3DPDF: Future Perspectives

Harut Avakian
Pasquale Di Nezza

Collectivity in small systems

The ridge in $\mathrm{A}+\mathrm{A}$ collisions

The ridge in $A+A$ collisions

Not in pp (low multiplicity) neither in pPb (low multiplicity)

(d) $\mathrm{N}>110,1.0 \mathrm{GeV} / \mathrm{c}<\mathrm{p}_{\mathrm{T}}<3.0 \mathrm{GeV} / \mathrm{c}$

The discovery

(d) $N>110.1 .0 \mathrm{GeV} / \mathrm{c}<p_{T}<3.0 \mathrm{GeV} / \mathrm{c}$

$1<\mathrm{p}_{\mathrm{T}}<3 \mathrm{GeV} / \mathrm{c}$
(b)

Distinct long range correlation in η collimated around $\Delta \Phi \approx 0$

Similar for pPb (high mult), pp (high mult) and PbPb (peripheral) Hydrodynamic flow in pp and pPb collisions?

The discovery

(d) $N>110.1 .0 \mathrm{GeV} / \mathrm{c}<\mathrm{p}_{\mathrm{T}}<3.0 \mathrm{GeV} / \mathrm{c}$

CMS pPb $\sqrt{s_{\text {NN }}}=5.02 \mathrm{TeV}$, $\mathrm{N}_{\mathrm{trk}}^{\text {ofline }} \geq 110$
$1<\mathrm{p}_{\mathrm{T}}<3 \mathrm{GeV} / \mathrm{c}$
(b)
arXiv:1210.5482, PLB

Why sometimes the particles fly in sync?
"The LHC may be uncovering a new deep internal structure of the initial protons ... at these higher energies, one is taking a snapshot of the proton with higher spatial and time resolution than ever before"

Frank Wilczek
ed around $\Delta \Phi \approx 0$

airicial
Hydrodynamic flow in pp and pPb collisions?

The discc

Why sometimes the particles fly in sync:

"The LHC may be uncovering a new de internal structure of the initial protons these higher energies, one is taking a snapshot of the proton with higher spati time resolution than ever before"

Frank

Hydrodynamic flow in pp and pPb

A fixed target @ LHC

- High Luminosity;
- Access to high-x domain: gluon, antiquark and heavyquark content in the nucleon (e.g. particles BSM are at high-x) and nucleus;
- Variety of atomic mass of the target (from H to Xe);
- Polarization of the target \rightarrow spin physics program at the LHC (dynamics and spin of gluons in (un)polarized nucleons);
- Heavy-ion collisions towards large rapidities;
- Parasitic data acquisition wrt collider mode.

Kinematics for a fixed target at LHC

- $p+p$ or $p+A$ with a 7 TeV p on a fixed target

$$
\begin{aligned}
& \sqrt{s}=\sqrt{2 m_{N} E_{p}} \approx 115 \mathrm{GeV} \\
& y_{\text {CMS }}=0 \rightarrow y_{\text {Lab }}=4.8
\end{aligned}
$$

- A+A collisions with a 2.76 TeV Pb beam

$$
\begin{aligned}
& \sqrt{s} \approx 72 \mathrm{GeV} \\
& y_{\text {CMS }}=0 \rightarrow y_{\text {Lab }}=4.3
\end{aligned}
$$

Fixed target experiment: option I Beam extraction using a bent crystal

standard collimation

crystal-based collimation (ideally)

absorber

H8 beam line (UA9 experiment @ SPS), 15/10/2014

Direct view of the channeled beam

S. Montesano, W. Scandale, Joint LUA9-AFTER meeting, Nov. 2013

- AFTER@LHC: A Fixed-Target ExpeRiment for hadron, heavy ions and spin-physics at the LHC

The LHCb detector

- Single arm spectrometer in the forward region
- Fully instrumented in its angular acceptance ($2<\boldsymbol{\eta}<5$)

VELO also provides backward coverage: - $-3.5<\eta<-1.5$
Designed initially for b-physics but general purpose detector (fixed target, heavy-ion, EW, BSM)

HERMES targe†

HERMES + LHCb

Displaced target ($\sim 11 \mathrm{mt}$), simultaneous

$$
2<\eta<5
$$

HERMES-type polarized target

LHCb - like acceptance and performance
microvertexing, particle ID, μ ID, electromagnetic and hadonic cal.

