

# Electroweak and Charm Production Measurements at LHCb

#### Kārlis Dreimanis on behalf of the LHCb collaboration

# 3DPDF@Frascati, Italy

29/11/2016









*инср* 

- LHCb detector
- Motivation for PDFs
- Kinematic coverage
- Recent EW results:
  - W and Z production
- Recent charm results:
  - Inclusive J/ $\psi$  and exclusive J/ $\psi$  and  $\psi(2s)$
  - Prompt D production at 5 and 13 TeV
- Future outlook at LHCb
- Summary







• Fully instrumented single-arm forward spectrometer



JINST 3 (2008) S08005



• interaction point

- Tracking system
- Hadron PID
- Electromagnetic calorimeter
- Hadronic calorimeter
- Muon stations
- Dipole magnet







- Data Sets:
  - 7 TeV (2011): 1.0 fb<sup>-1</sup> ± 1.7 %
  - 8 TeV (2012): 2.0 fb<sup>-1</sup> ± 1.2 %
  - 13 TeV (2015+2016): ~2.0 fb<sup>-1</sup> ± xx%

- + Excellent vertex resolution
- + Good lepton and hadron ID
- + Low pile-up
- + Great lumi. determination
- +-Unique acceptance; not  $4\pi$
- + VELO backwards coverage  $-3.5 < \eta < -1.5$
- Cannot use E-miss or  $p_T$ -miss
- Low instantaneous lumi.



#### Motivation for PDFs

- LHCb
- Theoretical predictions for production of EW bosons are determined from parton-parton cross-sections convolved with parton distribution functions (PDFs)

$$\underbrace{\sigma(x,Q^2)}_{hadronic\,x-sec.} = \sum_{a,b} \int_{0}^{1} dx_1 dx_2 \underbrace{f_a(x_1Q^2)f_b(x_2Q^2)}_{PDFs} \times \underbrace{\hat{\sigma}(x_1,x_2,Q^2)}_{partonic\,x-sec}$$

• Measurements of EW boson and other particle production cross-sections at LHCb can be invaluable tools for constraining PDFs



## Kinematic Coverage





- Unique kinematic coverage in x-Q<sup>2</sup> plane at the LHC
- High Björken-x range covered by the fixed target experiments
- LHCb can probe the phase-space for Björken-x down to x≈10<sup>-5</sup>!





# **Electroweak Results**



<u>JHEP 01 (2016) 155</u>

- Trigger single muon with  $p_T > 10 \text{ GeV}$
- Select a  $\mu$  with 2 <  $\eta$  < 4.5,  $p_{T}$  > 20 GeV
- Purity ~77-79%
- Backgrounds from heavy hadron decays, hadron mis-ID and EW
- Luminosity: 2.0 fb<sup>-1</sup> ± 1.2 %





- Uncertainties ~2-4%
- Results for both W<sup>+</sup> and W<sup>-</sup> agree with NNLO predictions calculated using FEWZ
- Good agreement with various PDF sets

#### Electroweak: $W \rightarrow ev @ 8 \text{ TeV}$

- Trigger single electron with  $p_T > 15 \text{ GeV}$
- Select an e with 2 <  $\eta$  < 4.25,  $p_T$  > 20 GeV
- Purity ~60%
- Additional  $\gamma \rightarrow ee$  background, mis-ID dominates
- Softer  $p_T$  spectrum compared to  $W \rightarrow \mu \nu$
- ECAL saturation at  $p_T > 10 \text{ GeV}$





- Luminosity: 2.0 fb<sup>-1</sup> ± 1.2 %
- Uncertainties ~2.5%, mainly systematic
- Good agreement between the measured cross-section and theoretical predictions with different PDF sets

JHEP 10 (2016) 030

# Electroweak: $Z \rightarrow \mu^+ \mu^- @ 8 \text{ TeV}$





- Luminosity: 2.0 fb<sup>-1</sup> ± 1.2 %
- Uncertainties ~1.8%; dominated by luminosity and beam energy determination
- Excellent agreement with all theoretical predictions calculated with different PDFs



