INFN Frascati: 29/II-2/I2/20I6.

"POLARIZATION EFFECTS IN HADRONIZATION"

Collaborators: A. Kotzinian and A.W. Thomas.

O COEPP

Hrayr Matevosyan
** THE UNIVERSITY

Sus cruce LUME

Outlook

* Introduction and Motivation.
* Short Overview of models for polarized fragmentation functions.

Quark-jet model.

* Recent Results from Monte Carlo Simulations: both single and dihadron FFs. Can we learn about hadronization mechanisms from polarized FFs?
* Conclusions.

TMD FFs and Collins Fragmentation Function

- Unpolarized TMD FF: number density for quark q to produce unpolarized hadron h carrying LC fraction \mathbf{Z} and $\mathrm{TM} \boldsymbol{P}_{\perp}$.

- Collins Effect: Azimuthal Modulation of Transversely Polarized Quark' FF. Fragmenting quark's transverse spin couples with produced hadron's TM!

$$
D_{h / q^{\uparrow}}\left(z, P_{\perp}^{2}, \varphi\right)=D_{1}^{h / q}\left(z, P_{\perp}^{2}\right)-H_{1}^{\perp h / q}\left(z, P_{\perp}^{2}\right) \frac{P_{\perp} S_{q}}{z m_{h}} \sin (\varphi)
$$

Unpolarized

- Collin FF is Chiral-ODD: Should to be coupled with another chiral-odd PDF/FF in observables.

TMD FFs for Spin-0 and Spin-I/2 Hadrons

* The transverse momentum (TM) of the hadron can couple with both its own spin and the spin of the quark!

$$
F^{q \rightarrow \pi}\left(z, \boldsymbol{p}_{\perp} ; \boldsymbol{s}\right)
$$

π / \mathbf{q}	U	L	T
U	D_{1}		H_{1}^{\perp}

$$
F^{q \rightarrow h^{\uparrow}}\left(z, \mathbf{p}_{\perp} ; \mathbf{s}, \mathbf{S}\right)
$$

h / \mathbf{q}	\mathbf{U}	\mathbf{L}	\mathbf{T}
\mathbf{U}	D_{1}		H_{1}^{\perp}
\mathbf{L}		$G_{1 L}$	$H_{1 L}^{\perp}$
\mathbf{T}	$D_{1 T}^{\perp}$	$G_{1 T}$	$H_{1 T} H_{1 T}^{\perp}$

\downarrow TMD Polarized Fragmentation Functions at LO.

- Only two for unpolarised final state hadrons.
- 8 for spin I/2 final state (including quark). Similar to TMD PDFs.

Field-Theoretical Definitions

- The quark-quark correlator.

$$
\begin{aligned}
& \left.\Delta^{[\Gamma]}\left(z, \vec{p}_{T}\right) \equiv \frac{1}{4} \int \frac{d p^{+}}{(2 \pi)^{4}} \operatorname{Tr}[\Delta \Gamma]\right|_{p^{-}=z k^{-}} \\
& \quad=\frac{1}{4 z} \sum_{X} \int \frac{d \xi^{+} d^{2} \vec{\xi}_{T}}{2(2 \pi)^{3}} e^{i\left(p^{-} \xi^{+} / z-\vec{\xi}_{T} \cdot \vec{p}_{T}\right)}\langle 0| \psi\left(\xi^{+}, 0, \vec{\xi}_{T}\right)\left|p, S_{h}, X\right\rangle\left\langle p, S_{h}, X\right| \bar{\psi}(0) \Gamma|0\rangle
\end{aligned}
$$

- The definitions of FFs from the quark correlator

$$
\begin{aligned}
& \Delta^{\left[\gamma^{+}\right]}=D\left(z, p_{\perp}^{2}\right)-\frac{1}{M} \epsilon^{i j} k_{T i} S_{T j} D_{T}^{\perp}\left(z, p_{\perp}^{2}\right) \\
& \Delta^{\left[\gamma^{+} \gamma_{5}\right]}= S_{L} G_{L}\left(z, p_{\perp}^{2}\right)+\frac{\boldsymbol{k}_{T} \cdot S_{T}}{M} G_{T}\left(z, p_{\perp}^{2}\right) \\
& \Delta^{\left[i \sigma^{i+} \gamma_{5}\right]}= S_{T}^{i} H_{T}\left(z, p_{\perp}^{2}\right)+\frac{S_{L}}{M} k_{T}^{i} H_{L}^{\perp}\left(z, p_{\perp}^{2}\right) \\
& \quad+\frac{k_{T}^{i}\left(\boldsymbol{k}_{T} \cdot S_{T}\right)}{M^{2}} H_{T}^{\perp}\left(z, p_{\perp}^{2}\right)-\frac{\epsilon^{i j} k_{T j}}{M} H^{\perp}\left(z, p_{\perp}^{2}\right)
\end{aligned}
$$

Current Challenges

I) Phenomenological Extractions of TMD FF.

- Still Large Uncertainties.
- Simplistic Approximations.
- Limited kinematic region.

2) Full Event Generators:

Anselmino et al: PRD 92, II 4023 (20|5).

- No Mainstream MC generator includes spin in Full Hadronization: PYTHIA, HERWIG, SHERPA...
- MC generators are needed to support mapping of the 3D structure of nucleon at JLabl2, BELLE II, EIC.

Modelling Hadronization with Spin: The Objectives.

I) Phenomenological Extractions of TMD FFs.

- Quantitative extract. of fav. and unfav. polarised TMD FF. Provide guidance for empirical fits to data.
- Both single and dihadron FFs in the same framework!

2) Interpretation in Full Event Generators:

- Probabilistic Mechanism for Full Hadronization.
- Iterative picture for MC framework: spin transfer!
- Should not break any of the unpolarised observables! (PYTHIA fits to existing data, etc.)

(SOME of the) MODELS FOR FRAGMENTATION

- Lund String Model
- Very Successful implementation in JETSET, PYTHIA.
- Highly Tunable.
- Spin Effects - see X.Artru's talk.
- Spectator Model

- Quark model calculations with empirical form factors.
- No unfavored fragmentations.
- Need to tune parameters for small z dependence.

- NJL-jet Model
- Multi-hadron emission framework with effective quark model input.
- Monte-Carlo framework allows flexibility in including the transverse momentum,
 spin effects, two-hadron correlations, etc.

Jet exhaust is ignited at the afterburner, producing a second stage of combustion and a stream of powerful yet fuel inefficient thrust. Military combat aircraft use afterburner in short bursts during takeoff, climb, or combat maneuvers.

The afterburner assembly is placed behind the core of the jet engine, at the front of the jet pipe.

Additional fuel is sprayed into the jet pipe where it mixes with air from the jet engine. The mixture is ignited for combustion.

The jet pipe houses jet engine exhaust gasses and the afterburner combustion process.

The exhaust nozzle is adjustable for maximum exhaust acceleration and to avoid back-pressure (pressure originating from the rear end of the engine being exerted on forward engine parts).

POLARISATION IN QUARK-JET FRAMEWORK

COLLINS FRAGMENTATION FUNCTION IN QUARK-JET

H.M.,Bentz, Thomas, PRD.86:034025, (20I2). H.M., Kotzinian, Thomas, PLB73I 208-2I6 (2014).

