al

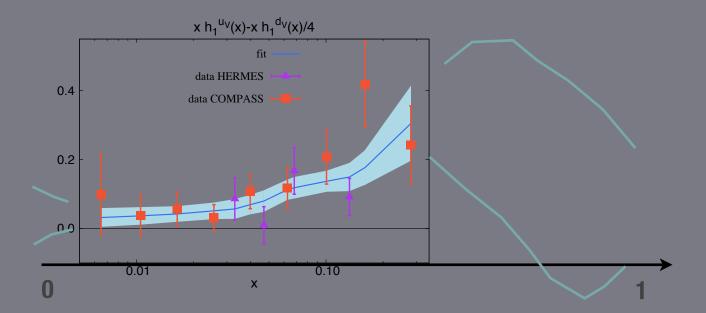

★ Exclusive: $eP \rightarrow e π^0 P$

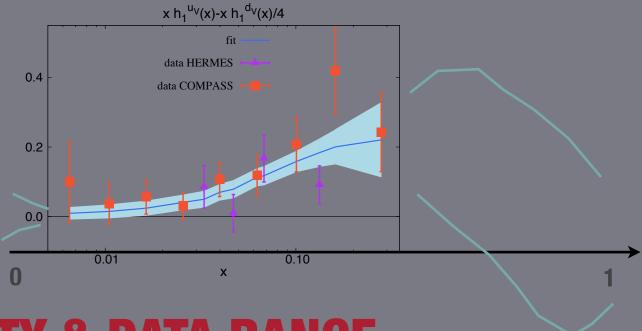
GGL



ROLE OF FUNCTIONAL FORM FOR FIT

flexible functional form

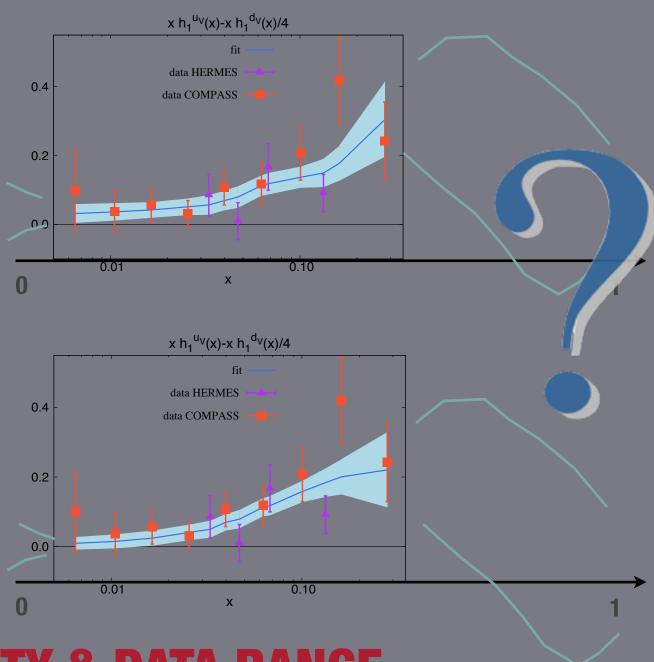

rigid functional form


UNCERTAINTY & DATA RANGE

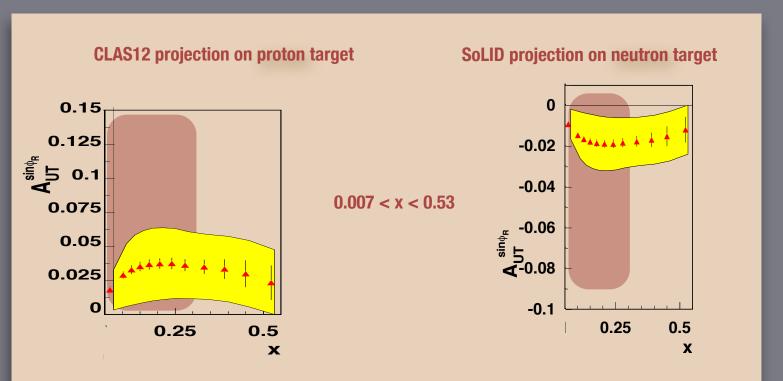
ROLE OF FUNCTIONAL FORM FOR FIT

flexible functional form

rigid functional form


UNCERTAINTY & DATA RANGE

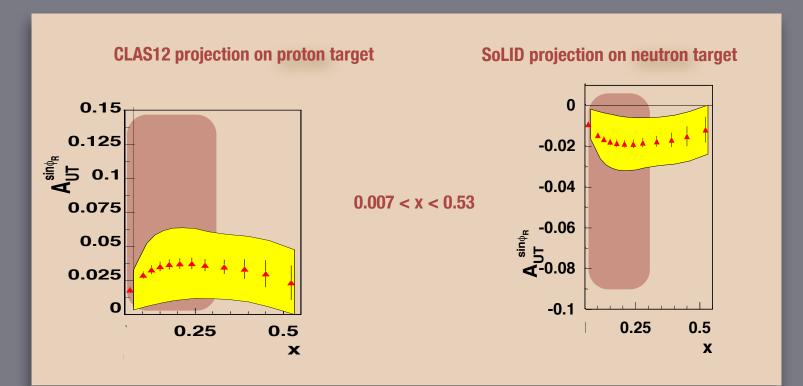
ROLE OF FUNCTIONAL FORM FOR FIT


