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Figure 30: The combined high-Q2 HERA inclusive NC e+p reduced cross sections as partially
shown already in Fig. 5 with overlaid predictions of HERAPDF2.0 NLO and NNLO. The two
differently shaded bands represent the total uncertainties on the two predictions.
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collaborations are used to determine sets of quark and gluon momentum distributions in the
proton. The set of PDFs denoted as HERAPDF1.0 [2] was based on the combination of all
inclusive DIS scattering cross sections obtained from HERA I data. A preliminary set of PDFs,
HERAPDF1.5 [34], was obtained using HERA I and selected HERA II data, some of which
were still preliminary. In this paper, a new set of PDFs, HERAPDF2.0, is presented, based on
combined inclusive DIS cross sections from all of HERA I and HERA II.

Several groups, JR [35], MSTW/MMHT [36,37], CTEQ/CT [38,39], ABM [40–42] and
NNPDF [43,44], provide PDF sets using HERA, fixed-target and hadron-collider data. The
strength of the HERAPDF approach is that a single coherent high-precision data set containing
NC and CC cross sections is used as input. The new combined data used for the HERAPDF2.0
analysis span four orders of magnitude in Q2 and xBj. The availability of precision NC and
CC cross sections over this large phase space allows HERAPDF to use only ep scattering data
and thus makes HERAPDF independent of any heavy nuclear (or deuterium) corrections. The
difference between the NC e+p and e−p cross sections at high Q2, together with the high-Q2
CC data, constrain the valence-quark distributions. The CC e+p data especially constrain the
valence down-quark distribution in the proton without assuming strong isospin symmetry as
done in the analysis of deuterium data. The lower-Q2 NC data constrain the low-x sea-quark
distributions and through their precisely measured Q2 variations they also constrain the gluon
distribution. A further constraint on the gluon distribution comes from the inclusion of NC data
at different beam energies such that the longitudinal structure function is probed through the y
dependence of the cross sections [45].

The consistency of the input data allowed the determination of the experimental uncertain-
ties of the HERAPDF2.0 parton distributions using rigorous statistical methods. The uncertain-
ties resulting from model assumptions and from the choice of the parameterisation of the PDFs
were considered separately.

Both H1 and ZEUS also published charm production cross sections, some of which were
combined and analysed previously [46], and jet production cross sections [47–51]. These data
were included to obtain the variant HERAPDF2.0Jets. The inclusion of jet cross sections al-
lowed for a simultaneous determination of the PDFs and the strong coupling constant.

The paper is structured as follows. Section 2 gives an introduction to the connection between
cross sections and the partonic structure of the proton. Section 3 introduces the data used in the
analyses presented here. Section 4 describes the combination of data while Section 5 presents
the results of the combination. Section 6 describes the pQCD analysis to extract PDFs from the
combined inclusive cross sections. The PDF set HERAPDF2.0 and its variants are presented in
Section 7. In Section 8, results on electroweak unification as well as scaling violations and the
extraction of xFγZ3 are presented. The paper closes with a summary.

2 Cross sections and parton distributions

The reduced NC deep inelastic e±p scattering cross sections are given by a linear combination
of generalised structure functions. For unpolarised e±p scattering, reduced cross sections after
correction for QED radiative effects may be expressed in terms of structure functions as

σ±r,NC =
d2σe

±p
NC

dxBjdQ2
·
Q4xBj
2πα2Y+

= F̃2 ∓
Y−
Y+
xF̃3 −

y2

Y+
F̃L , (1)

6
where the fine-structure constant, α, which is defined at zero momentum transfer, the photon
propagator and a helicity factor are absorbed in the definitions of σ±r,NC and Y± = 1±(1−y)

2. The
overall structure functions, F̃2, F̃L and xF̃3, are sums of structure functions, FX, FγZX and FZ

X,
relating to photon exchange, photon–Z interference and Z exchange, respectively, and depend
on the electroweak parameters as [52]

F̃2 = F2 − κZve · FγZ2 + κ
2
Z(v

2
e + a

2
e) · F

Z
2 ,

F̃L = FL − κZve · FγZL + κ
2
Z(v2e + a2e) · FZ

L ,

xF̃3 = −κZae · xFγZ3 + κ
2
Z · 2veae · xFZ

3 , (2)

where ve and ae are the vector and axial-vector weak couplings of the electron to the Z boson,
and κZ(Q2) = Q2/[(Q2 + M2

Z)(4 sin
2 θW cos2 θW)]. In the analysis presented here, electroweak

effects were treated at leading order. The values of sin2 θW = 0.23127 and MZ = 91.1876GeV
were used for the electroweak mixing angle and the Z-boson mass [52].