- Extend Quark-jet Model to include Spin.

$$
D_{h / q^{\uparrow}}\left(z, P_{\perp}^{2}, \varphi\right) \Delta z \frac{\Delta P_{\perp}^{2}}{2} \Delta \varphi=\left\langle N_{q^{\uparrow}}^{h}\left(z, z+\Delta z ; P_{\perp}^{2}, P_{\perp}^{2}+\Delta P^{2} ; \varphi, \varphi+\Delta \varphi\right)\right\rangle
$$

- Input Elementary Collins Function: Model or Parametrization
- Calc. Spin of the remnant quark: \mathbf{S}^{\prime}

Previously: constant values for spin flip probability: $\mathcal{P}_{S F}$

\checkmark Use fit form to extract unpol. and Collins FFs from $D_{h / q^{\uparrow}}$.

$$
\begin{gathered}
F\left(c_{0}, c_{1}\right) \equiv c_{0}-c_{1} \sin \left(\varphi_{C}\right) \\
D_{h / q^{\uparrow}}\left(z, p_{\perp}^{2}, \varphi\right)=D^{h / q}\left(z, p_{\perp}^{2}\right)-H^{\perp h / q}\left(z, p_{\perp}^{2}\right) \frac{p_{\perp} s_{T}}{z m_{h}} \sin \left(\varphi_{C}\right)
\end{gathered}
$$

COLLINS FRAGMENTATION FUNCTION IN QUARK-JET

H.M.,Bentz, Thomas, PRD.86:034025, (20I2). H.M., Kotzinian, Thomas, PLB73I 208-2I6 (2014).

- Extend Quark-jet Model to include Spin.

$$
D_{h / q^{\uparrow}}\left(z, P_{\perp}^{2}, \varphi\right) \Delta z \frac{\Delta P_{\perp}^{2}}{2} \Delta \varphi=\left\langle N_{q^{\uparrow}}^{h}\left(z, z+\Delta z ; P_{\perp}^{2}, P_{\perp}^{2}+\Delta P^{2} ; \varphi, \varphi+\Delta \varphi\right)\right\rangle
$$

- Input Elementary Collins Function: Model or Parametrization
- Calc. Spin of the remnant quark: \mathbf{S}^{\prime} Previously: constant values for spin flip probability: $\mathcal{P}_{S F}$

\downarrow Use fit form to extract unpol. and Collins FFs from $D_{h / q^{\uparrow}}$.

$$
\begin{gathered}
F\left(c_{0}, c_{1}\right) \equiv c_{0}-c_{1} \sin \left(\varphi_{C}\right) \\
D_{h / q^{\uparrow}}\left(z, p_{\perp}^{2}, \varphi\right)=D^{h / q}\left(z, p_{\perp}^{2}\right)-H^{\perp h / q}\left(z, p_{\perp}^{2}\right) \frac{p_{\perp} s_{T}}{z m_{h}} \sin \left(\varphi_{C}\right)
\end{gathered}
$$

COLLINS EFFECT - NJL-jet MKII

MKII Model Assumptions:

H.M., Kotzinian, Thomas, PLB73I 208-2I6 (2014).
I. Allow for Collins Effect only in a SINGLE emission vertex (N_{L}^{-1} scaling of the resulting Collins function). 2. Use constant values for spin flip probability: $\mathcal{P}_{S F}$.
3. Extreme ansatz for the elem. Collins function: $d_{h / q^{\uparrow}}\left(z, \mathbf{p}_{\perp}\right)=d_{1}^{h / q}\left(z, p_{\perp}^{2}\right)(1-0.9 \sin \varphi)$
\checkmark First-ever model calc. for two-hadron modulations induced by Collins effect!

\checkmark NJL-jet model results are consistent with COMPASS data on interplay between one- and two- hadron SSAs.

Spin Transfer in quark-jet Framework.

-NJL-jet MKIII:

- The probability for the process $q \rightarrow Q$, initial spin \mathbf{s} to \mathbf{S}

$$
F^{q \rightarrow Q}\left(z, \mathbf{p}_{\perp} ; \mathbf{s}, \mathbf{S}\right)=\alpha_{\mathbf{s}}+\boldsymbol{\beta}_{\mathbf{s}} \cdot \mathbf{S}
$$

- Intermediate quarks in quark-jet are unobserved!

Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii: QUANTUM ELECTRODYNAMICS (1982).

$$
\begin{aligned}
F^{q \rightarrow Q}\left(z, \mathbf{p}_{\perp} ; \mathbf{s}, \mathbf{S}\right) & \sim \operatorname{Tr}\left[\rho^{\mathbf{S}^{\prime}} \rho^{\mathbf{S}}\right] \sim 1+\mathbf{S}^{\prime} \cdot \mathbf{S} \\
\mathbf{S}^{\prime}=\frac{\boldsymbol{\beta}_{\mathbf{s}}}{\alpha_{\mathbf{s}}} &
\end{aligned}
$$

- Remnant quark's \mathbf{S}^{\prime} uniquely determined by z, \mathbf{p}_{\perp} and s !
- Process probability is the same as transition to unpolarized state.

$$
F^{q \rightarrow Q}\left(z, \mathbf{p}_{\perp} ; \mathbf{s}, \mathbf{0}\right)=\alpha_{s}
$$

Example: Pion production.

\downarrow We can express the spin of the remnant quark $\mathbf{S}^{\prime}=\frac{\beta_{\mathrm{s}}}{\alpha_{\mathrm{s}}}$ in terms of quark-to-quark TMD FFs.

$$
\begin{aligned}
\alpha_{q} \equiv & D\left(z, \boldsymbol{p}_{\perp}^{2}\right)+\left(\boldsymbol{p}_{\perp} \times \boldsymbol{s}_{T}\right) \cdot \hat{z} \frac{1}{z \mathcal{M}} H^{\perp}\left(z, \boldsymbol{p}_{\perp}^{2}\right) \\
\beta_{q \|} \equiv & s_{L} G_{L}\left(z, \boldsymbol{p}_{\perp}^{2}\right)-\left(\boldsymbol{p}_{\perp} \cdot s_{T}\right) \frac{1}{z \mathcal{M}} H_{L}^{\perp}\left(z, \boldsymbol{p}_{\perp}^{2}\right) \\
\boldsymbol{\beta}_{q \perp} \equiv & \boldsymbol{p}_{\perp}^{\prime} \frac{1}{z \mathcal{M}} D_{T}^{\perp}\left(z, \boldsymbol{p}_{\perp}^{2}\right)-\boldsymbol{p}_{\perp} \frac{1}{z \mathcal{M}} s_{L} G_{T}\left(z, \boldsymbol{p}_{\perp}^{2}\right) \\
& +\boldsymbol{s}_{T} H_{T}\left(z, \boldsymbol{p}_{\perp}^{2}\right)+\boldsymbol{p}_{\perp}\left(\boldsymbol{p}_{\perp} \cdot s_{T}\right) \frac{1}{z^{2} \mathcal{M}^{2}} H_{T}^{\perp}\left(z, \boldsymbol{p}_{\perp}^{2}\right)
\end{aligned}
$$

$$
F^{q \rightarrow Q}\left(z, \boldsymbol{p}_{\perp} ; \boldsymbol{s}, \boldsymbol{S}\right)
$$

Q/q	U	\mathbf{L}	\mathbf{T}
\mathbf{U}	D_{1}		H_{1}^{\perp}
\mathbf{L}		$G_{1 L}$	$H_{1 L}^{\perp}$
\mathbf{T}	$D_{1 T}^{\perp}$	$G_{1 T}$	$H_{1 T} H_{1 T}^{\perp}$

