Workshop "3D Parton Distributions: path to the LHC", Nov. 30, 2016, Frascati, Italy

Spin physics at LHC

Marc Schlegel Institute for Theoretical Physics University of Tübingen

LHC proton beams are unpolarized
→ no spin in the *initial* states (Exception: AFTER@LHC)

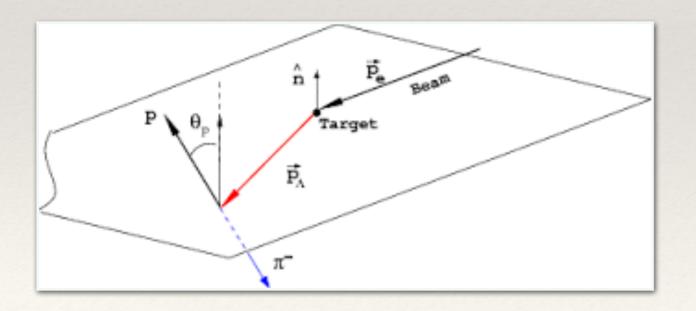
LHC proton beams are unpolarized
→ no spin in the *initial* states (Exception: AFTER@LHC)

"Internal" spin of quarks, gluons, resonances, ... → angular / azimuthal modulations

→ e.g., linear gluon polarization (talks by Boer, Pisano, ...)

LHC proton beams are unpolarized
→ no spin in the *initial* states (Exception: AFTER@LHC)

"Internal" spin of quarks, gluons, resonances, …
→ angular / azimuthal modulations
→ e.g., linear gluon polarization (talks by Boer, Pisano, …)


"External" spin of particles in the *final* state \rightarrow decay products of the particle, e.g., J/ ψ , Λ_s -hyperon ...

LHC proton beams are unpolarized
→ no spin in the *initial* states (Exception: AFTER@LHC)

"Internal" spin of quarks, gluons, resonances, …
→ angular / azimuthal modulations
→ e.g., linear gluon polarization (talks by Boer, Pisano, …)

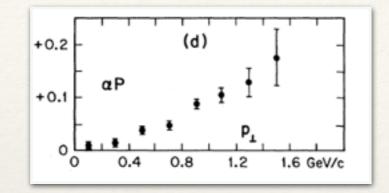
"External" spin of particles in the *final* state \rightarrow decay products of the particle, e.g., J/ ψ , Λ_s -hyperon ...

<u>Measurement of Λ -spin through decay $\Lambda \longrightarrow p\pi^{-}$ </u>

Proton preferentially emitted along Λ -spin In Λ rest frame: pol. decay distribution

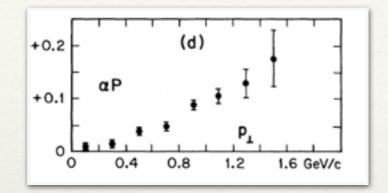
$$\left(\frac{dN}{d\Omega_p}\right)_{\rm pol} = \left(\frac{dN}{d\Omega_p}\right)_{\rm unpol} \left(1 + \alpha \, P_n^{\Lambda} \, \cos(\theta_p)\right)$$

P^A: Transverse Lambda Polarization


One of the first transverse spin effects at Fermilab (1976): $p+Be\longrightarrow \Lambda^0+X$ and many more follow-up measurements with 300 - 800 GeV proton beams (E799)

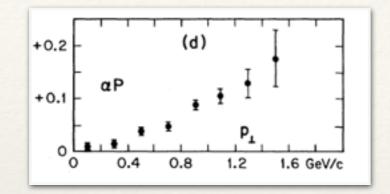
One of the first transverse spin effects at Fermilab (1976): $p+Be\longrightarrow \Lambda^0+X$ and many more follow-up measurements with 300 - 800 GeV proton beams (E799)

 $\Lambda \ \mbox{polarization was found} \\ to \ \mbox{be sizeable!}$


One of the first transverse spin effects at Fermilab (1976): $p+Be\longrightarrow \Lambda^0+X$ and many more follow-up measurements with 300 - 800 GeV proton beams (E799)

 $\Lambda \ \mbox{polarization was found} \\ to \ \mbox{be sizeable!}$

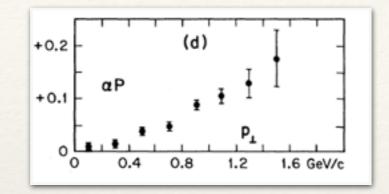
... and at CERN SPS (NA48 1998): p+N $\longrightarrow \Lambda^0+X$ (450 GeV)


One of the first transverse spin effects at Fermilab (1976): $p+Be\longrightarrow \Lambda^0+X$ and many more follow-up measurements with 300 - 800 GeV proton beams (E799)

 $\Lambda \ \mbox{polarization was found} \\ to \ \mbox{be sizeable!}$

... and at CERN SPS (NA48 1998): p+N $\longrightarrow \Lambda^0+X$ (450 GeV) ... and at HERA-B (2006): p+(C,W) $\longrightarrow \Lambda^0+X$ (950 GeV)

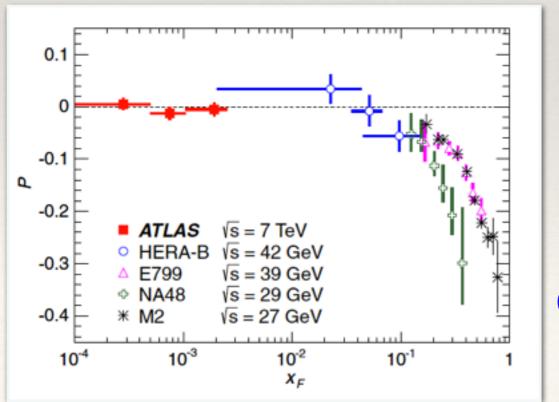
One of the first transverse spin effects at Fermilab (1976): $p+Be\longrightarrow \Lambda^0+X$ and many more follow-up measurements with 300 - 800 GeV proton beams (E799)



 $\Lambda \ \mbox{polarization was found} \\ to \ \mbox{be sizeable!}$

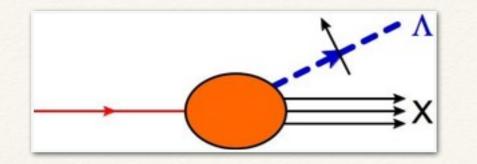
... and at CERN SPS (NA48 1998): p+N $\longrightarrow \Lambda^0+X$ (450 GeV) ... and at HERA-B (2006): p+(C,W) $\longrightarrow \Lambda^0+X$ (950 GeV)

What about LHC? Is it feasible at a high energy collider?