LIVERPOO

- Extraction of ratios of vector boson production cross-sections eliminates some systematic uncertainties
- Exp. uncertainty < Theory uncertainty
- Even better probe for agreement with theory





• <u>Mostly</u> good agreement between data and theory



JHEP 01 (2016) 155

- The ratio between up and down type quarks in a proton can be probed by exploring the ratio between W<sup>+</sup> and W<sup>-</sup> production cross-sections
- A good agreement between theory and data can be observed in the 8 TeV measurement



# Electroweak: W/Z ratios @ 8 TeV



- 1σ elliptical representation of the data compared to the various theoretical models using different PDF sets
  - W<sup>-</sup> vs W<sup>+</sup> (top left) W<sup>+</sup> vs Z (top right) W<sup>-</sup> vs Z (bottom left) W vs Z (bottom right)
- Mostly good agreement between all ratios and theoretical predictions

JHEP 01 (2016) 155

UNIVERSITY OF LIVERPOOL

# Electroweak: 8 TeV vs 7 TeV ratios

- Further precision achieved by taking a ratio of W/Z ratios at different centre-of-mass energies
- Lumi. uncertainties cancel!
- Per-mille precision in theoretical predictions





(13/8, 13/7 TeV)



- Analysis strategy and selection similar to 7 and 8 TeV
- Smaller dataset (0.3 fb<sup>-1</sup>); measurement dominated by lumi. uncertainty (3.9%)
- Cross-section of  $Z \rightarrow ee$  (blue) and  $Z \rightarrow \mu\mu$  (orange) measured
- No significant deviation between data and theory observed, no PDF set favoured
- Clear statistical limitation; awaiting more data in 2016 and beyond!



JHEP 09 (2016) 136

# Electroweak: *W*,*Z* + *jet* @ 8 TeV



- Z and W selection same as before
- Select jets with:
  - 2.2 <  $\eta$  < 4.2,  $p_T$  > 20 GeV
  - W+jet p<sub>T</sub> > 20 GeV
- Uncertainties are 9% (W<sup>+</sup>+jet), 11% (W<sup>-</sup>+jet) and 5% (Z+jet); dominated by jet energy scale and purity
- Theoretical predictions: FEWZ fixed order with various PDF sets
- Good agreement between data and theory
- Additional sensitivity to quark and gluon PDFs



JHEP 05 (2016) 131

# Charm Results



# Charm: Inclusive J/ $\psi$ @ 13 TeV

Phys. J. C (2015) 75: 610 | JHEP10(2015)172



PROSA Coll. arXiv:1503.04581

LHCb

3 < v < 3.5

 $2 < p_{T} < 3 \text{ GeV/}c$ 

 $\sqrt{s} = 13 \text{ TeV}, L_{\text{int}} = 3.05 \text{ pb}^{-1}$ 



- Select muons with  $p_T > 0.7 \text{ GeV}$ , p > 3 GeV
- On the right:
  - $t_z$  used to select prompt J/ $\psi$  and J/ $\psi$ -from-b (top)
  - Invariant mass peak (bottom)





# Charm: Inclusive J/ $\psi$ @ 13 TeV



PROSA Coll. arXiv:1503.04581

Phys. J. C (2015) 75: 610 JHEP10(2015)172







## • Central Exclusive Production (CEP):

- Colliding protons do not disassociate; rather an exchange of a colourless objects (photons, pomerons) occurs
- Signature is observation of only the central event, no additional track in the acceptance, thus 'exclusive'
- Exclusively produced J/ $\psi$  and  $\psi$ (2s) can be additionally used to constrain the gluon PDF to  $x \approx 5 \cdot 10^{-6}$





- Herschel is a set of scintillating pad stations surrounding the beam-pipe on both sides of the LHCb cavern
- Increases the  $\eta$  coverage to (-8, 8)



# Charm: Exclusive J/ $\psi$ and $\psi$ (2s) @ 13 TeV



LHCb-CONF-2016-007



- Data sample: 200 pb<sup>-1</sup>
- Select 2 muons in 2 <  $\eta$  < 4.5
- Herschel veto: use Herschel to improve our ability to veto events with backwards tracks!
- Improves background suppression x2!
- Results for J/ $\psi$  (top) and  $\psi(2s)$  bottom compared to NLO and LO predictions
- Better agreement with NLO than LO
- First results encouraging, looking forward to more data and further integration of Herschel!

