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In this workshop: 
Now we are 
Discussing hadron 
Structure identically 



Electron Ion Collider: 
The next QCD frontier 

Understanding the Glue that Binds Us All 

Why the EIC? 
To understand the role of gluons in binding  
quarks & gluons into Nucleons and Nuclei 

Nuclei 
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Role of gluons in hadron & nuclear structure  
Dynamical generation of hadron masses & nuclear binding 

•  Massless gluons & almost massless quarks, through their interactions, 
generate more than 95% of the mass of the nucleons:  

Without gluons, there would be no nucleons,  
no atomic nuclei… no visible world!  

•  Gluons carry ~50% the proton’s momentum, ?% of the nucleon’s spin, and are 
responsible for the transverse momentum of quarks 

•  The quark-gluon origin of the nucleon-nucleon forces in nuclei not quite known 

•  Lattice QCD can’t presently address dynamical properties on the light cone 
 

Experimental insight and guidance crucial for complete understanding of 
how hadron & nuclei emerge from quarks and gluons 
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What does a proton look like?  
Unpolarized & polarized parton distribution functions 

5 

Need to go beyond 1-dimension!  
Need 3D Images of nucleons in Momentum & Position space  
Could they give us clues on orbital motion of partons?  

14

TABLE IV: Truncated first moments, ∆f1,[0.001→1]
i , and full ones, ∆f1

i , of our polarized PDFs at various Q2.

x-range in Eq. (35) Q2 [GeV2] ∆u +∆ū ∆d +∆d̄ ∆ū ∆d̄ ∆s̄ ∆g ∆Σ
0.001-1.0 1 0.809 -0.417 0.034 -0.089 -0.006 -0.118 0.381

4 0.798 -0.417 0.030 -0.090 -0.006 -0.035 0.369
10 0.793 -0.416 0.028 -0.089 -0.006 0.013 0.366
100 0.785 -0.412 0.026 -0.088 -0.005 0.117 0.363

0.0-1.0 1 0.817 -0.453 0.037 -0.112 -0.055 -0.118 0.255
4 0.814 -0.456 0.036 -0.114 -0.056 -0.096 0.245
10 0.813 -0.458 0.036 -0.115 -0.057 -0.084 0.242
100 0.812 -0.459 0.036 -0.116 -0.058 -0.058 0.238
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FIG. 3: Our polarized PDFs of the proton at Q2 = 10 GeV2

in the MS scheme, along with their ∆χ2 = 1 uncertainty
bands computed with Lagrange multipliers and the improved
Hessian approach, as described in the text.

tendency to turn towards +1 at high x. The latter be-
havior would be expected for the pQCD based models.
We note that it has recently been argued [73] that the
upturn of Rd in such models could set in only at rela-
tively high x, due to the presence of valence Fock states of
the nucleon with nonzero orbital angular momentum that
produce double-logarithmic contributions ∼ ln2(1−x) in
the limit of x → 1 on top of the nominal power behav-
ior. The corresponding expectation is also shown in the
figure. In contrast to this, relativistic constituent quark
models predict Rd to tend to −1/3 as x → 1, perfectly
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FIG. 4: Uncertainties of the calculated Aπ0

LL at RHIC in our
global fit, computed using both the Lagrange multiplier and
the Hessian matrix techniques. We also show the correspond-
ing PHENIX data [23].

consistent with the present data.

Light sea quark polarizations: The light sea quark and
anti-quark distributions turn out to be better constrained
now than in previous analyses [36], thanks to the advent
of more precise SIDIS data [10, 14, 15, 16] and of the new
set of fragmentation functions [37] that describes the ob-
servables well in the unpolarized case. Figure 6 shows the
changes in χ2 of the fit as functions of the truncated first
moments ∆ū1,[0.001→1], ∆d̄1,[0.001→1] defined in Eq. (35),
obtained for the Lagrange multiplier method. On the
left-hand-side, Figs. 6 (a), (c), we show the effect on the
total χ2, as well as on the χ2 values for the individual
contributions from DIS, SIDIS, and RHIC pp data and
from the F, D values. It is evident that the SIDIS data
completely dominate the changes in χ2. On the r.h.s. of
the plot, Figs. 6 (b), (d), we further split up ∆χ2 from
SIDIS into contributions associated with the spin asym-
metries in charged pion, kaon, and unidentified hadron
production. One can see that the latter dominate, closely
followed by the pions. The kaons have negligible impact
here. For ∆ū1,[0.001→1], charged hadrons and pions are
very consistent, as far as the location of the minimum
in χ2 is concerned. For ∆d̄1,[0.001→1] there is some slight
tension between them, although it is within the tolerance
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Understanding the nucleon spin 



Gluon and the consequences of its 
interesting properties: 
Gluons carry color charge è Can interact with other gluons!  
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What could limit this indefinite 
rise? à saturation of soft gluon 
densities via ggàg recombination 
must be responsible.  
 