Example: Pion prod. up to Rank 2

\downarrow Only consider pion produced in the first two emission steps!
\checkmark Then the polarised number density is

$$
F^{(2) q \rightarrow \pi}=f^{\text {Ist rank }}+\begin{gathered}
\text { 2nd rank } \\
f^{q \rightarrow Q} \otimes f^{Q \rightarrow \pi}
\end{gathered}
$$

« "Elementary" number densities: only favoured types are non-zero.

$$
f^{q \rightarrow \pi}=d^{q \rightarrow \pi}-\frac{p_{\perp}}{z M_{h}} s_{T} h_{1}^{\perp q \rightarrow \pi}
$$

$$
f^{u \rightarrow \pi^{-}}=0
$$

- It is shown analytically that only Collins modulations appear!

$$
F^{(2) q \rightarrow \pi}\left(z, p_{\perp}^{2}, \varphi_{C}\right)=F_{0}^{(2)}\left(z, p_{\perp}^{2}\right)-\sin \left(\varphi_{C}\right) F_{1}^{(2)}\left(z, p_{\perp}^{2}\right)
$$

Example: Pion prod. up to Rank 2

- It is shown analytically that only Collins modulations appear!

$$
F^{(2) q \rightarrow \pi}\left(z, p_{\perp}^{2}, \varphi_{C}\right)=F_{0}^{(2)}\left(z, p_{\perp}^{2}\right)-\sin \left(\varphi_{C}\right) F_{1}^{(2)}\left(z, p_{\perp}^{2}\right)
$$

\uparrow Up to unspecified coefficients, using.
Unpolarised term:
From TM-induced Spin of intermediate quark

$$
F_{0}^{(2) q \rightarrow \pi}=d^{q \rightarrow \pi}+\left(d^{q \rightarrow Q} \otimes d^{Q \rightarrow \pi}+d_{T}^{\perp q \rightarrow Q} \otimes h^{\perp Q \rightarrow \pi}\right)
$$

Collins term:

"Recoil" TM contribution

$F_{1}^{(2) q \rightarrow \pi} \sim h^{\perp q \rightarrow \pi}+\left[h^{\perp q \rightarrow Q} \otimes d^{Q \rightarrow \pi}+\left(h_{T}^{q \rightarrow Q}+h_{T}^{\perp q \rightarrow Q}\right) \otimes h^{\perp Q \rightarrow \pi}\right]$
\downarrow Reminder
Transferred Spin of intermediate quark

Q / q	U	L	T
U	D_{1}		H_{1}^{\perp}
L		$G_{1 L}$	$H_{1 L}^{\perp}$
T	$D_{1 T}^{\perp}$	$G_{1 T}$	$H_{1 T} H_{1 T}^{\perp}$

Integral Equations

\uparrow In the limit of infinite produced hadrons, we can derive integral equations for the FFs within quark-jet framework.

- Unpolarized FF

$$
\begin{aligned}
D^{(q \rightarrow \pi)}\left(z, \mathbf{p}_{\perp}^{2}\right)= & \hat{d}^{(q \rightarrow \pi)}\left(z, \mathbf{p}_{\perp}^{2}\right)+2 \int \mathcal{D}^{2} \eta \int \mathcal{D}^{4} p_{\perp} \delta\left(z-\eta_{1} \eta_{2}\right) \delta^{(2)}\left(\mathbf{p}_{\perp}-\mathbf{p}_{2 \perp}-\eta_{2} \mathbf{p}_{1 \perp}\right) \\
& \times\left[\hat{d}^{(q \rightarrow Q)}\left(\eta_{1}, \mathbf{p}_{1 \perp}^{2}\right) D^{(Q \rightarrow \pi)}\left(\eta_{2}, \mathbf{p}_{2 \perp}^{2}\right)+\frac{1}{M m_{\pi} z}\left(\mathbf{p}_{1 \perp} \cdot \mathbf{p}_{2 \perp}\right) \hat{d}_{T}^{\perp(q \rightarrow Q)}\left(\eta_{1}, \mathbf{p}_{1 \perp}^{2}\right) H^{\perp(Q \rightarrow \pi)}\left(\eta_{2}, \mathbf{p}_{2 \perp}^{2}\right)\right]
\end{aligned}
$$

Collins FF

$$
\begin{aligned}
\left(\mathbf{p}_{\perp} \times \mathbf{s}_{T}\right)^{3} H^{\perp(q \rightarrow \pi)}\left(z, \mathbf{p}_{\perp}^{2}\right)= & \left(\mathbf{p}_{\perp} \times \mathbf{s}_{T}\right)^{3} \hat{h}^{\perp(q \rightarrow \pi)}\left(z, \mathbf{p}_{\perp}^{2}\right)+2 \int \mathcal{D}^{2} \eta \int \mathcal{D}^{4} p_{\perp} \delta\left(z-\eta_{1} \eta_{2}\right) \delta^{(2)}\left(\mathbf{p}_{\perp}-\mathbf{p}_{2 \perp}-\eta_{2} \mathbf{p}_{1 \perp}\right) \\
& \times\left[\frac{m_{\pi}}{M} \eta_{2}\left(\mathbf{p}_{1 \perp} \times \mathbf{s}_{T}\right)^{3} \hat{h}^{\perp(q \rightarrow Q)}\left(\eta_{1}, \mathbf{p}_{1 \perp}^{2}\right) D^{(Q \rightarrow \pi)}\left(\eta_{2}, \mathbf{p}_{2 \perp}^{2}\right)\right. \\
& +\left(\eta_{1}\left(\mathbf{p}_{2 \perp} \times \mathbf{s}_{T}\right)^{3} \hat{h}_{T}^{(q \rightarrow Q)}\left(\eta_{1}, \mathbf{p}_{1 \perp}^{2}\right)-\frac{1}{M^{2} \eta_{1}}\left(\mathbf{s}_{T} \cdot \mathbf{p}_{1 \perp}\right)\right. \\
& \left.\left.\times\left(\mathbf{p}_{1 \perp} \times \mathbf{p}_{2 \perp}\right)^{3} \hat{h}_{T}^{\perp(q \rightarrow Q)}\left(\eta_{1}, \mathbf{p}_{1 \perp}^{2}\right)\right) H^{\perp(Q \rightarrow \pi)}\left(\eta_{2}, \mathbf{p}_{2 \perp}^{2}\right)\right]
\end{aligned}
$$

MC Simulation of Full Hadronization

HM et al, arXiv: | 6 | 0.05624
\downarrow We can consider many hadron emissions.

- We can sample the $h, z, p_{\perp}^{2}, \varphi_{h}$ using

$$
f^{q \rightarrow h}\left(z, p_{\perp}^{2}, \varphi_{h} ; \mathbf{S}_{T}\right)
$$

\checkmark Determine the momenta in the initial frame and calculate

$$
\left.D_{h / q^{\uparrow}}\left(z, P_{\perp}^{2}, \varphi\right) \Delta z \frac{\Delta P_{\perp}^{2}}{2} \Delta \varphi=\left\langle N_{q^{\uparrow}}^{h} \uparrow z, z+\Delta z ; P_{\perp}^{2}, P_{\perp}^{2}+\Delta P^{2} ; \varphi, \varphi+\Delta \varphi\right)\right\rangle
$$

\uparrow Calculate the remnant quark's spin: $\mathbf{S}^{\prime}=\frac{\boldsymbol{\beta}_{\mathrm{s}}}{\alpha_{\mathrm{s}}}$
\uparrow We only need the "elementary" splittings.

$$
f^{q \rightarrow h} \quad f^{q \rightarrow Q}
$$

Model Calculations of $q \rightarrow Q$ Splittings

\uparrow We can use the same "spectator" type calculations as for pion.