flexible functional form

rigid functional form

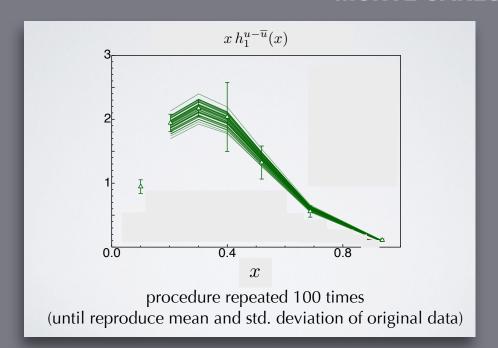
Increase of uncertainty

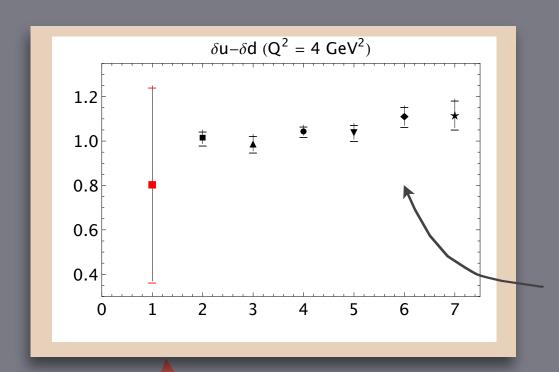
UNCERTAINTY & DATA RANGE



MORE DATA

SOLUTIONS

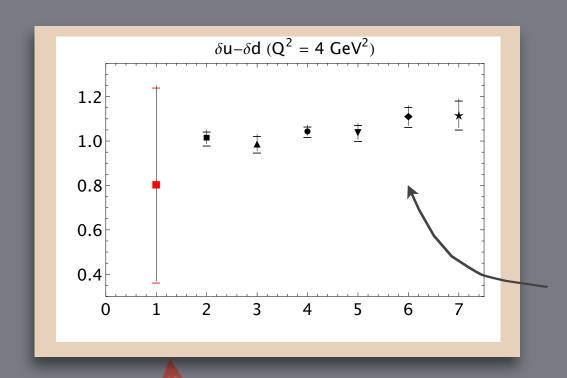



MORE DATA

MONTE CARLO LIKE FITTING

SOLUTIONS

Pavia 15 JHEP1505 (2015) 123


WITH MONTE CARLO **LIKE FITTING**

Various Lattice QCD results

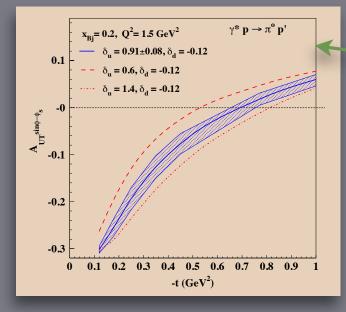
$$g_T = 0.81 \pm 0.44$$
 at $Q^2 = 4 \text{ GeV}^2$