 
 

QS: Matter of Definition and Frame (II)

7

Infinite Momentum Frame:
• BFKL (linear QCD): splitting functions ⇒ gluon density grows
• BK (non-linear): recombination of gluons ⇒ gluon density tamed

BFKL: BK adds:

αs << 1αs ∼ 1 ΛQCD

know how to 
do physics here?

m
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(x
, k

T2 )

• At Qs:   gluon emission balanced by recombination

Unintegrated gluon distribution
depends on kT and x:
the majority of gluons have 
transverse momentum kT ~ QS
(common definition)

recombination  

Apparent “indefinite rise” in gluon 
distribution in proton! 

QS: Matter of Definition and Frame (II)
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Infinite Momentum Frame:
•BFKL (linear QCD): splitting functions ⇒ gluon density grows
•BK (non-linear): recombination of gluons ⇒ gluon density tamed
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•At Qs:   gluon emission balanced by recombination

Unintegrated gluon distribution
depends on kT and x:
the majority of gluons have 
transverse momentum kT ~ QS
(common definition)

Where?  No one has unambiguously seen this before! 
If true, effective theory of this à“Color Glass Condensate” 
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Why an Electron Ion Collider? 
A new facility, EIC, with a versatile range of kinematics, 
beam polarizations, high luminosity and beam species, is 
required to precisely image the sea quarks and gluons in 
nucleons and nuclei, to explore the new QCD frontier of 
strong color fields in nuclei, and to resolve outstanding 
issues in understanding nucleons and nuclei in terms of 
fundamental building blocks of QCD 
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Nuclei 
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World’s first 
Polarized electron-proton/light ion  
and electron-Nucleus collider 
 
Both designs use DOE’s significant 
investments in infrastructure 

For e-A collisions at the EIC: 
ü  Wide range in nuclei 
ü  Luminosity per nucleon same as e-p 
ü  Variable center of mass energy  

The Electron Ion Collider 
Two options of realization! 
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For e-N collisions at the EIC: 
ü  Polarized beams: e, p, d/3He 
ü  e beam 5-10(20) GeV 
ü  Luminosity Lep ~ 1033-34 cm-2sec-1 

100-1000 times HERA 
ü  20-100 (140) GeV Variable CoM   
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AGS
LINAC-Ring 
Ring-Ring 

Ring-Ring 
Not to scale 
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Current polarized DIS data:
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Current polarized BNL-RHIC pp data:
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    EIC: Kinematic reach & properties 
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For e-N collisions at the EIC: 
ü  Polarized beams: e, p, d/3He 
ü  Variable center of mass energy 
ü  Wide Q2 range à evolution  
ü  Wide x range à spanning 

valence to low-x physics 

For e-A collisions at the EIC: 
ü  Wide range in nuclei 
ü  Lum. per nucleon same as e-p 
ü  Variable center of mass energy  
ü  Wide x range (evolution) 
ü  Wide x region (reach high gluon 

densities) 
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Proton as a laboratory for 
QCD 
3D structure of hadrons in momentum and 
position space…. 
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ΔΣ/2 = Quark contribution to Proton Spin 
  LQ   = Quark Orbital Ang. Mom
 Δg    = Gluon contribution to Proton Spin 
  LG   = Gluon Orbital Ang. Mom  

Our Understanding of 
Nucleon Spin 

11 

1
2

=

1
2
�⌃ + LQ

�
+ [�g + LG]

Precision in ΔΣ and Δg è  A clear idea 
Of the magnitude of LQ+LG 
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q Naturally, two scales: 
²  high Q – localized probe 

To “see” quarks and gluons  

²  Low pT – sensitive to confining scale 
To “see” their confined motion 

²  Theory – QCD TMD factorization 

Measurement of Transverse Momentum Distribution 
Semi-Inclusive Deep Inelastic Scattering 
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Scope & possible impact of EIC on Sivers 
Function measurements…. Quark TMDs 
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Figure 2.14: Kinematic coverage in x and Q2 for the EIC compared to the coverage of the
planned JLab12 experiment. The kinematics of the existing experimental measurements are also
shown for comparison.

pected impact of data from the EIC us-
ing the parameterization from Ref. [70] as
an arbitrarily chosen model of the Sivers
function. This parameterization, denoted
theor

i

= F (x
i

, z
i

, P i

hT

, Q2

i

;a0) with the M
parameters a0 = {a0

1

, ..., a0
M

} fitted to exist-
ing data, serves to generate a set of pseudo-
data in each kinematic bin i. In each x

i

, Q2

i

,
z
i

and P i

hT

bin, the obtained values, value
i

,
for the Sivers function are distributed using
a Gaussian smearing with a width �

i

corre-
sponding to the simulated event rate at the
center-of-mass energy of

p
s = 45 GeV ob-

tained with an integrated luminosity of 10
fb�1. To illustrate the achievable statistical
precision, the event rate for the production
of ⇡± in semi-inclusive DIS was used, see, for
example, Fig. 2.15.