T-even

T-odd

$$
q \rightarrow h
$$

$$
q \rightarrow Q
$$

\uparrow Positivity Constraints on TMD FFs:

$$
\begin{aligned}
& \left(H_{L}^{\perp[1]}\right)^{2}+\left(D_{T}^{\perp[1]}\right)^{2} \leq \frac{p_{\perp}^{2}}{4 z^{2} M^{2}}\left(D+G_{L}\right)\left(D-G_{L}\right) \leq \frac{p_{\perp}^{2}}{4 z^{2} M^{2}} D^{2} \\
& \left(G_{T}^{[1]}\right)^{2}+\left(H^{\perp[1]}\right)^{2} \leq \frac{p_{\perp}^{2}}{4 z^{2} M^{2}}\left(D+G_{L}\right)\left(D-G_{L}\right) \leq \frac{p_{\perp}^{2}}{4 z^{2} M^{2}} D^{2}
\end{aligned}
$$

\checkmark T-odd parts from previous models violate positivity!

$$
\begin{gathered}
\left(\hat{G}_{T}^{[1]}\right)^{2}=\left(\hat{H}_{L}^{\perp[1]}\right)^{2}=\frac{p_{\perp}^{2}}{4 z^{2} M^{2}}\left(\hat{D}+\hat{G}_{L}\right)\left(\hat{D}-\hat{G}_{L}\right) \leq \frac{p_{\perp}^{2}}{4 z^{2} M^{2}} \hat{D}^{2} \\
\hat{H}^{\perp}\left(z, p_{\perp}^{2}\right)=0, \quad \hat{D}_{T}^{\perp}\left(z, p_{\perp}^{2}\right)=0 .
\end{gathered}
$$

Model Calculations of $q \rightarrow Q$ Splittings

\checkmark Simple Model that is positive-definite:

$$
\hat{d}\left(z, p_{\perp}^{2}\right)=\ddot{\dot{1} . \dot{1}: \hat{d}_{\text {tree }}\left(z, p_{\perp}^{2}\right), ~, ~}
$$

↔ Use Collins-ansatz for T-odd
J. C. Collins, NPB 396, I6I (1993)

$$
\begin{gathered}
\frac{p_{\perp}}{z M} \frac{\hat{h}^{\perp(q \rightarrow h)}\left(z, p_{\perp}^{2}\right)}{\hat{d}^{(q \rightarrow h)}\left(z, p_{\perp}^{2}\right)}=: \cdot \cdot \cdot: \cdot \frac{2 p_{\perp} M_{Q}}{p_{\perp}^{2}+M_{Q}^{2}} \\
d_{T}^{\perp}=-h^{\perp}
\end{gathered}
$$

\downarrow Ensures the inequalities

$$
\begin{aligned}
&\left(H_{L}^{\perp[1]}\right)^{2}+\left(D_{T}^{\perp[1]}\right)^{2} \leq \frac{p_{\perp}^{2}}{4 z^{2} M^{2}}\left(D+G_{L}\right)\left(D-G_{L}\right) \\
& \leq \frac{p_{\perp}^{2}}{4 z^{2} M^{2}} D^{2} \\
&\left(G_{T}^{[1]}\right)^{2}+\left(H^{\perp[1]}\right)^{2} \leq \frac{p_{\perp}^{2}}{4 z^{2} M^{2}}\left(D+G_{L}\right)\left(D-G_{L}\right) \leq \frac{p_{\perp}^{2}}{4 z^{2} M^{2}} D^{2}
\end{aligned}
$$

* Also: Evolution - mimicking ansatz

$$
\hat{d}^{\prime}\left(z, p_{\perp}^{2}\right)=(1-z)^{4} \hat{d}\left(z, p_{\perp}^{2}\right)
$$

VALIDATION TESTS

Recoil TM Contribution: Rank 2 Hadron

- Full vs "Recoil TM" contributions:
- Simulate by depolarizing quark after the first emission $\mathrm{S}^{\prime}=0$.

$\begin{array}{cc}F_{1}^{(2) q \rightarrow \pi} \sim h^{\perp q \rightarrow \pi}+\left[h^{\perp q \rightarrow Q} \otimes d^{Q \rightarrow \pi}+\left(h_{T}^{q \rightarrow Q}+h_{T}^{\perp_{q}^{z}}\right) \otimes Q\right. \\ \text { "Recoil" TM contribution } & \text { Transferred Spin of intermediate quark }\end{array}$
\checkmark Recoil TM contribution has distinct z dependence!

Higher Order Modulations

\checkmark The FFs should be linear functions of s ! This means linear dependence on sine of Collins angle φ_{C}.

$$
F\left(c_{0}, c_{1}\right) \equiv c_{0}-c_{1} \sin \left(\varphi_{C}\right)
$$

- Also test a simple anstaz: spin Flip

$$
\mathcal{P}_{S F}=1 \quad S_{T}^{\prime}=-S_{T}
$$

- High precision tests: 10^{12} events for 2 hadron emissions!
- Fit polarized FF for each z: ~ 300 fits.
\checkmark Linearity on the transverse spin is confirmed at high precision !

X Simplistic spin flip ansatz results in unphysical results !

RESULTS
COLLINS EFFECT IN QUARK-JET MODEL

Saturations of FFs with h Rank

\uparrow FFs vs Rank of produced hadron.

- NJL Model

- Evolution-mimicking Ansatz.

\checkmark Hadrons of Rank > 4 are negligible for FFs at z>0.1

MC Simulation in Toy Model

HM et al, arXiv:1610.05624

- NJL Model

- Evolution-mimicking Ansatz.

MC Simulation in Toy Model

HM et al, arXiv:1610.05624

\uparrow Opposite sign and similar size in mid-z range for charged pions. (Similar to empirical extractions).
\uparrow Dependence on model inputs: can be tuned to data.

TWO HADRON CORRELATIONS:
DIHADRON FRAGMENTATION FUNCTIONS

TWO-HADRON FRAGMENTATION

A. Bacchetta, M. Radici: PRD 69, 074026 (2004).
\downarrow Total and Relative TM of hadron pair.

$$
\binom{\mathbf{P}_{T}=\mathbf{P}_{h_{1}}^{\perp}+\mathbf{P}_{h_{2}}^{\perp}}{\mathbf{R}=\left(\mathbf{P}_{h_{1}}^{\perp}-\mathbf{P}_{h_{2}}^{\perp}\right) / 2}
$$

\uparrow Correlation of the transverse polarisation of quark and one of the momenta:

$$
\begin{aligned}
& D_{q^{\uparrow}}^{h_{1} h_{2}}\left(\varphi_{R}\right)=D_{q}^{h_{1} h_{2}}+s_{T} \sin \left(\varphi_{R}-\varphi_{S}\right) \mathcal{F}\left[H^{\varangle}, H^{\perp}\right] \\
& D_{q^{\uparrow}}^{h_{1} h_{2}}\left(\varphi_{T}\right)=D_{q}^{h_{1} h_{2}}+s_{T} \sin \left(\varphi_{T}-\varphi_{S}\right) \mathcal{F}^{\prime}\left[H^{\varangle}, H^{\perp}\right]
\end{aligned}
$$

\downarrow Correlation of the longitudinal polarisation of quark and both momenta:

$$
\begin{gathered}
D_{q \rightarrow}^{h_{1} h_{2}}\left(\varphi_{R-T}\right)=D_{q}^{h_{1} h_{2}}\left[\cos \left(\varphi_{R-T}\right)\right]+s_{L} \sin \left(\varphi_{R-T}\right) \mathcal{G}\left[\cos \left(\varphi_{R-T}\right)\right] \\
\varphi_{R-T} \equiv \varphi_{R}-\varphi_{T}
\end{gathered}
$$

Transverse Spin

\downarrow Results for unpolarized DiFF and analysing power, impose cut $z_{1,2} \geq 0.1$

- NJL Model

\downarrow Destructive interference with increasing $\mathbf{N}_{\llcorner }$!