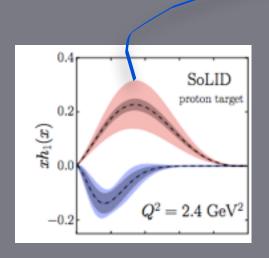
at
$$Q^2 = 4 \text{ GeV}^2$$

ISOVECTOR TENSOR CHARGE

WITH MONTE CARLO **LIKE FITTING**

Various Lattice QCD results

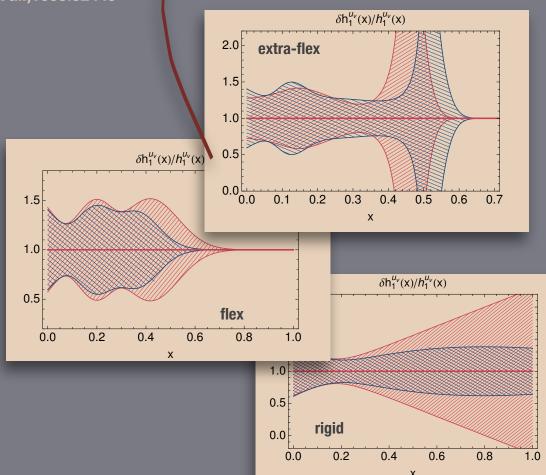

$$g_T = 0.81 \pm 0.44$$
 at $Q^2 = 4 \text{ GeV}^2$


at
$$Q^2 = 4 \text{ GeV}^2$$

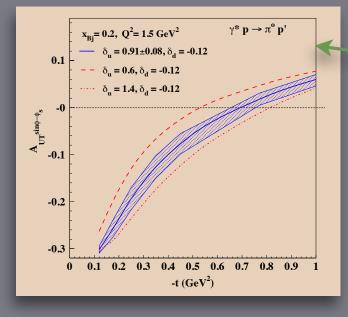
LATTICE RESULTS PRESENT TINY ERRORS W.R.T. HADRONIC EXTRACTIONS

HERE TESTING GROUND FOR LATTICE QCD CALCULATIONS

ISOVECTOR TENSOR CHARGE


GGL depends on new JLab data

Courtoy et al, PRL 115


Pavia depends on new JLab data

Torino depends on TMD evolution +new JLab data

Ye et al.,1609.02449

* GGL depends on new JLab data

Courtoy et al, PRL 115

0.6 0.7

 $\delta h_1^{u_v}(x)/h_1^{u_v}(x)$

Pavia depends on new JLab data

Torino depends on TMD evolution +new JLab data

2.0

1.5

1.0

0.5

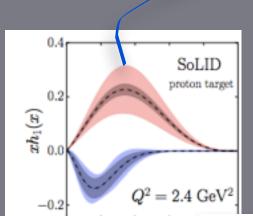
 $\delta h_1^{u_v}(x)/h_1^{u_v}(x)$

extra-flex

0.0 0.1 0.2 0.3 0.4 0.5

rigid

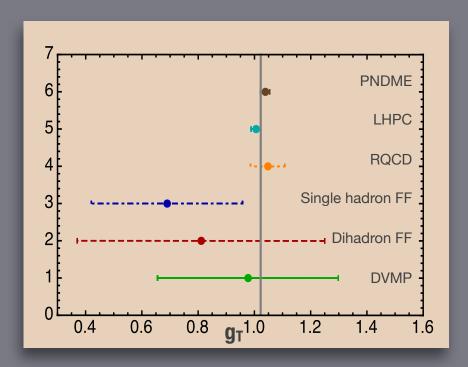
0.4


0.6

0.0

1.5

1.0


 $\delta g_T/g_T \left(\delta g_T/g_T\right)^{
m future}$ Transversities rigid 0.5990.518Pavia flexible 0.6960.639extra-flexible 1.007 0.865Pavia average 0.6740.767GGL 0.3290.115

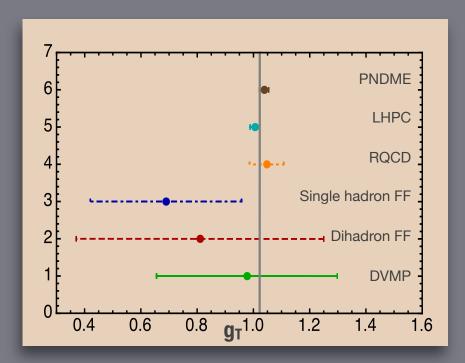
 $\delta h_1^{u_v}(x)/h_1^{u_v}(x)$ flex

1.0

0.5

FUTURE

New PNDME: $g_T = 0.987(51)(20)$ [PRD94] NME compatible results [1611.07452]