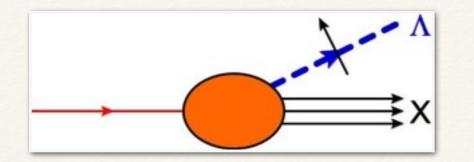

One of the first transverse spin effects at Fermilab (1976): $p+Be\longrightarrow \Lambda^0+X$ and many more follow-up measurements with 300 - 800 GeV proton beams (E799)

 $\Lambda \ \mbox{polarization was found} \\ to \ \mbox{be sizeable!}$

... and at CERN SPS (NA48 1998): p+N $\longrightarrow \Lambda^0+X$ (450 GeV) ... and at HERA-B (2006): p+(C,W) $\longrightarrow \Lambda^0+X$ (950 GeV)


What about LHC? Is it feasible at a high energy collider?

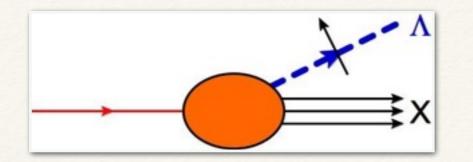
<u>Recent ATLAS measurement at $\sqrt{S} = 7$ TeV</u> [ATLAS, PRD 91, 032004 (2015)]


> Polarization small $P^{\Lambda} \sim 1\%$ Λ polarization at LHC possible

Can Λ polarization be useful for LHC physics? Tool in particle physics?

parton $\longrightarrow \Lambda + X$ transition:

$$\langle P_{\Lambda}, S_{\Lambda}; X | \, \bar{q}(0) \, | 0 \rangle$$

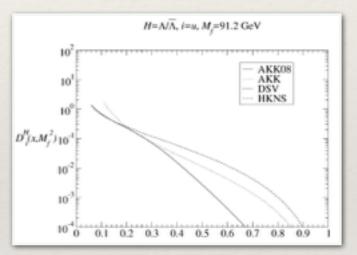


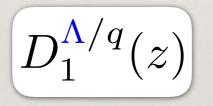
parton $\longrightarrow \Lambda + X$ transition:

$$\langle P_{\Lambda}, S_{\Lambda}; X | \bar{q}(0) | 0 \rangle$$

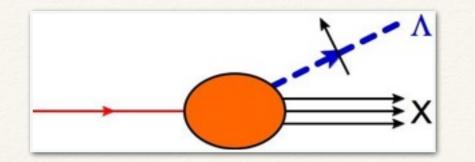
'square of the amplitude'

$$\Delta_{ij}(z) = \frac{1}{N_c} \sum_X \int \frac{d\lambda}{2\pi} e^{-i\frac{\lambda}{z}} \langle 0 | [\infty m, 0] \, \boldsymbol{q_i(0)} | \boldsymbol{P_\Lambda}, \boldsymbol{S_\Lambda}; X \rangle \langle \boldsymbol{P_\Lambda}, \boldsymbol{S_\Lambda}; X | \, \boldsymbol{\bar{q}_j(\lambda m)}[\lambda m, \infty m] \, | 0 \rangle$$


parton $\longrightarrow \Lambda + X$ transition:


$$\langle P_{\Lambda}, S_{\Lambda}; X | \bar{q}(0) | 0 \rangle$$

'square of the amplitude'


$$\Delta_{ij}(z) = \frac{1}{N_c} \sum_X \int \frac{d\lambda}{2\pi} e^{-i\frac{\lambda}{z}} \langle 0 | [\infty m, 0] \, \boldsymbol{q_i(0)} | \boldsymbol{P_\Lambda}, \boldsymbol{S_\Lambda}; X \rangle \langle \boldsymbol{P_\Lambda}, \boldsymbol{S_\Lambda}; X | \, \bar{\boldsymbol{q}_j(\lambda m)}[\lambda m, \infty m] \, | 0 \rangle$$

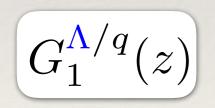
 Λ fragmentation functions

FF of unpolarized $q \rightarrow \Lambda$: fairly known [fits by AKK08, DSV, ...]

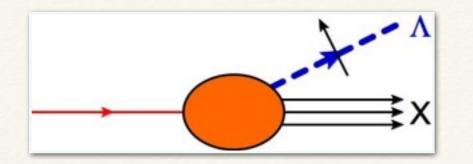
parton $\longrightarrow \Lambda + X$ transition:

$$\langle P_{\Lambda}, S_{\Lambda}; X | \bar{q}(0) | 0 \rangle$$

'square of the amplitude'


$$\Delta_{ij}(z) = \frac{1}{N_c} \sum_X \int \frac{d\lambda}{2\pi} e^{-i\frac{\lambda}{z}} \langle 0 | [\infty m, 0] \, \boldsymbol{q_i(0)} | \boldsymbol{P_\Lambda}, \boldsymbol{S_\Lambda}; X \rangle \langle \boldsymbol{P_\Lambda}, \boldsymbol{S_\Lambda}; X | \, \bar{\boldsymbol{q}_j(\lambda m)}[\lambda m, \infty m] \, | 0 \rangle$$

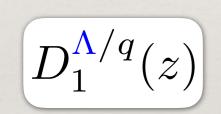
 Λ fragmentation functions



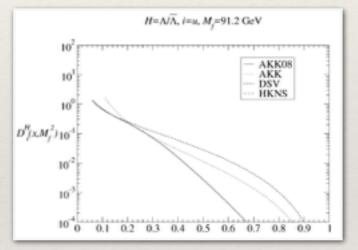
$$D_1^{{f \Lambda}/q}(z)$$

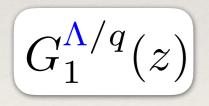
FF of unpolarized $q \rightarrow \Lambda$: fairly known [fits by AKK08, DSV, ...]