- Production of other inclusive prompt charm states can also put constraints on PDFs
- $D^0$ ,  $D^+$ ,  $D_s^+$ ,  $D^{*+}$  production is measured at 5 and 13 TeV
- Data sets:
  - 13 TeV (2016): 4.98 ± 0.19pb<sup>-1</sup>
  - 5 TeV (2015): 8.60 ± 0.33 pb<sup>-1</sup>
- Select mass range ±20 MeV of the known mass
- Good agreement between data and theory (POWHEG+NNPDF3.OL)
- Uncertainties increase at low pT



-I

 $10^{3}$ 

PROSA Coll. arXiv:1503.04581

NNPDF3.0L, arXiv:1506.08025

POWHEG+NNPDF3.0L

LHCb  $D^0$ 

- Differential cross section at 5 TeV as a function of  $p_T$  (results similar for 13 TeV):
  - Top:  $D^0$  [left],  $D_s^+$  [right]
  - Bottom:  $D^+$  [left],  $D^{*+}$  [right]

 $10^{-}$ 

LHCb-PAPER-2016-042

LHCb D<sup>+</sup>

POWHEG+NNPDF3.0I

 $p_{\rm T} \, [{\rm GeV}/c]$ 

JHEP09(2016)013

# Charm: Inclusive D production



PROSA Coll. arXiv:1503.04581 LHCb-PAPER-2016-042

NNPDF3.0L, arXiv:1506.08025 JHEP09(2016)013

- Again ratios at different c.o.m. energies can be taken to eliminate some uncertainties
- 13/5 TeV ratio shown:
  - Top: *D*<sup>0</sup> [left], *D*<sup>+</sup> [right]
  - Bottom:  $D_s^+$ [left],  $D^{*+}$  [right]
- Good agreement between data and theory (POWHEG+NNPDF3.OL)
- More ratios to be measured!





- PDFs have large uncertainties at low Björken-x values
- The higher the centre-of-mass energy, the lower x values that LHCb can probe
- Looking forward to analysing the full Run-II data set
- Also, anticipating further PDF constraints once LHC moves to 14 TeV
- Expecting interesting results in W and Z production and production ratios between 7, 8, 13 and 14 TeV in the future!
- Further reduction of the PDF uncertainties!
- Beyond Run-II, developments in LHCb trigger (fully software; full event reconstruction at the trigger level) expected to increase the quality and quantity of our data!





- LHCb has a **unique kinematic coverage** among the LHC experiments
- We have the ability to probe **high and low Björken-x** values
- Despite being designed as a heavy flavour experiment, LHCb has a proven track record in EW vector boson measurements
- Many vector boson and charm production measurements shown
- Along with other LHC experiments LHCb has had a great input in constraining various PDFs
- Looking forward to many more measurements in both short and long term!





- LHCb has a **unique kinematic coverage** among the LHC experiments
- We have the ability to probe **high and low Björken-x** values
- Despite being designed as a heavy flavour experiment, LHCb has a proven track record in EW vector boson measurements
- Many vector boson and charm production measurements shown
- Along with other LHC experiments LHCb has had a great input in constraining various PDFs
- Looking forward to many more measurements in both short and long term!