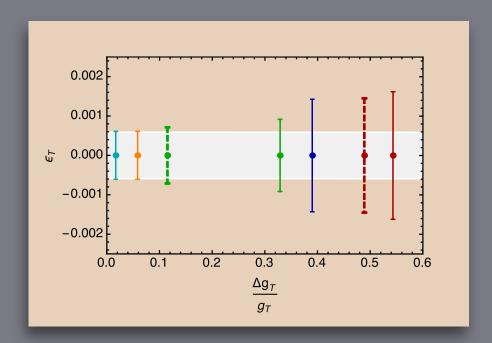

Ye et al.: $g_T = 0.64 \pm 0.021$ (Q²=2.4GeV²)

NOW WITH $g_T \pm \sigma_{gT}$

AND

$$|g_T \epsilon_T| < 6 \cdot 10^{-4}$$

TENSOR INTERACTION AS OF NOW


New PNDME: $g_T = 0.987(51)(20)$ [PRD94] NME compatible results [1611.07452]

Ye et al.: $g_T = 0.64 \pm 0.021$ (Q²=2.4GeV²)

NOW WITH $g_T \pm \sigma_{gT}$

 $|g_T \epsilon_T| < 6 \cdot 10^{-4}$

we find....

TENSOR INTERACTION AS OF NOW

★ HESSIAN PROPAGATION

- Usual error propagation

$$\sigma_f^2 = \sum_{a,b \in \mathrm{params}} rac{\partial f}{\partial a} \cos_{ab} rac{\partial f}{\partial b}$$
 with here $\Delta \chi^2 = 1$

★ MONTE CARLO APPROACH

- N replicas of data within xσ gaussian noise

$$f \pm \sigma_f = X\%\text{CL} \times f_i, \qquad i = 1, \dots N$$

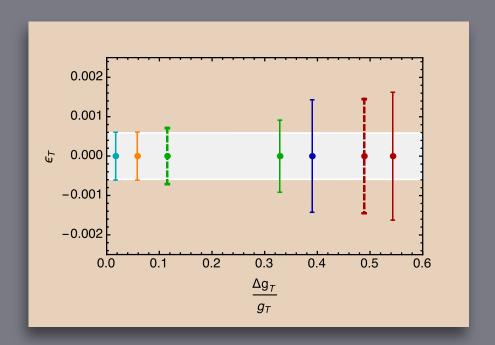
 $X = 68, 90, 95, \dots$

★ SCATTER PLOT

- 2+ D
- Random generation of allowed values within xo

★ RFIT METHOD

- Theoretical param anywhere within $[a-\sigma_a, a+\sigma_a]$ only
- other params as usual


$$-2 \ln \mathcal{L}_{\text{calc}}(\{y_{\text{calc}}\}) \equiv \begin{cases} 0, & \forall \ y_{\text{calc},i} \in [y_{\text{calc},i} \pm \delta y_{\text{calc},i}] \\ \infty, & \text{otherwise} \end{cases}$$

ERROR TREATMENT

NOW WITH $g_T \pm \sigma_{gT}$

$$|g_T \epsilon_T| < 6 \cdot 10^{-4}$$

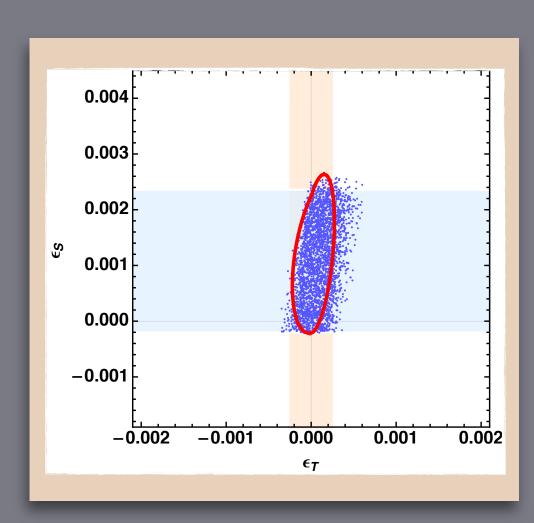
Rfit method:

Monte Carlo approach:

Pavia 2015 1D for $\langle \epsilon_T \rangle$ only

- present: $|\epsilon_T| < 0.00162$
- compared to Naviliat-Cuncic & González-Alonso: $|E_T| < 0.0013$