FF of longitudinally pol. $q \rightarrow \Lambda$: poorly known [attempts by DSV to fit LEP data]

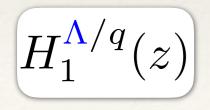

parton $\longrightarrow \Lambda + X$ transition:

$$\langle P_{\Lambda}, S_{\Lambda}; X | \bar{q}(0) | 0 \rangle$$


'square of the amplitude'


$$\Delta_{ij}(z) = \frac{1}{N_c} \sum_X \int \frac{d\lambda}{2\pi} e^{-i\frac{\lambda}{z}} \langle 0 | [\infty m, 0] \, \boldsymbol{q_i(0)} | \boldsymbol{P_\Lambda}, \boldsymbol{S_\Lambda}; X \rangle \langle \boldsymbol{P_\Lambda}, \boldsymbol{S_\Lambda}; X | \, \bar{\boldsymbol{q}_j(\lambda m)}[\lambda m, \infty m] \, | 0 \rangle$$

 Λ fragmentation functions



FF of unpolarized $q \rightarrow \Lambda$: fairly known [fits by AKK08, DSV, ...]

FF of longitudinally pol. $q \rightarrow \Lambda$: poorly known [attempts by DSV to fit LEP data]

FF of transversely pol. q $\longrightarrow \Lambda$:

unknown, chiral-odd, hard to extract from single-inclusive processes Candidate to explain large transverse Λ polarization?

<u>'intrinsic' twist-3 FF with transverse spin:</u>

 $G_T^{\Lambda/q}(z)$ $D_T^{\Lambda/q}(z)$

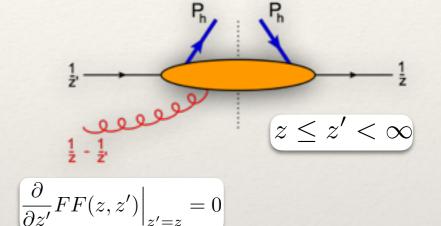
<u>'intrinsic' twist-3 FF with transverse spin:</u>

$$G_T^{\Lambda/q}(z)$$
 $D_T^{\Lambda/q}(z)$

<u>'kinematic' twist-3 FF with transverse spin:</u>

$$\Delta_{\partial}^{\alpha}(z) = \int d^2 \mathbf{p_T} \, \mathbf{p_T}^{\alpha} \, \Delta(z, z \mathbf{p_T}) \qquad \longrightarrow \qquad G_{1T}^{\perp(1), \Lambda/q}(z) \, D_{1T}^{\perp(1), \Lambda/q}(z)$$

<u>'intrinsic' twist-3 FF with transverse spin:</u>


$$G_T^{\Lambda/q}(z) \quad D_T^{\Lambda/q}(z)$$

'kinematic' twist-3 FF with transverse spin:

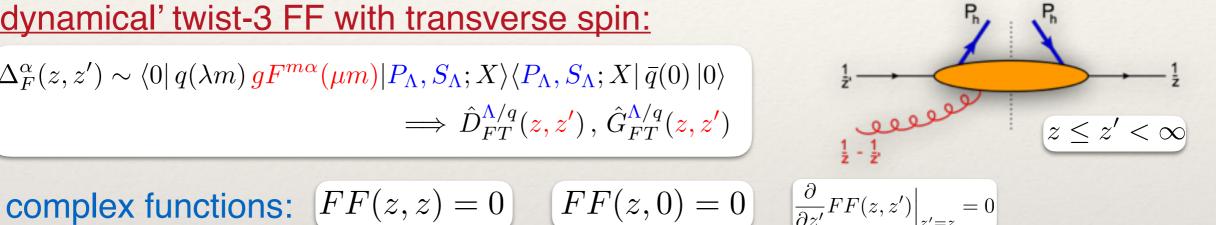
$$\Delta_{\partial}^{\alpha}(z) = \int d^2 \mathbf{p_T} \, \mathbf{p_T}^{\alpha} \, \Delta(z, z \mathbf{p_T}) \qquad \longrightarrow \qquad G_{1T}^{\perp(1), \Lambda/q}(z) \quad D_{1T}^{\perp(1), \Lambda/q}(z)$$

'dynamical' twist-3 FF with transverse spin:

 $\Delta_F^{\alpha}(z,z') \sim \langle 0 | q(\lambda m) g F^{m\alpha}(\mu m) | P_{\Lambda}, S_{\Lambda}; X \rangle \langle P_{\Lambda}, S_{\Lambda}; X | \bar{q}(0) | 0 \rangle$ $\implies \hat{D}_{FT}^{\Lambda/q}(z,z'), \, \hat{G}_{FT}^{\Lambda/q}(z,z')$

complex functions: FF(z, z) = 0 FF(z, 0) = 0

<u>'intrinsic' twist-3 FF with transverse spin:</u>


$$G_T^{\Lambda/q}(z) \quad D_T^{\Lambda/q}(z)$$

<u>'kinematic' twist-3 FF with transverse spin:</u>

$$\Delta_{\partial}^{\alpha}(z) = \int d^2 \mathbf{p_T} \, \mathbf{p_T}^{\alpha} \, \Delta(z, z \mathbf{p_T}) \qquad \longrightarrow \qquad G_{1T}^{\perp(1), \Lambda/q}(z) \qquad D_{1T}^{\perp(1), \Lambda/q}(z)$$

<u>'dynamical' twist-3 FF with transverse spin:</u>

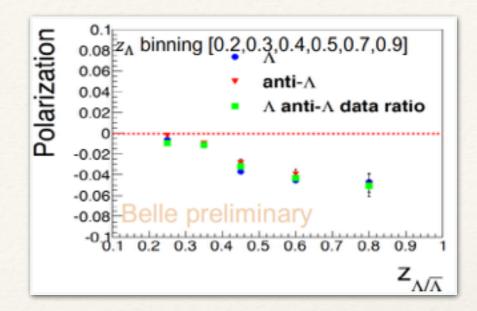
 $\Delta_F^{\alpha}(z,z') \sim \langle 0 | q(\lambda m) g F^{m\alpha}(\mu m) | P_{\Lambda}, S_{\Lambda}; X \rangle \langle P_{\Lambda}, S_{\Lambda}; X | \bar{q}(0) | 0 \rangle$ $\implies \hat{D}_{FT}^{\Lambda/q}(z,z'), \, \hat{G}_{FT}^{\Lambda/q}(z,z')$

<u>Relations: Equation of Motion & Lorentz-Invariance</u>

[Kanazawa, Koike, Metz, Pitonyak, MS, PRD 93, 054024 (2016)]