Collins and IFF

\uparrow Comparing the analysing powers for Collins effect and IFFs.

- Evolution-mimicking Ansatz.

Longitudinal Polarisation in DiHadron FFs

Longitudinal Spin

\uparrow FF for longitudinally polarized quark: $(\mathbf{R} \times \mathbf{T}) \cdot \mathbf{S}_{L}$

$$
\begin{gathered}
D_{q \rightarrow}^{h_{1} h_{2}}\left(\varphi_{R-T}\right)=D_{q}^{h_{1} h_{2}}\left[\cos \left(\varphi_{R-T}\right)\right]+s_{L} \sin \left(\varphi_{R-T}\right) \mathcal{G}\left[\cos \left(\varphi_{R-T}\right)\right] \\
\varphi_{R-T} \equiv \varphi_{R}-\varphi_{T}
\end{gathered}
$$

\downarrow Proof of linear dependence on $\mathbf{s}_{L}: 9$ values of $\left(s_{L}, \mathbf{s}_{T}\right)$ for $N_{L}=6$.

Cross-check for unpolarized DiFF

\uparrow Results for unpolarized DiFF and analysing power, impose cut $z_{1,2} \geq 0.1$

- NJL Model

- Evolution-mimicking Ansatz.

$\uparrow z_{1,2} \geq 0.1$ cut enhances the analysing power at high-z for larger $\mathbf{N}_{\mathbf{L}}$!

Analysing Power for Longitudinal Spin

\uparrow Comparing the analysing power for Collins effect and IFFs.

- NJL Model

- Evolution-mimicking Ansatz.

\downarrow Might explain BELLE results.
Phys.Rev.Lett. 107 (20II) 072004 PoS DIS20I5 (2015) 216

$$
\sim H_{q}^{\varangle}\left(z_{1}, m_{1}^{2}\right) H_{\bar{q}}^{\varangle}\left(z_{2}, m_{2}^{2}\right)
$$

$$
\sim G_{q}^{\perp}\left(z_{1}, m_{1}^{2}\right) G_{\bar{q}}^{\perp}\left(z_{2}, m_{2}^{2}\right)
$$

FUTURE PLANS

THE EFFECT OFVECTOR MESONS (VI)

- A naive assumption:VMs should have modest contribution due to relatively small production probability $P\left(\pi^{+}\right) / P\left(\rho^{+}\right) \approx 1.7$
- But: Combinatorial factors enhance VM contribution significantly!
- Let's consider only two hadron emission

Direct: $u \rightarrow d+\pi^{+} \rightarrow u+\pi^{-}+\pi^{+}$
$V M:$

$$
\begin{aligned}
& u \rightarrow d+\pi^{+} \rightarrow u+\rho^{-}+\pi^{+} \\
& u \rightarrow u+\rho^{0} \rightarrow u+\pi^{-} \rightarrow \pi^{0} \\
& u \rightarrow \rho^{0}+\rho^{0} \rightarrow \pi^{+} \pi^{-} \\
& \operatorname{li}^{+} \pi^{-}
\end{aligned}
$$

$$
P_{D i r}\left(\pi^{+} \pi^{-}\right) / P_{V M}\left(\pi^{+} \pi^{-}\right) \approx \frac{1}{4}
$$

Effect of Vector Mesons on Unpol. DiFFs

Conclusions

(Polarised) TMD FFs provide a wealth of information about the spin-spin and spin-momentum correlations in hadronisation.

* Hadronization Models are needed to calculate polarised FFs and study various correlations (Collins and IFF, etc).
* Polarised hadronisation in MC generators: support for future experiments to map the 3D structure of nucleon (COMPASS, JLabl2, BELLE II, EIC).
* The NJL-jet model provides a robust and extendable framework for microscopic description of hadronization using MC: TMD, Collins, DiHadron.
* All 3 Di-Hadron spin correlations from single-hadron effects in quark-jet!
* The extension of the underlying quark-jet mechanism to include polarisation can be incorporated into mainstream MC frameworks.
* Inclusion of vector mesons in polarized hadronization is the next step to accurately describe di-hadron effects.

Thanks!

BACKUP SLIDES

Fragmentation Functions

- The non-perturbative, universal functions encoding parton hadronization are the: Fragmentation Functions (FF).

$$
\frac{1}{\sigma} \frac{d}{d z} \sigma\left(e^{-} e^{+} \rightarrow h X\right)=\sum_{i} \mathcal{C}_{i}\left(z, Q^{2}\right) \otimes D_{i}^{h}\left(z, Q^{2}\right)
$$

- Unpolarized FF is the number density for parton i to produce hadron h with LC momentum fraction z.

$$
D_{i}^{h}\left(z, Q^{2}\right)
$$

- z is the light-cone mom. fraction of the parton carried by the hadron

$$
z=\frac{p^{-}}{k^{-}} \approx z_{h}=\frac{2 E_{h}}{Q} \quad a^{ \pm}=\frac{1}{\sqrt{2}}\left(a^{0} \pm a^{3}\right)
$$

FACTORIZATION AND UNIVERSALITY

- SEMI INCLUSIVE DIS (SIDIS)

$$
\begin{aligned}
& \sigma^{e P \rightarrow e h X}=\sum_{q} f_{q}^{P} \otimes \sigma^{e q \rightarrow e q} \otimes D_{q}^{h} \\
& \cdot e^{+} e^{-} \\
& \sigma^{e^{+} e^{-} \rightarrow h X}=\sum_{q} \sigma^{e^{+} e^{-} \rightarrow q \bar{q}} \otimes\left(D_{q}^{h}+D_{\bar{q}}^{h}\right)
\end{aligned}
$$

- DRELL-YAN (DY)

$$
\sigma^{P P \rightarrow l^{+} l^{-} X}=\sum_{q, q^{\prime}} f_{q}^{P} \otimes f_{\bar{q}}^{P} \otimes \sigma^{q \bar{q} \rightarrow l^{+} l^{-}}
$$

- Hadron Production

$$
\sigma^{P P \rightarrow h X}=\sum_{q, q^{\prime}} f_{q}^{P} \otimes f_{q^{\prime}}^{P} \otimes \sigma^{q q^{\prime} \rightarrow q q^{\prime}} \otimes D_{q}^{h}
$$

3D Nucleon Structure with TMD PDFS

 *TMDs: Momentum Space *GPDs: Impact Parameter *The transverse momentum (TM) of the parton can couple with both its own spin and the spin of the nucleon!* Leading Order TMD PDFs