This new set of pseudo-data was then
analysed like the real data in Ref. [70].
Fig. 2.16 shows the result for the extraction
of the Sivers function for the valence and sea
up quarks. Similar results are obtained for
the down quarks as well. The central value
of f?u

1T

, represented by the red line, follows

by construction the underlying model. The
2-sigma uncertainty of this extraction, valid
for the specifically chosen functional form, is
indicated by the purple band. This precision,
obtainable with an integrated luminosity of
10 fb�1, is compared with the uncertainty
of the extraction from existing data, repre-
sented by the light grey band. It should be
emphasized that our current knowledge is re-
stricted to only a qualitative picture of the
Sivers function and the above analysis did
not take into account the model dependence
and the associated theoretical uncertainties.
With the anticipated large amount of data
(see Fig. 2.15 for a modest integrated lumi-
nosity 10 fb�1), we can clearly see that the
EIC will be a powerful facility enabling ac-
cess to TMDs with unprecedented precision,
and particularly in the currently unexplored
sea quark region. This precision is not only
crucial for the fundamental QCD test of the
sign change between the Sivers asymmetries
in the DIS and Drell-Yan processes, but also
important to investigate the QCD dynamics
in the hard processes in SIDIS, such as the

37
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Figure 2.14: Kinematic coverage in x and Q2 for the EIC compared to the coverage of the
planned JLab12 experiment. The kinematics of the existing experimental measurements are also
shown for comparison.
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Figure 2.15: Four-dimensional representation of the projected accuracy for ⇡+ production in
semi-inclusive DIS o↵ the proton. Each panel corresponds to a specific z bin with increasing
value from left to right and a specific P

hT

bin with increasing value from top to bottom, with
values given in the figure. The position of each point is according to its Q2 and x value, within
the range 0.05 < y < 0.9. The projected event rate, represented by the error bar, is scaled
to the (arbitrarily chosen) asymmetry value at the right axis. Blue squares, black triangles and
red dots represent the

p
s = 140 GeV,

p
s = 45 GeV and

p
s = 15 GeV EIC configurations,

respectively. Event counts correspond to an integrated luminosity of 10 fb�1 for each of the
three configurations.

QCD evolution and resummation, matching
between the TMD factorization and collinear
factorization approaches, etc. Meanwhile, an
exploration of the sea quark Sivers function
will provide, for the first time, unique infor-
mation on the spin-orbital correlation in the
small-x region. The right panel of Fig. 1.3
in the Introduction (Section 1.2) showed the
kinematic reach of the EIC which would en-
able a measurement of the transverse mo-
mentum profile of the quark Sivers function
over a wide range in x, e.g. from the valence
to the sea quark region. Note that Fig. 1.3

showed the total up quark Sivers function,
while Fig. 2.16 shows the valence and the sea
quarks separately.

Here, we emphasize the importance of
the high Q2 reach of the EIC for SIDIS
measurements. Most of the existing ex-
periments focus on the Q2 range of a few
GeV 2. The EIC will, for the first time,
reach Q2 values up to hundreds and more
GeV 2. This will provide an unique oppor-
tunity to investigate the scale evolution of
the Sivers asymmetries, which has attracted
strong theoretical interests in the last few

38

All for 10 fb-1 luminosity….. 



Scope & possible impact of EIC on Sivers 
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fb�1. To illustrate the achievable statistical
precision, the event rate for the production
of ⇡± in semi-inclusive DIS was used, see, for
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This new set of pseudo-data was then
analysed like the real data in Ref. [70].
Fig. 2.16 shows the result for the extraction
of the Sivers function for the valence and sea
up quarks. Similar results are obtained for
the down quarks as well. The central value
of f?u
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, represented by the red line, follows

by construction the underlying model. The
2-sigma uncertainty of this extraction, valid
for the specifically chosen functional form, is
indicated by the purple band. This precision,
obtainable with an integrated luminosity of
10 fb�1, is compared with the uncertainty
of the extraction from existing data, repre-
sented by the light grey band. It should be
emphasized that our current knowledge is re-
stricted to only a qualitative picture of the
Sivers function and the above analysis did
not take into account the model dependence
and the associated theoretical uncertainties.
With the anticipated large amount of data
(see Fig. 2.15 for a modest integrated lumi-
nosity 10 fb�1), we can clearly see that the
EIC will be a powerful facility enabling ac-
cess to TMDs with unprecedented precision,
and particularly in the currently unexplored
sea quark region. This precision is not only
crucial for the fundamental QCD test of the
sign change between the Sivers asymmetries
in the DIS and Drell-Yan processes, but also
important to investigate the QCD dynamics
in the hard processes in SIDIS, such as the
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QCD evolution and resummation, matching
between the TMD factorization and collinear
factorization approaches, etc. Meanwhile, an
exploration of the sea quark Sivers function
will provide, for the first time, unique infor-
mation on the spin-orbital correlation in the
small-x region. The right panel of Fig. 1.3
in the Introduction (Section 1.2) showed the
kinematic reach of the EIC which would en-
able a measurement of the transverse mo-
mentum profile of the quark Sivers function
over a wide range in x, e.g. from the valence
to the sea quark region. Note that Fig. 1.3

showed the total up quark Sivers function,
while Fig. 2.16 shows the valence and the sea
quarks separately.