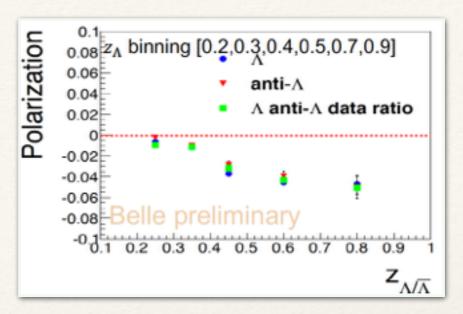
$$D_{1T}^{\perp(1)}(z) + \frac{D_T(z)}{z} = \int_0^1 d\beta \frac{\Im[\hat{D}_{FT}(z, z/\beta)] - \Im[\hat{G}_{FT}(z, z/\beta)]}{1 - \beta}$$
$$G_{1T}^{\perp(1)}(z) - \frac{G_T(z)}{z} = \int_0^1 d\beta \frac{\Re[\hat{D}_{FT}(z, z/\beta)] - \Re[\hat{G}_{FT}(z, z/\beta)]}{1 - \beta}$$

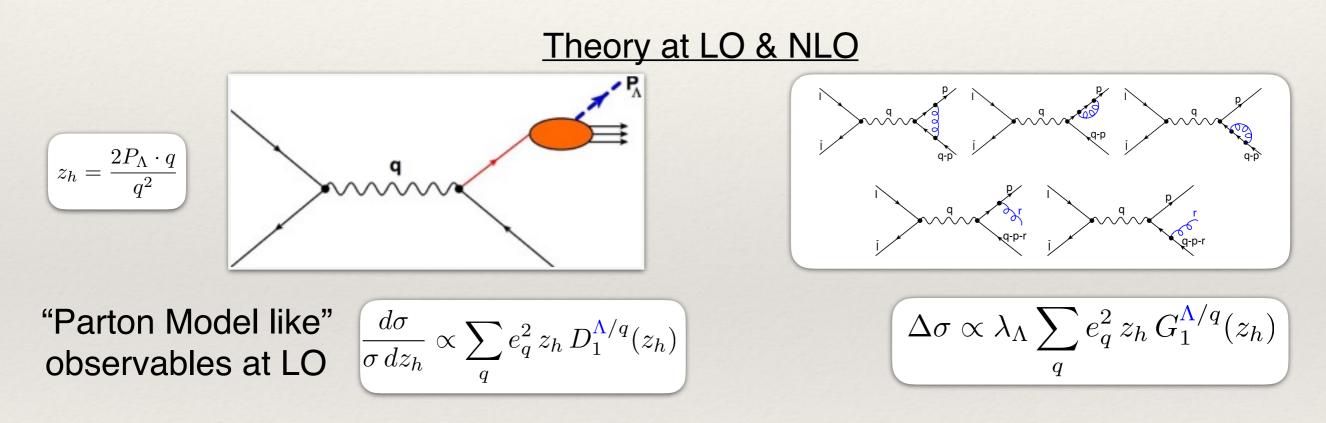
$$\frac{D_T(z)}{z} = -\left(1 - z\frac{d}{dz}\right) D_{1T}^{\perp(1)}(z) - 2\int_0^1 d\beta \frac{\Im[\hat{D}_{FT}(z, z/\beta)]}{(1 - \beta)^2}$$
$$\frac{G_T(z)}{z} = \frac{G_1(z)}{z} + \left(1 - z\frac{d}{dz}\right) G_{1T}^{\perp(1)}(z) - 2\int_0^1 d\beta \frac{\Re[\hat{G}_{FT}(z, z/\beta)]}{(1 - \beta)^2}$$


Two equations, three functions \rightarrow eliminate 'intrinsic & kinematical twist-3'

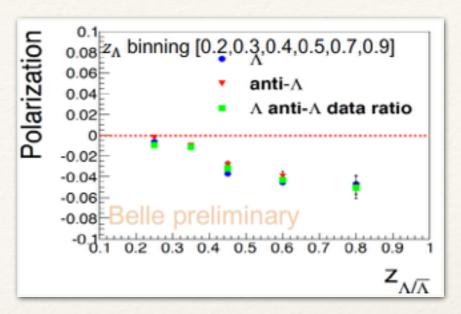
Single inclusive Λ production in e⁺e⁻ - annihilation (e⁺e⁻ $\rightarrow \Lambda X$) $\sqrt{S} \gg \Lambda_{QCD}$

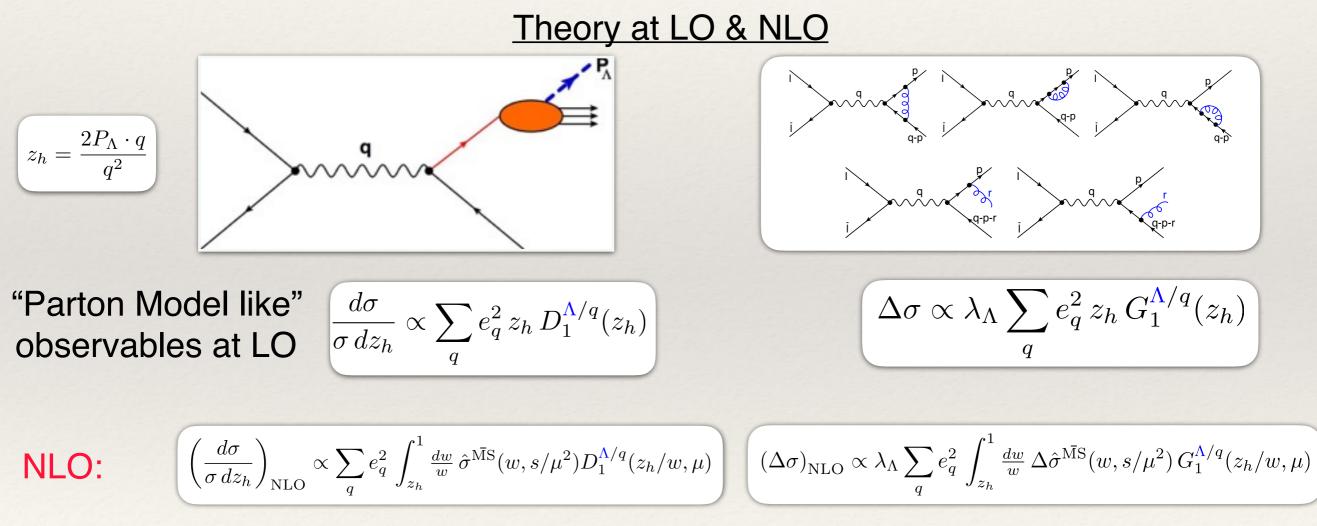
Simplest and cleanest process to study fragmentation...