The Fixed Target data taking (SMOG)

\rightarrow SMOG: System for Measuring Overlap with Gas:

- Main use so far for precise luminosity determination
- Low density noble gas injected in the VELO, in the interaction region
- Only local temporary degradation of LHC vacuum

pNe pilot run at $\sqrt{ } \mathrm{s}_{\mathrm{NN}}=87 \mathrm{GeV}(2012) \sim 30 \mathrm{~min}$
\square PbNe pilot run at $\mathrm{Vs}_{\mathrm{NN}}=54 \mathrm{GeV}(2013) \sim 30 \mathrm{~min}$
p pNe run at $\mathrm{Vs}_{\mathrm{NN}}=110 \mathrm{GeV}(2015) \sim 12 \mathrm{~h}$
- pHe run at $\sqrt{ } \mathrm{s}_{\mathrm{NN}}=110 \mathrm{GeV}(2015) \sim 8 \mathrm{~h}$
] pAr run at $\mathrm{Vs}_{\mathrm{S}_{\mathrm{NN}}}=110 \mathrm{GeV}(2015) \sim 3$ days
- pAr run at $\sqrt{\mathrm{s}_{\mathrm{NN}}}=69 \mathrm{GeV}(2015) \sim$ few hours
- PbAr run at $\mathrm{Vs}_{\mathrm{NN}}=69 \mathrm{GeV}(2015) \sim 1.5$ week
pHe run at $\mathrm{Vs}_{\mathrm{NN}}=110 \mathrm{GeV}(2016) \sim 2$ days

Preferred target Gas

	He	Ne	Ar	Kr	Xe
\mathbf{A}	4	20	40	84	131

Results from p-Ne collisions

p-Ne collisions at $\sqrt{ } \mathrm{s}_{\mathrm{NN}}=87 \mathrm{GeV}$, about 30 min of data taking (2012)
LHCb-CONF-2012-034

Results from Pb-Ne and p-Ne collisions

- Pb-Ne collisions at $\sqrt{ } \mathrm{s}_{\mathrm{NN}}=54 \mathrm{GeV}$, about 30 min of data taking (2013)
https://twiki.cern.ch/twiki/bin/viewauth/LHCbPhysics/LHCb2015PublicityPlots\#SMOG_plots

[p-Ne collisions at $\sqrt{ } \mathrm{s}_{\mathrm{NN}}=110 \mathrm{GeV}$, about 12h of data taking (2015)

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015

The (hermes) storage cell

Material: $\quad 75 \mu \mathrm{~m}$ Al with Drifilm coating
Size: length: $\quad 400 \mathrm{~mm}$, elliptical cross section ($21 \mathrm{~mm} \times 8.9 \mathrm{~mm}$)
Temperature: 100 K (variable $35 \mathrm{~K}-300 \mathrm{~K}$)

LHC beams

1б-radius at IP (full energy):

- Negligible compared with the cell radius (>5 mm)

Safety radius at injection (450 GeV for p): $>25 \mathrm{~mm}$

- "Openable" cell required
p and Pb beams intensities @ LHC
- Protons: $\mathrm{I}_{\mathrm{p}}=3.63 \cdot 10^{18} \mathrm{p} / \mathrm{s} @ 7 \mathrm{TeV}$
- Lead: $\quad \mathrm{I}_{\mathrm{Pb}}=4.64 \cdot 10^{14} \mathrm{~Pb} / \mathrm{s} @ 2.76 \mathrm{TeV} / \mathrm{u}$
\rightarrow instantaneous luminosities

$$
L=N_{b} \cdot \nu \cdot \rho \cdot L
$$

* numerical values:
\square number of beam particles $N_{b}(p)=3.2 \times 10^{14}$ and $N_{b}(P b)=4.1 \times 10^{10}$
\square LHC revolution frequency $\nu=11 \mathrm{kHz}$
\square target density $\rho=10^{-6}$ mbar
\square usable target lengths $L=80 \mathrm{~cm}$

$$
\text { leading to: } \quad L(p A) \approx 8 \frac{1}{\mu b \cdot \mathrm{~s}} \quad \text { and } \quad L(P b A) \approx 1 \frac{1}{m b \cdot \mathrm{~s}}
$$

Beam half-life: $\approx 10 \mathrm{~h}$

- Parasitic operation requires small reduction of half-life (< 10%)

Openable storage cell development in Ferrara (Italy)

(Storage cell for 2 GeV p/d beam at COSY FZ-Juelich)

The future is near

Brainstorming on future fixed targets in LHCb
W 21 Dec 2016, 10:00 \rightarrow 13:00 Europe/Zurich

- Vidyo

P.D.N.
M.Ferro Luzzi
G.Graziani
J.P. Lansberg
P.Lenisa
L.M. Massacrier
A.Nass
E.Steffens

Workshop on LHCb Heavy lon and Fixed Target physics

9-10 January 2017
CERN
Europe/Zurich timezone

Thank you for contributing to this stimulating meeting ... first stone of the bridge!