At low Q2, i.e. Q2 ≪ M2
Z , the contribution of Z exchange is negligible and

σ±r,NC = F2 −
y2

Y+
FL . (3)

The contribution of the term containing the longitudinal structure function F̃L is only significant
for values of y larger than approximately 0.5.

In the analysis presented in this paper, the full formulae of pQCD at the relevant order in
the strong coupling, αs, are used. However, to demonstrate the sensitivity of the data, it is
useful to discuss the simplified equations of the Quark Parton Model (QPM), where gluons are
not present and F̃L = 0 [53]. In the QPM, the kinematic variable xBj is equal to the fractional
momentum of the struck quark, x. The structure functions in Eq. 2 become

(F2, FγZ2 , F
Z
2 ) ≈ [(e2u, 2euvu, v2u + a2u)(xU + xŪ) + (e2d, 2edvd, v

2
d + a

2
d)(xD + xD̄)] ,

(xFγZ3 , xF
Z
3 ) ≈ 2[(euau, vuau)(xU − xŪ) + (edad, vdad)(xD − xD̄)] , (4)

where eu and ed denote the electric charge of up- and down-type quarks, while vu,d and au,d are
the vector and axial-vector weak couplings of the up- and down-type quarks to the Z boson. The
terms xU, xD, xŪ and xD̄ denote the sums of parton distributions for up-type and down-type
quarks and anti-quarks, respectively. Below the b-quark mass threshold, these sums are related
to the quark distributions as follows

xU = xu + xc , xŪ = xū + xc̄ , xD = xd + xs , xD̄ = xd̄ + xs̄ , (5)

where xs and xc are the strange- and charm-quark distributions. Assuming symmetry between
the quarks and anti-quarks in the sea, the valence-quark distributions can be expressed as

xuv = xU − xŪ , xdv = xD − xD̄ . (6)

It follows from Eq. 1 that the structure function xF̃3 can be determined from the difference
between the e+p and e−p reduced cross sections:

xF̃3 =
Y+
2Y−

(σ−r,NC − σ
+
r,NC). (7)
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Figure 8. The structure function F2(x,Q2) of the proton, plotted as a function of Q2 and
multiplied by a factors of 2N where N labels the lines in the main plot. To enable the data to be
displayed on one plot, a di↵erent N is used for each x-value) N = 0 x = 0.85, 1) 0.74, 2) 0.65, 3)
0.55, 4) 0.45, 5) 0.34, 6) 0.28, 7) 0.23, 8) 0.18, 9) 0.14. 10) 0.11, 11) 0.10, 12) 0.09, 13) 0.07, 14)
0.05, 15) 0.04, 16) 0,026, 17) 0.018, 18) 0.013, 19) 0.008, 20) 0.005. The insert with JLab data
show the Q2 evolution over the range accessible at JLab at 6 GeV. The data and curves are at
fixed scattering angle ✓ with A) 38o, N = 0, B) 41o, N = 1, C) 45o, N = 2, D) 55o, N = 3,
E) 60o, N = 4, F) 70o, N = 5. The lines are from the CJ15 fit [34] with DGLAP evolution at
next-to-leading order. In that same paper can be found the references to the experimental data
shown.
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PDFs are 
very useful, 
but do we 

really know 
the partonic 

nucleon 
structure?



despite 50 years of studies the nucleon is still a very 
mysterious object, and the most abundant piece of 

matter in the visible Universe
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parton intrinsic motion     
spin-k⊥ correlations? 

orbiting quarks? 
spatial distribution? 

nucleon mass? 
...............                    . 10�19 m



which processes are sensitive to parton intrinsic motion? 
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Figure 1: Illustration of kinematics, especially the azimuthal angles, for SIDIS in the target
rest frame [6]. P hT and ST are the transverse parts of P h and S with respect to the photon
momentum q = l − l′.

notation of [6], one has

dσ

dx dy dφS dz dφh dP 2
hT

∝
{

FUU,T + ε cos(2φh)F cos 2φh

UU

+ S∥ ε sin(2φh)F sin 2φh

UL + S∥ λe

√

1 − ε2 FLL

+ |S⊥|
[

sin(φh − φS)F sin(φh−φS)
UT,T + ε sin(φh + φS)F sin(φh+φS)

UT

+ ε sin(3φh − φS)F sin(3φh−φS)
UT

]

+ |S⊥|λe

√

1 − ε2 cos(φh − φS)F cos(φh−φS)
LT + . . .