Experimental status:


- OPAL at LEP on Z-pole [Eur.Phys.J C2, 49 (1998)]: Longitudinal Polarization, no significant Transverse Polarization
- Preliminary Belle data: Transverse Polarization [Yinghui Guan, SPIN 2016]

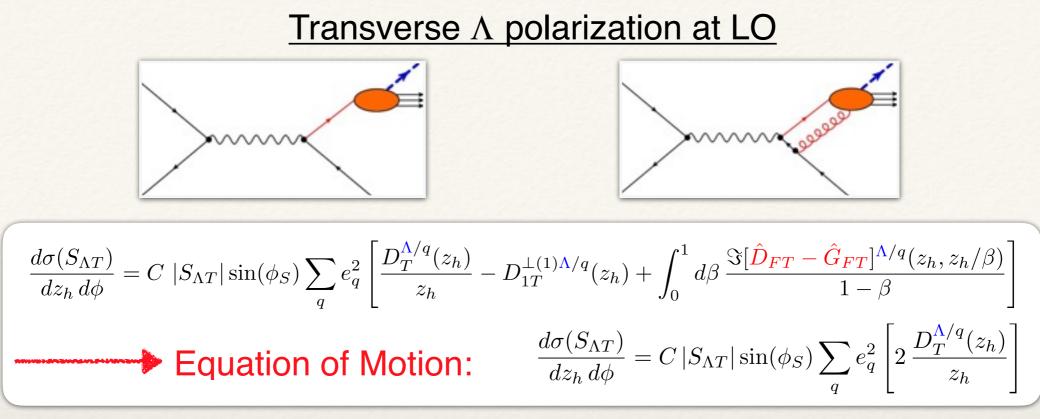
Experimental status:


- OPAL at LEP on Z-pole [Eur.Phys.J C2, 49 (1998)]: Longitudinal Polarization, no significant Transverse Polarization
- Preliminary Belle data: Transverse Polarization [Yinghui Guan, SPIN 2016]

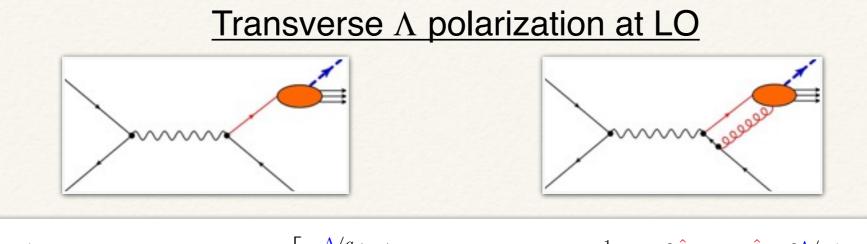


Experimental status:

- OPAL at LEP on Z-pole [Eur.Phys.J C2, 49 (1998)]: Longitudinal Polarization, no significant Transverse Polarization
- Preliminary Belle data: Transverse Polarization [Yinghui Guan, SPIN 2016]



Typical NLO features:


- * infrared safe (cancellation of $1/\epsilon^2$ poles in dim. reg.)
- ♦ MSbar renormalization of fragmentation functions → DGLAP evolution

Transverse Λ polarization at LO Image: A constraint of the second sec

Single-Transverse A Spin observable

- * Unique effect driven by a single fragmentation function $D_T \rightarrow$ absent in DIS (1 γ)
- * to do: fit to Belle data \rightarrow first information on D_T

$$\frac{d\sigma(S_{\Lambda T})}{dz_{h}\,d\phi} = C |S_{\Lambda T}|\sin(\phi_{S})\sum_{q}e_{q}^{2}\left[\frac{D_{T}^{\Lambda/q}(z_{h})}{z_{h}} - D_{1T}^{\perp(1)\Lambda/q}(z_{h}) + \int_{0}^{1}d\beta \frac{\Im[\hat{D}_{FT} - \hat{G}_{FT}]^{\Lambda/q}(z_{h}, z_{h}/\beta)}{1 - \beta}\right]$$

Equation of Motion:
$$\frac{d\sigma(S_{\Lambda T})}{dz_{h}\,d\phi} = C |S_{\Lambda T}|\sin(\phi_{S})\sum_{q}e_{q}^{2}\left[2\frac{D_{T}^{\Lambda/q}(z_{h})}{z_{h}}\right]$$

<u>Single-Transverse Λ Spin observable</u>

- * Unique effect driven by a single fragmentation function $D_T \rightarrow$ absent in DIS (1 γ)
- * to do: fit to Belle data \rightarrow first information on D_T

$$\Delta\sigma(S_{\Lambda T}) = C |S_{\Lambda T}| \cos(\phi_S) \sum_{q} e_q^2 \left[\frac{G_T^{\Lambda/q}(z_h)}{z_h} + G_{1T}^{\perp(1)\Lambda/q}(z_h) - \int_0^1 d\beta \frac{\Re[\hat{D}_{FT} - \hat{G}_{FT}]^{\Lambda/q}(z_h, z_h/\beta)}{1 - \beta} \right]$$

Equation of Motion: $\Delta\sigma(S_{\Lambda T}) = C |S_{\Lambda T}| \cos(\phi_S) \sum_{q} e_q^2 \left[2 \frac{G_T^{\Lambda/q}(z_h)}{z_h} \right]$
LIR: $\Delta\sigma(S_{\Lambda T}) = 2C |S_{\Lambda T}| \cos(\phi_S) \sum_{q} e_q^2 \left[\int_{z_h}^1 \frac{dw}{w} \frac{G_1^{\Lambda/q}(z_h/w)}{z_h/w} + \int(...\Re[\hat{D}_{FT}] + ...\Re[\hat{G}_{FT}]) \right]$

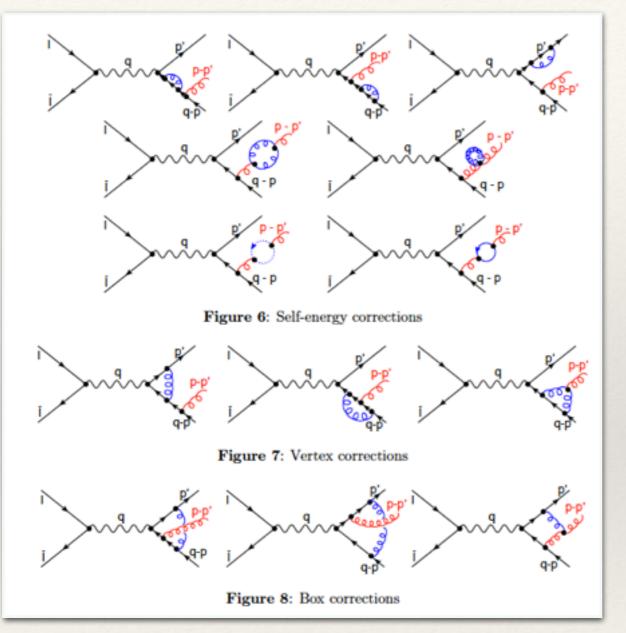
Double Longitudinal Lepton - Transverse Λ Spin observable