Here, we emphasize the importance of
the high Q2 reach of the EIC for SIDIS
measurements. Most of the existing ex-
periments focus on the Q2 range of a few
GeV 2. The EIC will, for the first time,
reach Q2 values up to hundreds and more
GeV 2. This will provide an unique oppor-
tunity to investigate the scale evolution of
the Sivers asymmetries, which has attracted
strong theoretical interests in the last few
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v
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p
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and an integrated luminosity of 10 fb�1 (purple band with a red contour). The uncertainty
estimates are for the specifically chosen underlying functional form.

years [78, 79, 80, 81, 82, 83]. As a lead-
ing power contribution in the spin asymme-
tries, the associated energy evolution unveils
the underlying strong interaction dynamics
in the hard scattering processes. The em-
bedded universality and factorization prop-
erty of the TMDs can only be fully inves-
tigated at the EIC with the planned kine-
matic coverage in Q2. In particular, the the-
ory calculations including evolution e↵ects
agree with the current constraints on the
quark Sivers function presented in Fig. 2.16,
while they do di↵er at higher values of Q2

[78, 79, 80, 81, 82, 83]. Moreover, a recent
study has shown that at the kinematics of
HERMES and COMPASS, the leading order
SIDIS su↵ers significant power corrections,
which however will diminish at higher Q2

[83]. This makes the EIC the only machine
to be able to establish the leading partonic
picture of the TMDs in SIDIS.

The kinematic reach of the EIC also al-
lows the measurement of physical observ-
ables over a wide transverse momentum

range. This is particularly important to un-
derstand the underlying mechanism that re-
sults in single spin asymmetries. Recent
theoretical developments have revealed that
both the transverse-momentum-dependent
Sivers mechanism and the quark-gluon-quark
correlation collinear mechanism describe the
same physics in the kinematic regions where
both approaches apply [84, 85]. The only
way to distinguish between the two and un-
derstand the underlying physics is to mea-
sure them over wide p

T

ranges. The high
luminosities at the EIC machine could pro-
vide a golden opportunity to explore and un-
derstand the mechanism of the transverse
spin asymmetries. In addition, with pre-
cision data in a large range of transverse
momentum, we shall be able to study the
strong interaction dynamics in the descrip-
tion of large transverse momentum observ-
ables and investigate the transition between
the non-perturbative low transverse momen-
tum region and the perturbative high trans-
verse momentum region.
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Gluon TMDs just as important, but no 
measurements yet! 
Possible to measure them at the EIC with the following 
possible measurement campaigns: 
v  Di-Jet or Di-hadron production through photon-gluon-

fusion process 
v  Heavy quark production  
v  Quarkonium production 
--- All with transversely polarized hadrons in e-p, e-Alight  
 
These measurements were thought of but not fully wetted 
for prime-time simulations studies (other than di-meson 
production) before the EIC-White Paper. Now these studies 
are timely. 
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Figure 2.17: The single transverse spin asymmetry for �⇤N" ! D0D̄0 + X, where � is the
azimuthal angle between the total transverse momentum k0? of the D-D̄ pair and the transverse
polarization vector S? of the nucleon. The asymmetries and the experimental projections are
calculated for two di↵erent k0? = 0.75, 1.5GeV as examples. The kinematics are specified by
hW i = 60GeV, hQ2i = 4GeV2.

2.3.3 Summary

The EIC will be a unique facility to systematically investigate the transverse momentum
dependent parton distributions comprehensively. While the measurements of quark TMDs
have begun in fixed target experiments, the gluon TMDs can only be studied at an EIC, and
such studies would be unprecedented. The QCD dynamics associated with the transverse
momentum dependence in hard processes can be rigorously studied at the EIC because
of its wide kinematic coverage. The comparison of the Sivers single spin asymmetry and
Boer-Mulders asymmetry between DIS and Drell-Yan processes can provide an important
test of the fundamental prediction of QCD. In summary, we list these important science
questions to be addressed at the EIC in Table 2.2.