}

. (8)

In Eq. (8), ε is the degree of longitudinal polarization of the virtual photon which can
be expressed through y [15, 6], S∥ denotes longitudinal target polarization, and λe is the
lepton helicity. The structure functions FX,Y (X,Y refer to the lepton and the nucleon,
respectively: U = unpolarized; L, T = longitudinally, transversely polarized) merely depend
on x, z, and PhT . By choosing specific polarization states and weighing with the appropriate
azimuthal dependence, one can extract each structure function in (8) as past experiments
have already unambiguously shown.

For TMD studies one is interested in the kinematical region defined by

PhT ≃ ΛQCD ≪ Q , (9)

for which the structure functions can be written as certain convolutions of TMDs. In this
region, the components in Eq. (8) appear at leading order when expanding the cross section
in powers of 1/Q, while additional ones show up at subleading order [1, 15, 6, 16]. Measuring
the structure functions in Eq. (8) allows one to obtain information on all eight leading quark
TMDs. To be specific, one has (for a spinless final state hadron) [6, 16],

FUU ∼
∑

q

e2
q f q

1 ⊗ Dq
1 F cos(φ−φS)

LT ∼
∑

q

e2
q gq

1T ⊗ Dq
1 (10)

FLL ∼
∑

q

e2
q gq

1L ⊗ Dq
1 F sin(φ−φS)

UT ∼
∑

q

e2
q f⊥q

1T ⊗ Dq
1 (11)

F cos(2φ)
UU ∼

∑

q

e2
q h⊥q

1 ⊗ H⊥q
1 F sin(φ+φS)

UT ∼
∑

q

e2
q hq

1T ⊗ H⊥q
1 (12)
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PT

` p" ! ` hX
(polarised) semi-inclusive deep 
inelastic scattering (SIDIS) 

PT and azimuthal dependences generated by parton 
transverse (orbital) motion and spin and nucleon spin  
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single spin asymmetry: the Sivers effect 
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spin

the spin-k⊥ correlation is an intrinsic property of the 
nucleon; it should be related to the parton orbital motion 
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Eq
�s at quark level 

large SSA observed at hadron level are not 
generated in elementary QED or QCD interactions 
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Single spin asymmetries at partonic level

needs helicity flip + relative phaseAN �= 0

–+

++

x

+

++

+

(q q0 ! q q0 ` q ! ` q)



TMDs in SIDIS 
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TMD factorization holds at large Q2, and PT ≈ k⊥ ≈ ΛQCD
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(Collins, Soper, Ji, J.P. Ma, Yuan, Qiu, Vogelsang, Collins, Metz...)

TMD-PDFs hard scattering TMD-FFs

P T = p? + zk?

(talks by Bacchetta, Martin, D’Alesio, Gamberg, Schnell, Boer, …..)
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Figure 1: Illustration of kinematics, especially the azimuthal angles, for SIDIS in the target
rest frame [6]. P hT and ST are the transverse parts of P h and S with respect to the photon
momentum q = l − l′.

notation of [6], one has
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In Eq. (8), ε is the degree of longitudinal polarization of the virtual photon which can
be expressed through y [15, 6], S∥ denotes longitudinal target polarization, and λe is the
lepton helicity. The structure functions FX,Y (X,Y refer to the lepton and the nucleon,
respectively: U = unpolarized; L, T = longitudinally, transversely polarized) merely depend
on x, z, and PhT . By choosing specific polarization states and weighing with the appropriate
azimuthal dependence, one can extract each structure function in (8) as past experiments
have already unambiguously shown.

For TMD studies one is interested in the kinematical region defined by

PhT ≃ ΛQCD ≪ Q , (9)

for which the structure functions can be written as certain convolutions of TMDs. In this
region, the components in Eq. (8) appear at leading order when expanding the cross section
in powers of 1/Q, while additional ones show up at subleading order [1, 15, 6, 16]. Measuring
the structure functions in Eq. (8) allows one to obtain information on all eight leading quark
TMDs. To be specific, one has (for a spinless final state hadron) [6, 16],
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Case of one polarized nucleon only
d�

d

4

q d⌦

=

↵

2

� q

2

⇢
(1 + cos

2

✓) F

1

U + (1� cos

2

✓) F

2

U + sin 2✓ cos � F

cos �
U + sin

2

✓ cos 2� F

cos 2�
U

+ SL

⇣
sin 2✓ sin � F

sin �
L + sin

2

✓ sin 2� F

sin 2�
L

⌘

+ ST

h⇣
F

sin �S

T + cos

2

✓

˜

F

sin �S

T

⌘
sin �S + sin 2✓

⇣
sin(� + �S) F

sin(�+�S)

T

+ sin(�� �S) F

sin(���S)

T

⌘

+ sin

2

✓

⇣
sin(2� + �S) F

sin(2�+�S)