TMDs from SIDIS e $P \rightarrow e^{\prime} h X$

A. Bacchetta et al., JHEP08 023 (2008).

- For polarized SIDIS crosssection there are 18 terms in leading twist expansion:

Collins term

$\frac{d \sigma}{d x d y d z d \phi_{S} d \phi_{h} d P_{h \perp}^{2}} \sim F_{U U, T}+\varepsilon F_{U U, L}+\ldots$

$$
+\left|\boldsymbol{S}_{\perp}\right|\left[\sin \left(\phi_{h}-\phi_{S}\right)\left(F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right)+\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}+. .\right]
$$

- Access the structure functions via specific modulations.
- LO Matching to convolutions of PDFs and FFs: $\quad P_{T}^{2} \ll Q^{2}$

$$
F_{U U, T} \sim \mathcal{C}\left[\begin{array}{ll}
f_{1} & D_{1}
\end{array}\right] \quad F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)} \sim \mathcal{C}\left[h_{1} H_{1}^{\perp}\right]
$$

- NEED Collins Fragmentation Function to access Transversity PDF from SIDIS! [BELLE (II) , BaBar]

TMDs from SIDIS e $P \rightarrow e^{\prime} h X$

A. Bacchetta et al., JHEP08 023 (2008).

- For polarized SIDIS crosssection there are 18 terms in leading twist expansion:

EMPIRICAL EXTRACTIONS OF TRANSVERSITY

- SIDIS at HERMES

PLB693 (2010) II-I6.

$$
\left\langle\sin \left(\phi+\phi_{S}\right)\right\rangle_{U T}^{h} \sim \frac{\mathcal{C}\left[h_{1}^{q} H_{1 q}^{\perp h / q}\right]}{\mathcal{C}\left[f_{1}^{q} D_{1}^{h / q}\right]}
$$

- Opposite sign for the charged pions.
- Large positive signal for K^{+}.
- Consistent with 0 for π^{0} and K^{-}.
* Fits to HERMES, COMPASS and BELLE/BaBar: PRD 92, | 14023 (2015).

- Still Large Uncertainties!
- Simplistic Approximations !

Unfavored FFs NOT well known!

Hadron Multiplicities

- Preliminary from COMPASS

Talk by C.Franco at CIPANP 2012.

- Also results from HERMES

Phys. Rev. D 87, 074029 (2013)

Impact of FF uncertainties on extracted PDFs

- Δ s puzzle: DIS vs SIDIS.

Platchkov: Talk in Chile, 2016.

DIS COMPASS

SIDIS HERMES

- Impact on extracted Δs

COMPASS: PLB 693 (2010) 227-235.

$$
\begin{aligned}
& A_{1}^{h}(x, z)=\frac{\sum_{q} e_{q}^{2}\left(\Delta q(x) D_{q}^{h}(z)+\Delta \bar{q}(x) D_{\bar{q}}^{h}(z)\right)}{\sum_{q} e_{q}^{2}\left(q(x) D_{q}^{h}(z)+\bar{q}(x) D_{\bar{q}}^{h}(z)\right)} . \\
& R_{U F}=\frac{\int D_{d}^{K^{+}}(z) \mathrm{d} z}{\int D_{u}^{K^{+}}(z) \mathrm{d} z}, \quad R_{S F}=\frac{\int D_{\overline{5}}^{K^{+}}(z) \mathrm{d} z}{\int D_{u}^{K^{+}}(z) \mathrm{d} z} .
\end{aligned}
$$

-SIDIS with transversely polarized target.

Collins single spin asymmetry:

$$
A_{\text {Coll }}=\frac{\sum_{q} e_{q}^{2} h_{1}^{q} \otimes H_{1}^{\perp h / q}}{\sum_{q} e_{q}^{2} f_{1}^{q} \otimes D_{1}^{h / q}}
$$

\uparrow Two hadron single spin asymmetry:

$$
A_{U T}^{\sin \phi_{R S}}=\frac{\left|\boldsymbol{p}_{1}-\boldsymbol{p}_{2}\right|}{2 M_{h^{+} h^{-}}} \frac{\sum_{q} e_{q}^{2} \cdot h_{1}^{q}(x) \cdot H_{1, q}^{\varangle}\left(z, M_{h^{+} h^{-}}^{2}, \cos \theta\right)}{\sum_{q} e_{q}^{2} \cdot f_{1}^{q}(x) \cdot D_{1, q}\left(z, M_{h^{+} h^{-}}^{2}, \cos \theta\right)}
$$

* Note the choice of the vector

$$
\boldsymbol{R}_{\text {Artru }}=\frac{z_{2} \boldsymbol{P}_{1}-z_{1} \boldsymbol{P}_{2}}{z_{1}+z_{2}}
$$

-SIDIS with transversely polarized target.

\uparrow Collins single spin a

$$
A_{\text {Coll }}=\frac{\sum_{q} e_{q}^{2} h}{\sum_{q} e_{q}^{2}}
$$

\uparrow Two hadron single

$$
A_{U T}^{\sin \phi_{R S}}=\frac{\mid p}{2}
$$

String Model: Artru Mechanism

$\downarrow q \bar{q}$ created in ${ }^{3} P_{0}$ state.
\uparrow Local compensation of TM.

\uparrow Qualitatively implies opposite signs for favoured and unfavored.
(Omitting complications from favoured production at rank 2, etc .)
\uparrow Simple and intuitive quantum-mechanical picture.

SPECTATOR MODELS

\downarrow Use Field-theoretical definition of FFs from a Correlator.

$$
\Delta\left(z, k_{T}\right)=\frac{1}{2 z} \int d k^{+} \Delta\left(k, P_{h}\right)=\left.\frac{1}{2 z} \sum_{X} \int \frac{d \xi^{+} d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i k \cdot \xi}\langle 0| \mathcal{U}_{(+\infty, \xi)}^{n_{+}} \psi(\xi)|h, X\rangle\langle h, X| \bar{\psi}(0) \mathcal{U}_{(0,+\infty)}^{n_{+}}|0\rangle\right|_{\xi^{-}=0}
$$

$$
D_{1}\left(z, z^{2} \vec{k}_{T}^{2}\right)=\operatorname{Tr}\left[\Delta\left(z, \vec{k}_{T}\right) \gamma^{-}\right] . \quad \frac{\epsilon_{T}^{i j} k_{T j}}{M_{h}} H_{1}^{\perp}\left(z, k_{T}^{2}\right)=\frac{1}{2} \operatorname{Tr}\left[\Delta\left(z, k_{T}\right) i \sigma^{i-} \gamma_{5}\right]
$$

\checkmark Approximate the remnant X as a "spectator" (quark).
\uparrow Calculate the FFs at leading-order in favourite quark model.

$$
D_{1}\left(z, p_{\perp}^{2}\right)
$$

$$
H_{1}^{\perp}\left(z, p_{\perp}^{2}\right)
$$

(a)

(b)

(c)

(d)

SPECTATOR MODELS

E.G. - Bacchetta et al, PLB 659:234, 2008

- Calculated Collins FF.

Issues with ALL the model calculations to date:

\downarrow Mismatch in orders of calculations : VIOLATION OF POSITIVITY
$D_{1}\left(z, p_{\perp}^{2}\right)$
$H_{1}^{\perp}\left(z, p_{\perp}^{2}\right)$

(a)

(b)

Bacchetta et al, PRL 85, 712 (2000) .

(c)
(d)
\downarrow Missing multi-hadron emission effect:

- No direct access to unfavored FFs. D Description of small-z region.