Deliverables Observables What we learn

Sivers & SIDIS with Quantum Interference & Spin-Orbital correlations

unpolarized Transverse 3D Imaging of quark’s motion: valence + sea

TMD quarks polarization; 3D Imaging of gluon’s motion

and gluon di-hadron (di-jet) QCD dynamics in a unprecedented Q2 (P
hT

) range

Chiral-odd SIDIS with 3rd basic quark PDF: valence + sea, tensor charge

functions: Transverse Novel spin-dependent hadronization e↵ect

Transversity; polarization QCD dynamics in a chiral-odd sector

Boer-Mulders with a wide Q2 (P
hT

) coverage

Table 2.2: Science Matrix for TMD: 3D structure in transverse momentum space: (upper) the
golden measurements; (lower) the silver measurements.
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Spatial Imaging of quarks & gluons 
Generalized Parton Distributions 

18 

Deeply Virtual Compton Scattering 
Measure all three final states 
e + p à e’+ p’+ γ 

Fourier transform of momentum 
transferred=(p-p’) à Spatial distribution 

Exclusive Processes and Generalized Parton Distributions

Generalized parton distributions (GPDs) can be extracted from suitable exclusive scat-
tering processes in e+p collisions. Examples are deeply virtual Compton scattering (DVCS:
�⇤+p ! �+p) and the production of a vector meson (�⇤+p ! V +p). The virtual photon
is provided by the electron beam, as usual in deep inelastic scattering processes (see the
Sidebar on page 18). GDPs depend on three kinematical variables and a resolution scale:

• x + ⇠ and x � ⇠ are longitudinal par-
ton momentum fractions with respect
to the average proton momentum (p+
p0)/2 before and after the scattering, as
shown in Figure 2.18.

Whereas x is integrated over in the
scattering amplitude, ⇠ is fixed by the
process kinematics. For DVCS one has
⇠ = x

B

/(2� x
B

) in terms of the usual
Bjorken variable x

B

= Q2/(2p · q). For
the production of a meson with mass
M

V

one finds instead ⇠ = x
V

/(2� x
V

)
with x

V

= (Q2 +M2

V

)/(2p · q).

• The crucial kinematic variable for par-
ton imaging is the transverse momen-
tum transfer �

T

= p

0
T

� p

T

to the
proton. It is related to the invariant
square t = (p0 � p)2 of the momentum
transfer by t = �(�2

T

+ 4⇠2M2)/(1 �
⇠2), where M is the proton mass.

• The resolution scale is given by Q2

in DVCS and light meson production,
whereas for the production of a heavy
meson such as the J/ it is M2

J/ 

+Q2.

Even for unpolarized partons, one has a nontrivial spin structure, parameterized by two
functions for each parton type. H(x, ⇠, t) is relevant for the case where the helicity of the
proton is the same before and after the scattering, whereas E(x, ⇠, t) describes a proton
helicity flip. For equal proton four-momenta, p = p0, the distributions H(x, 0, 0) reduce to
the familiar quark, anti-quark and gluon densities measured in inclusive processes, whereas
the forward limit E(x, 0, 0) is unknown.

Weighting with the fractional quark charges e
q

and integrating over x, one obtains a
relation with the electromagnetic Dirac and Pauli form factors of the proton:

X

q

e
q

Z
dxHq(x, ⇠, t) = F p

1

(t) ,
X

q

e
q

Z
dxEq(x, ⇠, t) = F p

2

(t) (2.14)

and an analogous relation to the neutron form factors. At small t the Pauli form factors
of the proton and the neutron are both large, so that the distributions E for up and down
quarks cannot be small everywhere.

x + ⇠ x� ⇠

p

p

0

x + ⇠ x� ⇠

p

p

0

�

⇤
�

⇤
�

V

Figure 2.18: Graphs for deeply virtual Compton scattering (left) and for exclusive vector
meson production (right) in terms of generalized parton distributions, which are represented by
the lower blobs. The upper filled oval in the right figure represents the meson wave function.
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Quarks 
Motion   

Gluons: 
Only @  
Collider  
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Historically, investigations of nucleon 
structure and dynamics involved breaking the 
nucleon…. (exploration of internal structure!) 
 
To get to the orbital motion of quarks and 
gluons we need non-violent collisions 
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3-Dimensional Imaging Quarks and Gluons 
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3-Dimensional Imaging Quarks and Gluons 
W(x,bT,kT)
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è Directly comparable with Lattice QCD Calculations 
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What do we learn from low-x studies? 

21 

What tames the low-x rise? 
•  New evolution eqn.s @ low x & moderate Q2 
•  Saturation Scale QS(x) where gluon 

emission and recombination comparable 

First observation of gluon recombination effects in nuclei: 
èleading to a collective gluonic system! 

First observation of g-g recombination in different nuclei  
à  Is this a universal property?  

à  Is the Color Glass Condensate the correct effective theory? 
 