TENSOR INTERACTION AS OF NOW

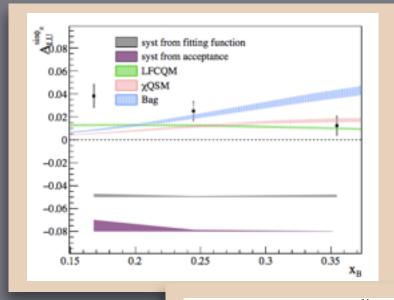

ε_T vs. ε_S plane from b_0 ⁺ and b

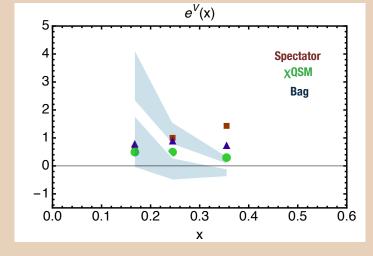
Warning: not a global fit

- with gs = 1.02 ± 0.11
 from González-Alonso and Martin Camalich, PRL 112
- with $g_T = 0.81 \pm 0.44$ from Pavia 15
- to be compared to $\langle g_T \rangle = 0.839(357)$ from GGL & Pavia 15

1σ errors

- Hessian in blue & pink
- Rfit method in red
- Scatter plot in blue



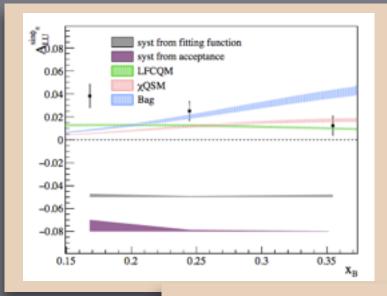

NEW SCALAR-TENSOR

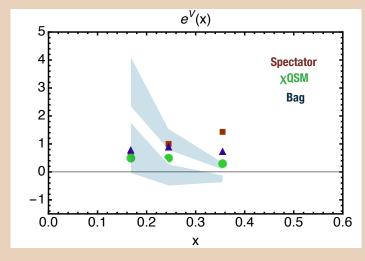
DIHADRON ASYMMETRY FOR UNPOLARIZED TARGET INVOLVING SCALAR PDF (subleading)

CLAS collaboration
S. Pisano et al., to be published
A.C. et al. 1405.7659

CAN WE DO THE SAME FOR SCALAR CHARGE?

DIHADRON ASYMMETRY FOR UNPOLARIZED TARGET INVOLVING SCALAR PDF (subleading)


CLAS collaboration


S. Pisano et al., to be published

A.C. et al. 1405.7659

SCALAR CHARGE related to e(x=0)

lots of things to think of...

CAN WE DO THE SAME FOR SCALAR CHARGE?

Neutron decay rate parameterized:

$$d^{3}\Gamma = \frac{1}{(2\pi)^{5}} \frac{G_{F}^{2} |V_{ud}|^{2}}{2} p_{e} E_{e} (E_{0} - E_{e})^{2} dE_{e} d\Omega_{e} d\Omega_{\nu}$$

$$\times \xi \left[1 + a \frac{\mathbf{p}_{e} \cdot \mathbf{p}_{\nu}}{E_{e} E_{\nu}} + b \frac{m_{e}}{E_{e}} + \mathbf{s}_{n} \left(A \frac{\mathbf{p}_{e}}{E_{e}} + B \frac{\mathbf{p}_{\nu}}{E_{\nu}} + \dots \right) \right]$$

- * Nab collaboration plans to measure b, term sensitive to C_S and C_T with precision of 10^-3
- * abBA collaboration (and others) plans to measure A and B angular coefficients for polarized neutrons, B is also sensitive to C_S and C_T with precision of 10^-3

FUTURE OF BETA DECAY OBSERVABLES

- *** Evaluation of bounds for BSM tensor interaction**
 - from hadronic matrix elements extracted from experiments
 - as opposed to lattice calculations
- * Hadronic uncertainties are still very large
- * However, competitive results expected from future hadronic experiments
- Complementarity +testing of lattice results

WORTH MENTIONING

HADRONIC MATRIX ELEMENTS RELATED TO OUTSTANDING QCD QUESTIONS STRUCTURE OF HADRONS—CONFINEMENT, CHIRAL SYMMETRY,...

CONCLUSIONS