TRANSVERSE MOMENTUM DEPENDENCE

SLIDE STOLEN FROM P. SKANDS

The Ultimate Limit: Wavelengths $>10^{-15} \mathrm{~m}$

Quark-Antiquark Potential
As function of separation distance

$$
F(r) \approx \mathrm{const}=\kappa \approx 1 \mathrm{GeV} / \mathrm{fm} \quad \Longleftrightarrow \quad V(r) \approx \kappa r
$$

Short Distances ~"Coulomb"

"Free" Parton

~ Force required to lift a 16-ton truck

What physical

 system has a linear potential?

LUND SYMMETRIC FF

- String breaks: quark-antiquark pair creation via tunnelling in strong "chromoelectric" field.
\uparrow Does NOT depend on the type of produced hadron!
- Causality: independent breaking of the string:
 * Constrained form of FF * May produce h in any order.
$f(z) \propto \frac{1}{z}(1-z)^{a} \exp \left(-\frac{b\left(m_{h}^{2}+p_{\perp h}^{2}\right)}{z}\right)$

Note: In principle, a can be flavour-dependent. In practice, we only distinguish between baryons and mesons

LUND SYMMETRIC FF

- String breaks: quark-antiquark pair creation via tunnelling in strong "chromoelectric" field.
\downarrow Does NOT depend on the type of produced hadron!
- Causality: independent breaking of the string:

1) Schwinger Effect
 * Constrained form of FF Mayproduce h in any order.
$f(z) \propto \frac{1}{z}(1-z)^{a} \exp \left(-\frac{b\left(m_{h}^{2}+p_{\perp h}^{2}\right)}{z}\right)$

The hadron z depends on combined TM of antiquark and a quark from previous string break!

TM FFS IN QUARK-JET

H.M.,Bentz, Cloet, Thomas, PRD.85:0|402I, 2012

- TMD splittings: $d_{q}^{h}\left(z, p_{\perp}^{2}\right)$
- Conserve transverse momenta at each link.

$$
\underbrace{\mathbf{P}_{\perp}+z \mathbf{k}_{\perp}}_{\mathbf{k}_{\perp}=\mathbf{P}_{\perp}+\mathbf{k}_{\perp}^{\prime}}
$$

- Calculate the Number Density

$$
D_{q}^{h}\left(z, P_{\perp}^{2}\right) \Delta z \pi \Delta P_{\perp}^{2}=\frac{\sum_{N_{\text {Sims }}} N_{q}^{h}\left(z, z+\Delta z, P_{\perp}^{2}, P_{\perp}^{2}+\Delta P_{\perp}^{2}\right)}{N_{\text {Sims }}} .
$$

Lorentz Transforms of TM

Diehl: NPB 596, 33 (200I)(2015) D Boosts from 0 TM frame that preserve "-" component.

$\left(\begin{array}{c|c|c|c}1 & \frac{\boldsymbol{k}_{\perp}^{2}}{2\left(k^{-}\right)^{2}} & \frac{k_{1}}{k^{-}} & \frac{k_{2}}{k^{-}} \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & \frac{k_{1}}{k^{-}} & 1 & 0 \\ \hline 0 & \frac{k_{2}}{k^{-}} & 0 & 1\end{array}\right)$

\mathcal{L}^{\prime}	$\left(k^{\prime+}, k^{\prime-}, \boldsymbol{k}_{\perp}^{\prime}=0\right)$	$\left(p^{+}, p^{-}, \boldsymbol{p}_{\perp}\right)$
\mathcal{L}	$\left(k^{+}, k^{-}=k^{\prime-}, \boldsymbol{k}_{\perp}\right)$	$\left(P^{+}, P^{-}=p^{-}, \boldsymbol{P}_{\perp}=\boldsymbol{p}_{\perp}+z \boldsymbol{k}_{\perp}\right)$
	$z \equiv \frac{p^{-}}{k^{-}}=\frac{p^{\prime-}}{k^{\prime-}}$	$\mathbf{P}_{\perp}=\mathbf{p}_{\perp}+z \mathbf{k}_{\perp}$

In case of two (or more) hadrons: same story!

$$
P_{1 \perp}=p_{1 \perp}+z_{1} k_{\perp} \quad P_{2 \perp}=p_{2 \perp}+z_{2} k_{\perp}
$$

ELEMENTARYTMD SPLITTINGS

H.M., Thomas, Bentz, PRD. 83:07400; PRD.83:II40I0, 20 II.

- Quark-quark correlator:
$\Delta_{i j}\left(z, p_{\perp}\right)=\frac{1}{2 N_{c} z} \sum_{X} \int \frac{d \xi^{+} d^{2} \boldsymbol{\xi}_{\perp}}{(2 \pi)^{3}} e^{i p \cdot \xi} \times\left.\langle 0| \mathcal{U}_{(\infty, \xi)} \psi_{i}(\xi)|h, X\rangle_{\text {out out }}\langle h, X| \bar{\psi}_{j}(0) \mathcal{U}_{(0, \infty)}|0\rangle\right|_{\xi^{-}=0}$
- One-quark truncation of the wavefunction: $q \rightarrow Q h$

$$
d_{q}^{h}\left(z, p_{\perp}^{2}\right)=\frac{1}{2} \operatorname{Tr}\left[\Delta_{0}\left(z, p_{\perp}^{2}\right) \gamma^{+}\right]
$$

- NJL Effective quark model calculations:

$$
\mathcal{L}_{N J L}=\bar{\psi}_{q}\left(i \not \partial-m_{q}\right) \psi_{q}+G\left(\bar{\psi}_{q} \Gamma \psi_{q}\right)^{2}
$$

TMD FRAGMENTATION FUNCTIONS

FAVORED

- UNFAVORED

K

COMPARISON WITH GAUSSIAN ANSATZ

- Average TM: $\left\langle P_{\perp}^{2}\right\rangle \equiv \frac{\int d^{2} \mathbf{P}_{\perp} P_{\perp}^{2} D\left(z, P_{\perp}^{2}\right)}{\int d^{2} \mathbf{P}_{\perp} D\left(z, P_{\perp}^{2}\right)}$
- Gaussian ansatz assumes: $D\left(z, P_{\perp}^{2}\right)=D(z)^{e^{-P_{\perp}^{2} /\left\langle P_{\perp}^{2}\right\rangle}}$

$$
\text { Gaussian ansatz assumes: } D\left(z, P_{\perp}^{2}\right)=D(z) \frac{c}{\pi\left\langle P_{\perp}^{2}\right\rangle}
$$

AVERAGE Transverse Momenta vs z

FRAGMENTATION

$$
\left\langle P_{\perp}^{2}\right\rangle_{u n f}>\left\langle P_{\perp}^{2}\right\rangle_{f}
$$

\rightarrow Indications from HERMES
data: A. Signori, et al: JHEP |3||, |94(20|3)

\checkmark Multiple hadron emissions: broaden the TM dependence at low z !

Different Hadronization Mechanisms. LUND Model

- Fragmentation of $q \bar{q}$ pair: breakup of the string.
\uparrow Independent breaking of the string.
\uparrow Quark TM indep. of hadron type.

$$
u \rightarrow u+s \bar{s}, \quad s \rightarrow s+s \bar{s}
$$

+Fragmentation of q, similar to QFT definition of FFs.