QS: Matter of Definition and Frame (II)

7

Infinite Momentum Frame:
• BFKL (linear QCD): splitting functions ⇒ gluon density grows
• BK (non-linear): recombination of gluons ⇒ gluon density tamed

BFKL: BK adds:

αs << 1αs ∼ 1 ΛQCD

know how to 
do physics here?

m
ax

. d
en

si
ty

Qs kT

~ 1/kT

k T
 φ

(x
, k

T2 )

• At Qs:   gluon emission balanced by recombination

Unintegrated gluon distribution
depends on kT and x:
the majority of gluons have 
transverse momentum kT ~ QS
(common definition)
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Key Topic in eA: Gluon Saturation (I)

6

In QCD, the proton is made up 
of quanta that fluctuate in and 
out of existence 
• Boosted proton: 
‣ Fluctuations time dilated on 

strong interaction time 
scales  

‣ Long lived gluons can 
radiate further small x 
gluons! 

‣ Explosion of gluon density 
! violates unitarity

�!"##""$
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101345.,-.6+,/75".58/01

9

pQCD  
evolution  
equation

New Approach: Non-Linear Evolution 
• New evolution equations at  low-x & low to moderate Q2 

• Saturation of gluon densities characterized by scale Qs(x) 
• Wave function is Color Glass Condensate
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Puzzles and challenges…. 

How does the nuclear environment 
affect the distributions of quarks and 
gluons and their interactions inside 
nuclei?  
Color correlations within nuclei 
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Figure 3.25: The ratio of nuclear over nucleon F
2

structure function, R
2

, as a function of
Bjorken x, with data from existing fixed target DIS experiments at Q2 > 1 GeV2, along with
the QCD global fit from EPS09 [174]. Also shown is the expected kinematic coverage of the
inclusive measurements at the EIC. The purple error band is the expected systematic uncertainty
at the EIC assuming a ±2% (a total of 4%) systematic error, while the statistical uncertainty is
expected to be much smaller.

tering could also take place at a perturbative
scale Q > Q

0

, and its contribution to the in-
clusive DIS cross-section could be systemati-
cally investigated in QCD in terms of correc-
tions to the DGLAP-based QCD formulation
[213, 214]. Although such corrections are
suppressed by the small perturbative probing
size, they can be enhanced by the number of
nucleons at the same impact parameter in a
nucleus and large number of soft gluons in
nucleons. Coherent multiple scattering nat-
urally leads to the observed phenomena of
nuclear shadowing: more suppression when
x decreases, Q decreases, and A increases.
But, none of these dependences could have
been predicted by the very successful lead-
ing power DGLAP-based QCD formulation.

When the gluon density is so large at
small-x and the coherent multi-parton inter-
actions are so strong that their contributions
are equally important as that from single-
parton scattering, measurements of the DIS

cross-section could probe a new QCD phe-
nomenon - the saturation of gluons discussed
in the last section. In this new regime, which
is referred to as a Color Glass Condensate
(CGC) [158, 155], the standard fixed order
perturbative QCD approach to the coherent
multiple scattering would be completely in-
e↵ective. The resummation of all powers of
coherent multi-parton interactions or new ef-
fective field theory approaches are needed.
The RHIC data [193, 194] on the correla-
tion in deuteron-gold collisions indicate that
the saturation phenomena might take place
at x . 0.001 [193, 194]. Therefore, the re-
gion of 0.001 < x < 0.1, at a su�ciently
large probing scale Q, could be the most
interesting place to see the transition of a
large nucleus from a diluted partonic sys-
tem — whose response to the resolution of
the hard probe (the Q2-dependence) follows
linear DGLAP evolution — to matter com-
posed of condensed and saturated gluons.
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 How does nuclear matter respond to fast 
moving color charge passing through it?  
(hadronization…. confinment?) 
è How does a jet propagate through a 
nucleus (new?)  
 

How do gluons and sea quarks 
contribute to the nucleon-nucleon 
force?  
Are gluons distributions broader 
than quark distributions in nuclei? 
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Physics vs. Luminosity & Energy 

1032 

1034 

1033 

Internal 
Landscape of 
the Nucleus 

QCD at Extreme Parton 
Densities - Saturation 

Spin and Flavor Structure of 
the Nucleon and Nuclei 

Tomography (p/A) 
Transverse Momentum 
Distribution and Spatial 

Imaging 

Electro-Weak 
(CLFV, sin2ΘW) 

40   80 120 √S (GeV) 

Lu
m

in
os

ity
 (c

m
-2

 s
ec

-1
) 

11/29/16 3D Parton Distributions: Path to LHC 23 

arXiv: 1212.1701.v3 
EPJA 52, 9  (2016) 



Physics vs. Luminosity & Energy 

1032 

1034 

1033 

Internal 
Landscape of 
the Nucleus 

QCD at Extreme Parton 
Densities - Saturation 

Spin and Flavor Structure of 
the Nucleon and Nuclei 

Tomography (p/A) 
Transverse Momentum 
Distribution and Spatial 

Imaging 

Electro-Weak 
(CLFV, sin2ΘW) 

40   80 120 √S (GeV) 

Lu
m

in
os

ity
 (c

m
-2

 s
ec

-1
) 

11/29/16 3D Parton Distributions: Path to LHC 24 

arXiv: 1212.1701.v3 
EPJA 52, 9  (2016) 



Uncharted physics terrains for EIC: 
•  Impact of super-precise PDFs in x > 0.0, 1 < Q2 < 100 GeV2 for future 

Higgs studies (some insight through LHeC studies, but serious effort on 
EIC beginning now). 