# Thank You!







• 
$$\frac{\delta p}{p} \sim 0.5 - 1\%$$
 for 5 - 100 GeV

- IP resolution  $20\mu m$
- PID efficiency
  - e ~90%; e  $\rightarrow h$  mis-ID ~5%
  - M ~97%;  $\pi \rightarrow \mu$  mis-ID 1-3%

•  $\bar{\mu}$  = 2.2

- + Excellent vertex resolution
- + Good lepton and hadron ID
- + Low pile-up
- + Great lumi. Determination
- **+-**Unique acceptance; not  $4\pi$
- + VELO backwards coverage  $-3.5 < \eta < -1.5$
- Cannot use E-miss or  $p_T$ -miss
- Low instantaneous lumi.





- 7 TeV (JHEP 02 (2013) 106; JHEP 08 (2015) 039)
  - $\sigma(Z \rightarrow ee) = 76.0 \pm 0.8 \text{ (stat)} \pm 2.0 \text{ (sys)} \pm 2.6 \text{ (lumi)} \pm 0.4 \text{ (FSR) pb}$
  - $\sigma(Z \rightarrow \mu \mu) = 76.0 \pm 0.3 \text{ (stat)} \pm 0.5 \text{ (sys)} \pm 1.0 \text{ (beam)} \pm 1.3 \text{ (lumi) pb}$
- 8 TeV (JHEP 05 (2015) 109)
  - $\sigma(Z \rightarrow \mu \mu) = 95.0 \pm 0.3 \text{ (stat)} \pm 0.7 \text{ (sys)} \pm 1.1 \text{ (beam)} \pm 1.1 \text{ (lumi) pb}$
  - $\sigma(Z \rightarrow \ell \ell) = 94.9 \pm 0.2 \text{ (stat)} \pm 0.6 \text{ (sys)} \pm 1.1 \text{ (beam)} \pm 1.1 \text{ (lumi) pb}$
- 13 TeV (JHEP09 (2016) 136)
  - $\sigma(Z \rightarrow ee) = 190.2 \pm 0.9 \text{ (stat)} \pm 4.7 \text{ (sys)} \pm 7.7 \text{ (lumi) pb}$
  - $\sigma(Z \rightarrow \mu \mu) = 198.0 \pm 1.7 \text{ (stat)} \pm 4.7 \text{ (sys)} \pm 7.4 \text{ (lumi) pb}$
  - $\sigma(Z \rightarrow \ell \ell) = 194.3 \pm 0.9 \text{ (stat)} \pm 3.3 \text{ (sys)} \pm 7.6 \text{ (lumi) pb}$





- 7 TeV (JHEP 08 (2015) 039)
  - $\sigma(W^+ \rightarrow \mu^+ v) = 878.0 \pm 2.1 \text{ (stat)} \pm 6.7 \text{ (sys)} \pm 9.3 \text{ (beam)} \pm 15.0 \text{ (lumi) pb}$
  - $\sigma(W \rightarrow \mu^{-} \nu) = 689.5 \pm 2.0 \text{ (stat)} \pm 5.3 \text{ (sys)} \pm 6.3 \text{ (beam)} \pm 11.8 \text{ (lumi) pb}$
- 8 TeV (JHEP 01 (2016) 155)
  - $\sigma(W^+ \rightarrow \mu^+ \nu) = 1093.6 \pm 2.1 \text{ (stat)} \pm 7.2 \text{ (sys)} \pm 10.9 \text{ (beam)} \pm 12.7 \text{ (lumi) pb}$
  - $\sigma(W \rightarrow \mu v) = 818.4 \pm 1.9 \text{ (stat)} \pm 5.0 \text{ (sys)} \pm 7.0 \text{ (beam)} \pm 9.5 \text{ (lumi) pb}$
  - $\sigma(W^+ \rightarrow e^+ ve) = 1124.4 \pm 2.1 \text{ (stat)} \pm 21.5 \text{ (sys)} \pm 11.2 \text{ (beam)} \pm 13.0 \text{ (lumi) pb}$
  - $\sigma(W^- \rightarrow e^- ve) = 809.0 \pm 1.9 \text{ (stat)} \pm 18.1 \text{ (sys)} \pm 7.0 \text{ (beam)} \pm 9.4 \text{ (lumi) pb}$