- Time-ordered hadron emissions.
$\downarrow q \rightarrow Q h$ depends on h (spin, mass).

$$
\begin{aligned}
& u \rightarrow K^{+}+s, \quad s \rightarrow \phi+s \\
& u \rightarrow K^{*+}+s
\end{aligned}
$$

* No correlation in TM: h_{1} and h_{2}.

+ Recoil TM of h_{1} affects h_{2}

Can we find a signature in polarized FFs? Perhaps Dihadron FFs?

Different Hadronization Mechanisms. LUND Model
 Quark-Jet

+Fragmentation of $q \bar{q}$ pair: breakup of the string.
† Independent breaking of the string.

- Quark TM indep. of hadron type.

\uparrow Fragmentation of q, similar to QFT definition of FFs.
- Time-ordered hadron emissions.
$\downarrow q \rightarrow Q h$ depends on h (spin, mass).

Can we find a signature in polarized FFs? Perhaps Dihadron FFs?

UNPOLARIZED DIHADRON FRAGMENTATIONS

H.M. Thomas, Bentz, PRD.88:094022, 2013.

- The probability density for observing two hadrons:

$$
\begin{aligned}
& P_{1}=\left(z_{1} k^{-}, P_{1}^{+}, \boldsymbol{P}_{1, \perp}\right), P_{1}^{2}=M_{h 1}^{2} \\
& P_{2}=\left(z_{2} k^{-}, P_{2}^{+}, \boldsymbol{P}_{2, \perp}\right), P_{2}^{2}=M_{h 2}^{2}
\end{aligned}
$$

- The corresponding number density:

$$
\frac{\left(D_{q}^{h_{1} h_{2}}\left(z, M_{h}^{2}\right) \Delta z \Delta M_{h}^{2}=\left\langle N_{q}^{h_{1} h_{2}}\left(z, z+\Delta z ; M_{h}^{2}, M_{h}^{2}+\Delta M_{h}^{2}\right)\right\rangle\right.}{z=z_{1}+z_{2} \quad M_{h}^{2}=\left(P_{1}+P_{2}\right)^{2}}
$$

- Kinematic Constraint.

$$
\left(z_{1} z_{2} M_{h}^{2}-\left(z_{1}+z_{2}\right)\left(z_{2} M_{h 1}^{2}+z_{1} M_{h 2}^{2}\right) \geq 0\right.
$$

- In MC simulations record all the pairs in every decay chain.

2- AND 3-BODY DECAYS

The M_{h}^{2} spectrum of pseudoscalars is strongly affected by VM decays.

- We include only the 2 -body decays ρ, K^{*}.
- Both 2- and 3-body decays of ω, ϕ.
Achasov et al. (SND), PRD 68, 052006, (2003).

PYTHIA SIMULATIONS

- Setup hard process with back to back $q \bar{q}$ along z axis.
- Only Hadronize. Allow the same resonance decays as NJL-jet.
- Assign hadrons with positive p_{z} to q fragmentation.

$$
E_{q}=10 \mathrm{GeV}
$$

Single Hadron
Dihadron

Positivity and Polarisation of Quark

\downarrow The probability density is Positive Definite: constraints on FFs.
\uparrow Leading-order T-Even functions FULLY Saturate these bounds!
\downarrow For non-vanishing H^{\perp} and D_{T}^{\perp}, need to calculate T-Even FFs at next order!
\uparrow Average value of remnant quark's spin.

$$
\left\langle\boldsymbol{S}_{T}\right\rangle_{Q}=\boldsymbol{s}_{T} \frac{\int d z\left[h_{T}^{(q \rightarrow Q)}(z)+\frac{1}{2 z^{2} M_{Q}^{2}} h_{T}^{\perp[1](q \rightarrow Q)}(z)\right]}{\int d z d^{(q \rightarrow Q)}(z)}
$$

\uparrow In spectator model, at leading order: $h_{T}(z)=-d(z)$
\downarrow Non-zero h_{T}^{\perp} means $\left\langle\boldsymbol{S}_{T}\right\rangle_{Q} \neq-\boldsymbol{s}_{T}$ (full flip of the spin)!

THE QUARK JET MODEL

Field, Feynman, Nucl.Phys.BI36:I, I 978.

Assumptions:

- Number Density interpretation
- No re-absorption

- $\quad \infty$ hadron emissions

$$
\begin{gathered}
D_{q}^{h}(z)=\hat{d}_{q}^{h}(z)+\int_{z}^{1} \hat{d}_{q}^{Q}(y) d y \cdot D_{Q}^{h}\left(\frac{z}{y}\right) \frac{1}{y} \\
\hat{d}_{q}^{h}(z)=\left.\hat{d}_{q}^{Q^{\prime}}(1-z)\right|_{h=\bar{Q}^{\prime} q}
\end{gathered}
$$

THE QUARK JET MODEL

Field, Feynman, Nucl.Phys.BI36: I, 1978.

Assumptions:

- Number Density interpretation
- No re-absorption

- $\quad \infty$ hadron emissions

Probability of finding hadron h with mom. frac. $[z, z+d z]$ in a jet of quark q

The probability scales with mom. fraction

$$
D_{q}^{h}(z) d z=\hat{d}_{q}^{h}(z) d z+\int_{z}^{1} \hat{d}_{q}^{Q}(y) d y \cdot D_{Q}^{h}\left(\frac{z}{y}\right) \frac{d z}{y}
$$

Prob. of emitting at step I
Prob. of mom. $[y, y+d y]$ is transferred to jet at step I.

NAMBU--JONA-LASINIO MODEL

Yoichiro Nambu and Giovanni Jona-Lasinio:
"Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. I"

Phys.Rev. I22, 345 (I96I)

Effective Quark model of QCD

- Effective Quark Lagrangian

$$
\mathcal{L}_{N J L}=\bar{\psi}_{q}\left(i \not \partial-m_{q}\right) \psi_{q}+G\left(\bar{\psi}_{q} \Gamma \psi_{q}\right)^{2}
$$

-Low energy chiral effective theory of QCD.
-Covariant, has the same flavor symmetries as QCD.

NAMBU--JONA-LASINIO MODEL

-Dynamically Generated Quark Mass from GAP Eqn.

-Pion mass and quark-pion coupling from •Pion decay constant t-matrix pole.

Fixing Model Parameters

- Use Lepage-Brodsky Invariant Mass cut-off regularisation scheme.

$$
M_{12} \leq \Lambda_{12}=\sqrt{\Lambda_{3}^{2}+M_{1}^{2}}+\sqrt{\Lambda_{3}^{2}+M_{2}^{2}}
$$

- Choose a $M_{u(d)}$ and use physical f_{π}, m_{π}, m_{K} to fix model parameters Λ_{3}, G, M_{s} and calculate $g_{h q Q}$.

DEPENDENCE ON NUMBER OF

 EMITTED HADRONS- Restrict the number of emitted hadrons, $N_{\text {Linkin }} \mathrm{MC}$.

- We reproduce the splitting function and the full solution perfectly.
- The low z region is saturated with just a few emissions.

SOLUTIONS OFTHE INTEGRAL EQUATIONS H.M., Thomas, Bentz, PRD. 83:074003, 201I

\checkmark Input elementary probabilities from NJL:

\checkmark Solutions of the integral equations:

SOLUTIONS OFTHE INTEGRAL EQUATIONS H.M., Thomas, Bentz, PRD. 83:074003, 201I

\checkmark Input elementary probabilities from NJL:

\checkmark Solutions of the integral equations:
z