•  What role would transverse W production in e-p play? (Transverse W-
Production at LHC) – (this WS)  

•  Heavy quark and quarkonia (c, b quarks) studies beyond HERA, with 
100-1000 times luminosities (??) 

•  What if the hadrons are transversely polarized? (this WS) 

•  Internal structure of jets with variability of CM 50-140 GeV2, in 
comparison with HERA, Tevatron & LHC energies, and with controlled 
electron & proton polarizations (jet fragmentation studies) aided by 
knowledge from e+e- physics at BaBar/Belle & in future Super-Belle 
(“Collins Functions”) 

•  Jet propagation in nuclei… a topic interest (this WS) 

•  Other low x studies with nuclei….. Gluon TMDs at low-x! (this WS) 
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REALIZATION…. 
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RECOMMENDATION: 
We recommend a high-energy 
high-luminosity polarized EIC as 
the highest priority for new 
facility construction following the 
completion of FRIB.    
 
Initiatives: 
Theory          
Detector & Accelerator R&D      

http://science.energy.gov/np/reports 

NEW Money for EIC Accelerator 
R&D already assigned $7m/yr 
 
Detector R&D money ~1.3M/yr 
Needs significant increase 



The EIC Users Group: EICUG.ORG 

663 collaborators, 28 countries, 147 
institutions... (October 09, 2016) 

Map of institution’s locations 

(no students included as of yet) 

~141 Accelerator Physicists 
~391 Experimentalists 
~131 theorists 



Community/Collaboration building: 
EIC User Group à  eicug.org  (contact me!) 

The EIC Users Meeting at Stony Brook, June 2014:  
à http://skipper.physics.sunysb.edu/~eicug/meeting1/SBU.html 

The EIC UG Meeting at University of Berkeley, January 6-9, 2016 
http://skipper.physics.sunysb.edu/~eicug/meeting2/UCB2016.html 

Recent EICUG Argonne National Laboratory July 7-10, 2016 
http://eic2016.phy.anl.gov 

 
Next two meetings: 

 January 2017 (BlueJeans) 
 July 18-22, 2017 Trieste, Italy 

Ample opportunities for contributions & participation!  
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EIC Detector Concepts  EIC Detector Requirements (I)
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In Short: 

• Hermetic detector, low mass inner tracking, good PID (e and π/
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• Moderate radiation hardness requirements, low pile-up, low 
multiplicity
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EIC Detector Concepts  
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Path forward for the EIC: 

• Science Review by National Academy of Science (& 
Engineering & Arts) (National Research Council) 
•  Committee being formed now, expect report by September 2017 

 
• Positive NAS review will trigger the DOE’s CD process 

•  CD0 (acceptance of the critical need for science by DOE) FY18 
•  EIC-Proposal’s Technical & Cost review à FY19 (site selection) 
•  CD2 requires site selection 
•  Major Construction funds (“CD3”) by 2022/23” 

•  Assuming 1.6% sustained increase over inflation of the next several 
years (Long Range Plan) 

•  Consistent with the past 10 years of NP funding increases in the US 
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Explore in this workshop on TMDs… 
While EIC will do nothing directly to compete with measure 
things at the LHC energies …. 
 
It will measure things in QCD: precisely and enhance our 
understanding of QCD…. 
Such that measurements made at LHC would be clearly 
interpreted as signals within or outside of the Standard Model….  
 
In this sense,  
EIC will contribute in such a way as to make LHC worth its 
cost… both in money and its gigantic effort!  
--Perhaps too provocative a statement…. But may be… 
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Summary: 
The EIC (with its precision and control) will profoundly impact our understanding of 
the many body structure of nucleons and nuclei  in terms of sea quarks & 
gluons  à The bridge between sea quark/gluons to Nuclei 
The EIC will enable IMAGES of yet unexplored regions of phase spaces in QCD 
with its high luminosity/energy, nuclei & beam polarization                                              
à High potential for discovery 
 
New physics opportunities are now being explored… connections to science 
of LHC are manifesting themselves and proving to be important: 
•  Uncertainties in the Higgs production in LHC-II era 
•  Transverse momentum distributions and their consequences to LHC 

observables (pT of W’s at LHC for example) 
•  Gluon TMDs….. 
All being explored in this workshop…. 
 

Future QCD studies, (even at LHC(?)) demands an  
Electron Ion Collider  

NSAC agrees and we are moving forward!
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Thanks to many of my EIC Collaborators and Enthusiasts  
who led many of the studies presented in this talk 
See: arXiv:1108.1713, D. Boer et al. 
 