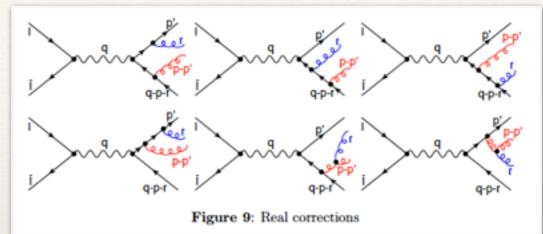
- ★ Effect driven by a single fragmentation function $G_T \rightarrow$ present in DIS (g₂)
- Wandzura-Wilczek approximation: valid for fragmentation as well?

<u>Transverse Λ polarization at NLO</u>

[Gamberg, Kang, M.S., Xing, Yoshida, work in progress]

- Study the NLO dynamics for twist-3 fragmentation in the simplest process
- Different compared to twist-3 distributions (no pole contributions)


Transverse A polarization at NLO

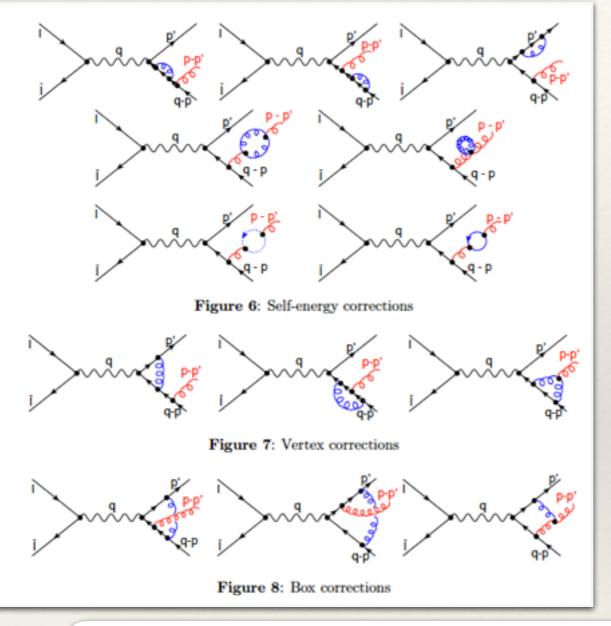

[Gamberg, Kang, M.S., Xing, Yoshida, work in progress]

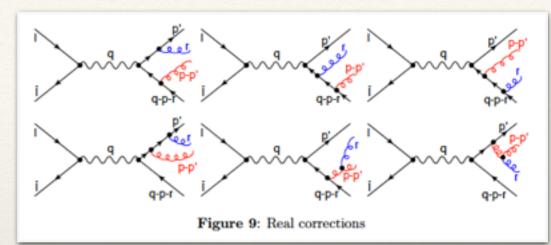
Study the NLO dynamics for twist-3 fragmentation in the simplest process

Different compared to twist-3 distributions (no pole contributions)

Virtual & Real diagrams (qg/q - channel only)

 ★ E.o.M. - and L.I.R. relations are crucial: Combine 'intrinsic', 'kinematical' & 'dynamical' twist-3 contributions
 ▲ Imaginary parts: In the dynamical fragmentation process & loop diagrams
 ▲ Infrared 1/ε² - poles cancel
 ▲ 1/ε - poles of imaginary parts of loops cancel through E.o.M.
 ▲ 1/ε - collinear poles of real parts of loops through MSbar - renormalization

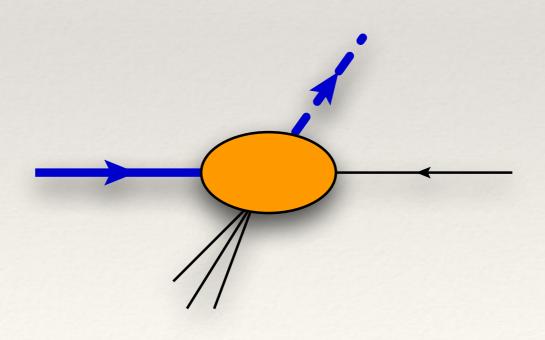

Transverse A polarization at NLO


[Gamberg, Kang, M.S., Xing, Yoshida, work in progress]

Study the NLO dynamics for twist-3 fragmentation in the simplest process

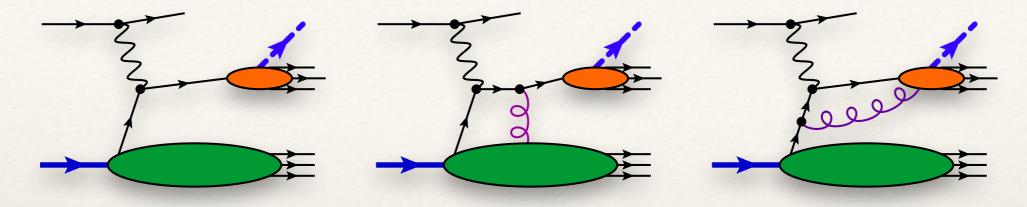
Different compared to twist-3 distributions (no pole contributions)

Virtual & Real diagrams (qg/q - channel only)



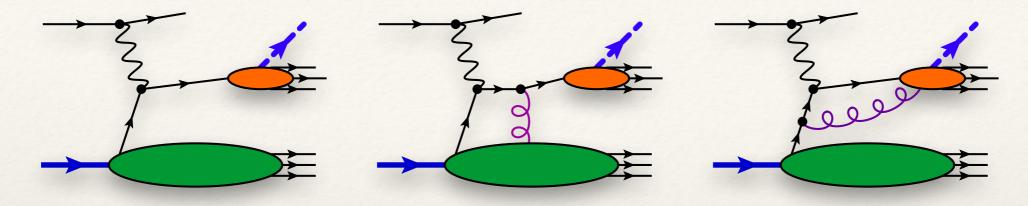
 E.o.M. - and L.I.R. relations are crucial: Combine 'intrinsic', 'kinematical' & 'dynamical' twist-3 contributions Imaginary parts: In the dynamical fragmentation process & loop diagrams Infrared 1/ε² - poles cancel
 1/ε - poles of imaginary parts of loops cancel through E.o.M.
 1/ε - collinear poles of real parts of

loops through MSbar - renormalization


 $\left(\frac{d\sigma(S_{\Lambda T})}{dz_{h} d\phi} \right)_{\text{NLO}} \propto \int_{z_{h}}^{1} \frac{dw}{w} \int_{0}^{1} d\beta \left[\hat{\sigma}_{1}^{\overline{\text{MS}}}(w,\beta,s/\mu^{2}) \Im[\hat{D}_{FT}^{\Lambda/q}(\frac{z_{h}}{w},\frac{z_{h}}{w\beta},\mu)] + \hat{\sigma}_{2}^{\overline{\text{MS}}}(w,\beta,s/\mu^{2}) \Im[\hat{G}_{FT}^{\Lambda/q}(\frac{z_{h}}{w},\frac{z_{h}}{w\beta},\mu)] + \hat{\sigma}_{3}(w,\beta) \Re[\hat{D}_{FT}^{\Lambda/q}(\frac{z_{h}}{w},\frac{z_{h}}{w\beta},\mu)] + \hat{\sigma}_{4}(w,\beta) \Re[\hat{G}_{FT}^{\Lambda/q}(\frac{z_{h}}{w},\frac{z_{h}}{w\beta},\mu)] \right]$

Single inclusive Λ production in e - N collisions (e + N $\longrightarrow \Lambda$ + X) at EIC PT $\gg \Lambda$ QCD

LO calculation of transverse Λ spin observables:

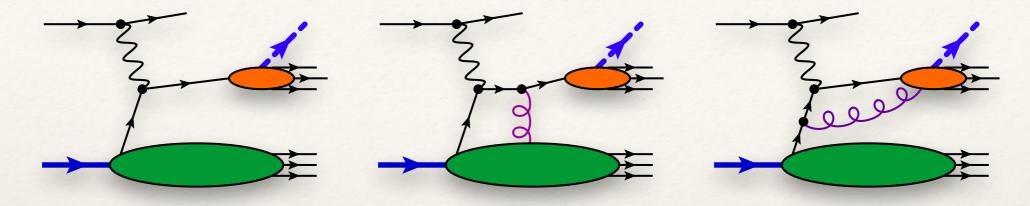

[Kanazawa, Metz, Pitonyak, M.S., PLB (2014) ; Kanazawa, Koike, Metz, Pitonyak, M.S., PRD (2016)]

like SIDIS, but final state lepton not observed

LO calculation of transverse Λ spin observables:

[Kanazawa, Metz, Pitonyak, M.S., PLB (2014) ; Kanazawa, Koike, Metz, Pitonyak, M.S., PRD (2016)]

like SIDIS, but final state lepton not observed


$$E_{\Lambda} \frac{d\sigma(S_{\Lambda})}{d^{3}\vec{P}_{\Lambda}} \propto \int dx \int dz \,\delta(s+t+u) \left[\frac{dh_{1}^{\perp(1)}}{dx}(x) H_{1}(z) + f_{1}^{q}(x) \left(\hat{\sigma}_{1} \frac{D_{T}(z)}{z} + \hat{\sigma}_{2} z \frac{dD_{1T}^{\perp(1)}}{dz}(z) \right) \right]$$

<u>Single-Transverse Λ Spin Asymmetry</u>

- * E.o.M. & L.I.R.: eliminate for dynamical twist-3 fragmentation functions
- * if Boer-Mulders function $h_1^{\perp(1)}$ not too large: study D_T and $D_{1T}^{\perp(1)}$ with flavour separation

LO calculation of transverse Λ spin observables:

[Kanazawa, Metz, Pitonyak, M.S., PLB (2014) ; Kanazawa, Koike, Metz, Pitonyak, M.S., PRD (2016)]

like SIDIS, but final state lepton not observed

$$E_{\Lambda} \frac{d\sigma(S_{\Lambda})}{d^{3}\vec{P}_{\Lambda}} \propto \int dx \int dz \,\delta(s+t+u) \left[\frac{dh_{1}^{\perp(1)}}{dx}(x) H_{1}(z) + f_{1}^{q}(x) \left(\hat{\sigma}_{1} \frac{D_{T}(z)}{z} + \hat{\sigma}_{2} z \frac{dD_{1T}^{\perp(1)}}{dz}(z) \right) \right]$$

Single-Transverse A Spin Asymmetry

E.o.M. & L.I.R.: eliminate for dynamical twist-3 fragmentation functions

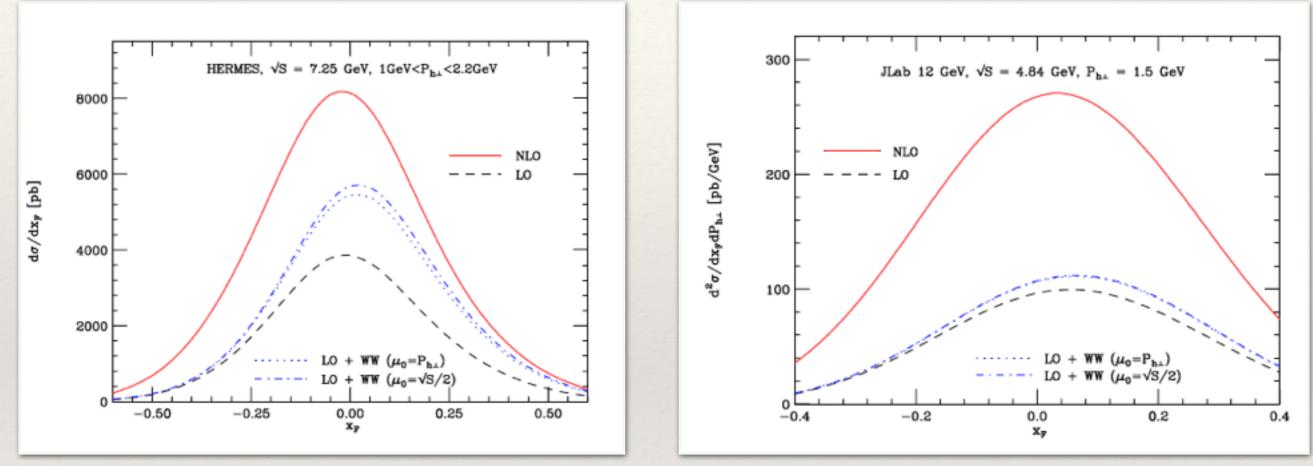
• if Boer-Mulders function $h_1^{\perp(1)}$ not too large: study D_T and $D_{1T}^{\perp(1)}$ with flavour separation

$$\Delta\sigma(S_{\Lambda}) \propto \int dz \,\delta(s+t+u) \left[e(x) H_1(z) + f_1^q(x) \left(\Delta\hat{\sigma}_1 \frac{G_1(z)}{z} + \Delta\hat{\sigma}_2 \frac{G_T(z)}{z} + \hat{\sigma}_3 z \frac{dG_{1T}^{\perp(1)}}{dz}(z) \right) \right]$$