 
Without the EIC White Paper Writing Group the EIC White 
Paper would not have existed. 
Special thanks to Dr. Jianwei Qiu and Prof. Zein-Eddine 
Meziani, my Co-Editors for the EIC White Paper 
See: arXiv:1212.1701.v3 , A. Accardi et al. 
Eur. Phy. J. A 52, 9 (2016) 
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How to explore/study this new phase of matter? 
(multi-TeV) e-p collider OR a (multi-10s GeV) e-A collider 
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Enhancement of QS with A: 
 Saturation regime reached at significantly lower 

energy (read: “cost”) in nuclei  

Advantage of nucleus à Key Topic in eA: Gluon Saturation (II)
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HERA (ep):
Despite high energy range:
• F2, Gp(x, Q2) outside the 

saturation regime 
• Need also Q2 lever arm! 
• Only way in ep is to 

increase &s
• Would require an ep 

collider at &s ~ 1-2 TeV 

Different approach (eA):
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Enhancement of QS with A: 
 Saturation regime reached at significantly lower 

energy (read: “cost”) in nuclei  

Advantage of nucleus à Key Topic in eA: Gluon Saturation (II)
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Charge to the National Academy for the review of EIC (2016) 
(my rendition of the charge to fit on 1 slide) 

The committee will assess the scientific justification for a 
U.S. domestic electron ion collider facility 
 
In particular, the committee will address the following questions: 
• What is the merit and significance of the science?  What is its 

importance in the overall context of research in nuclear physics 
and the physical sciences in general? 

• Capabilities of other facilities, existing and planned, domestic 
and abroad? What would be the unique scientific role of the US 
EIC complementary to existing and planned facilities? 

• What are the benefits to (US) leadership in nuclear physics? 

• What are the benefits to other fields of science and to society? 
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Assumption: “Modest Growth” è 
1.6% growth/year above constant effort 

40 

137

The 2015 Long Range Plan for Nuclear Science

Reaching for the Horizon

cost than by optimizing the science reach. This could 

affect the international competitiveness of the ton-scale 

neutrinoless double beta decay experiment and, likely, 

delay the results. While FRIB facility operations can be 

maintained, completion of experimental equipment 

needed to fully utilize FRIB beams would be stretched 

out in time. Other equipment and facility upgrades will 

not occur or, at best, will occur more slowly, reducing 

their scientific productivity.

In the short term, facility operations would need to be 

reduced from current already constrained levels. A 

potential, very significant, impact of a constant effort 

budget is the further reduction in facility operations that 

would be needed in order to begin EIC construction. 

Maintaining the U.S. leadership position in this subfield 

requires the generation of significant new capabilities 

for an EIC in a timely fashion. If budgets were 

restricted to constant effort, proceeding with the EIC as 

recommended in this plan would be possible only with 

a drawn-out schedule and would, in addition, require 

further reductions in funding for operations and research 

within the QCD program, with adverse consequences for 

this core component of the overall U.S. nuclear physics 

program.

The most difficult choices outlined here for the constant 

effort budget scenario would occur at or beyond the 

mid-point of the time window of this LRP. Since nuclear 

science, like all areas of basic research, evolves in time, 

it would be unwise to prescribe now what strategy would 

minimize damage to the field if future budgets dictated 

such stark choices.

A Forward Look
We have witnessed many major new discoveries in 

nuclear science over the last decade that were the direct 

result of the construction and operation of new facilities 

and detectors as prioritized by previous Long Range 

Plans. We also have seen a growing use of exciting new 

technologies developed in nuclear science both in well-

established areas of application, such as medicine and 

isotope production, and in important new areas, such as 

homeland security. Continuing this growth and reaping 

the benefits it provides will require new investments. 

With these investments, the United States will maintain 

its present world-leading position in nuclear science, and 

we will continue to contribute to the economic growth, 

health, and security of our Nation.

Figure 10.4: DOE budget in FY 2015 dollars for the Modest Growth scenario.
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Not much 
time! 



Physics vs. Luminosity & Energy 
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arXiv: 1212.1701.v3 
EPJA 52, 9  (2016) 

White Paper 
Science Possible 
With ~5-10** years 
Of operation 
At 1033 cm-2sec-1 

luminosity 

** Assuming realistic rise in EIC luminosity rise in time



Community/Collaboration building: 
EIC User Group à  eicug.org  (contact me!) 

The EIC Users Meeting at Stony Brook, June 2014:  
à http://skipper.physics.sunysb.edu/~eicug/meeting1/SBU.html 

The EIC UG Meeting at University of Berkeley, January 6-9, 2016 
http://skipper.physics.sunysb.edu/~eicug/meeting2/UCB2016.html 

Recent EICUG Argonne National Laboratory July 7-10, 2016 
http://eic2016.phy.anl.gov 

 
Next two meetings: 

 January 2017 (BlueJeans) 
 July 18-22, 2017 Trieste, Italy 

Ample opportunities for contributions & participation!  
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