Double Longitudinal Lepton-Transverse Λ Spin Asymmetry

E.o.M. & L.I.R.: Wandzura-Wilczek twist-2 part + dynamical twist-3

if twist-3 distribution e(x) not too large & G1 better known: study validity of WW-approx.

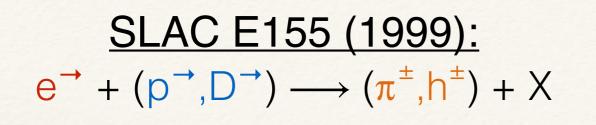

How well do we understand this process?

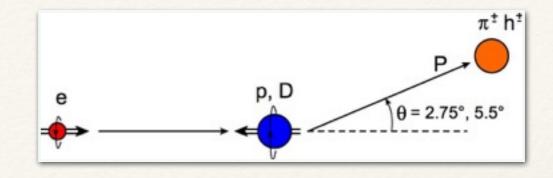
<u>Unpolarized Cross Section for π -production at NLO</u>

[Hinderer, M.S., Vogelsang, PRD (2015), arXiv:1505.06415]

<u>HERMES</u>: $K = \sigma_{NLO}/\sigma_{LO} = 2 - 2.5$

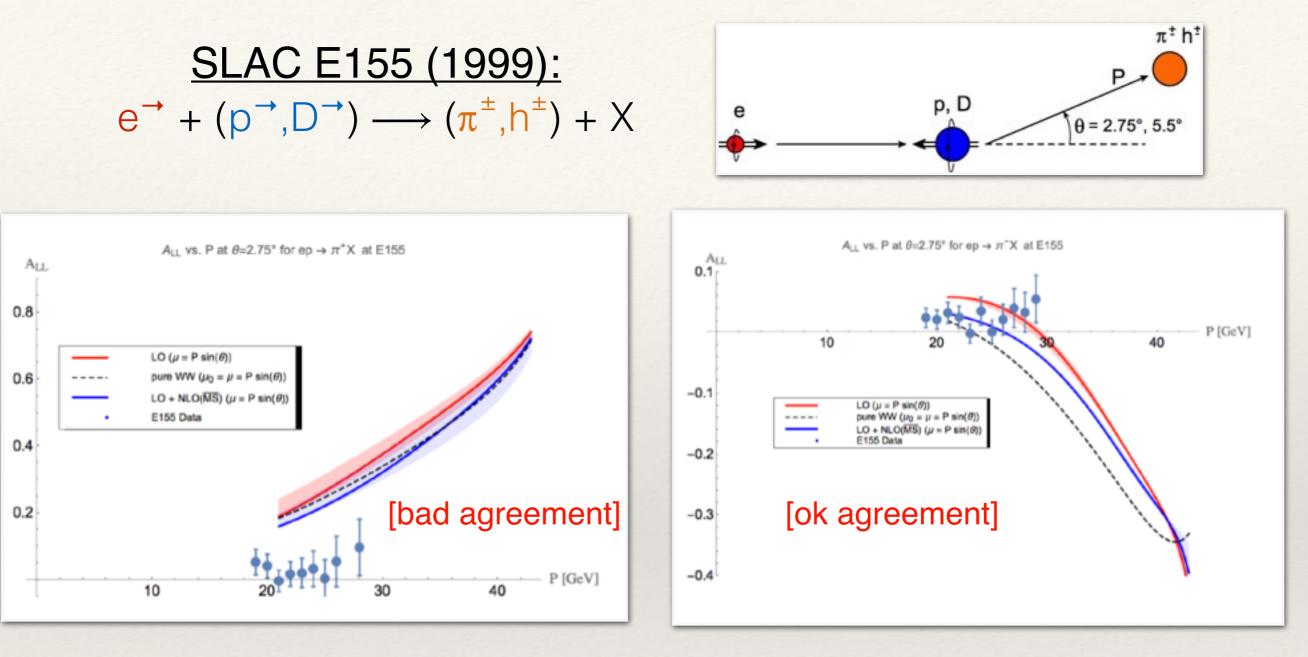
<u>JLab12</u>: $K = \sigma_{NLO}/\sigma_{LO} = 2.5 - 3.5$




large NLO - corrections for HERMES & JLab12 mild NLO - corrections for COMPASS & EIC (K ~ 1.2 - 1.5) jet production at EIC (K ~ 2)

→ NNLO[Abelof, Boughezal, Liu, Petriello, arXiv:1607.04921]: perturbative series converges

Longitudinal Spin Asymmetry at NLO


[Hinderer, M.S., Vogelsang, in preparation]

Longitudinal Spin Asymmetry at NLO

[Hinderer, M.S., Vogelsang, in preparation]

Agreement with data not satisfactory, no systematics: Why?

- <u>Theory</u>: NNLO? Higher twists ($P_T \sim 1-2 \text{ GeV}$)? Refit of helicity distributions/FFs?
- Experiment: Errors underestimated?

Measurements (unpol. and pol.) should be repeated at COMPASS, JLab, (EIC), ...

Summary

- A Polarization: Long history, measured in pp-collisions, recently at ATLAS → feasible at a high-energy collider
- Recent measurement at Belle in e⁺e⁻: clean processes to determine polarized Λ fragmentation functions
- * Theory for e^+e^- : Transverse Λ single-spin asymmetry through D_T , consequence of missing T-reversal \rightarrow unique feature
- * NLO underway, more processes in e^+e^- to be studied ($\Lambda + \pi$ final state)
- Single-inclusive Λ production at EIC, COMPASS: additional information on Λ polarization
- Need to understand better single-inclusive hadron production