T + sin(2�� �S) F

sin(2���S)

T

⌘i�

!"#$%&'()&'*&+%,-

./012(!3'*%(452((4676 !'&8(9:;<*"*&" =

>&'#,;(',-;(?'&8,(@>AB

.:%%*"-CD:3,'(?'&8,(@.DB

Collins-Soper 
frame 

Sivers

B-M ⊗ B-M



Unpolarized cross section already very interesting
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q = u, ū, d, d̄, s, s̄

Sivers effect in D-Y processes 

By looking at the d4σ/d4q cross section one can 
single out the Sivers effect in D-Y processes     
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Transverse motion of hadrons in fragmentation processes 
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Belle, BaBar, BES-III
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independent evidence for Collins effect 
from e+e- data at Belle, BaBar and BES-III
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Figure 3. – Preliminary BABAR measurement of Collins asymmetries (full circle in red). By
comparison the superseded Belle off-peak results (open circle in blue), and Belle results on the
full data sample (full green circles) are shown. Systematic and statistical errors are added in
quadrature.
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Figure 4. – Collins asymmetry A12 (a), and A0 (b), as a function of (sin2 θ)/(1 + cos2 θ), where
θ = θT and θ = θ2 have been used in plot (a) and (b), respectively.

The asymmetries are studied in function of symmetric bins (z1, z2) of the pion fractional
energies and in function of sin2 θ/(1 + cos2 θ), and are compared with the Belle analysis.
The results are in overall good agreement each other. However, the off-peak data sample
is statistically limited, and the update of the measurement with the full BABAR data
sample is ongoing.
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Some (effects of) TMDs have been clearly measured, 
TMDs have been extracted from data ….

unpolarised quarks in unpolarised protons 
unintegrated unpolarised distribution fq

1 (x,k2
�)

Sivers function: correlate k⊥ of quark with  
ST of parent proton f�q

1T (x,k2
�)

H?q
1 (z,p2

?)
Collins function: correlate p⊥ of hadron and  

sT of fragmenting quark  

and even some first 3D nucleon imaging is available,  
but do we know better the orbital motion of quarks 

and gluons inside the nucleon?   



Is there a direct access to parton angular momentum?
Sivers function and angular momentum             

anomalous magnetic moments



p =
Z 1

0

dx

3
⇥
2E

uv (x, 0, 0)� E

dv (x, 0, 0)� E

sv (x, 0, 0)
⇤



n =
Z 1

0

dx

3
⇥
2E

dv (x, 0, 0)� E

uv (x, 0, 0)� E

sv (x, 0, 0)
⇤

(Eqv = Eq � E q̄)

Ji’s sum rule
forward limit of GPDs

Jq =
1
2

Z 1

0
dxx [Hq(x, 0, 0) + Eq(x, 0, 0)]

usual PDF q(x)
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measured directly

(talk on GPDs by Dupré)



Sivers function and angular momentum 
assume

f

?(0)a
1T (x;Q2

L) = �L(x)Ea(x, 0, 0;Q2
L)
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?(0)a
1T (x,Q) =

Z
d

2k? b
f

?a
1T (x, k?;Q)

L(x) = lensing function                                                
(unknown, can be computed in models)

parameterise Sivers and lensing functions
fit SIDIS and magnetic moment data

obtain Eq and estimate total angular momentum 

results at Q2 = 4 GeV2: Ju ≈ 0.23, Jq≠u ≈ 0
Bacchetta, Radici, PRL 107 (2011) 212001

(talk by Burkardt)



Figure 4: Diagrammatic representation of the origin of complex phase leading to the single-spin
asymmetry in SIDIS. The longer cut denotes the final state of the process, while the shorter
cut demonstrates the origin of the phase needed for the asymmetry.

3.2 Drell-Yan Process

We now perform a similar calculation for the Drell-Yan process in the same model consid-
ered above for deep inelastic scattering. We will consider the scattering of an antiquark on a
transversely-polarized proton with transverse spin eigenvalue � that produces a virtual photon,
which then decays into a dilepton pair with invariant mass q2 = Q2. This process is shown in
Fig. 5 at the level of virtual photon production: q + p" ! �⇤

+ X.

�

�

p

�
p p � r

�

q

��
q � r

r

(A)

(B)

k

q � kq � r

k � r

p � k p � r

q
��

Figure 5: Diagrams for the q + p" ! �⇤
+ X DY amplitude at one-loop order (A) and tree-

level (B). The incoming proton and anti-quark are denoted by the lower and upper solid lines
correspondingly, with the outgoing diquark denoted by the dashed line.

Following [9], we work in a generic frame collinear to the proton (~p? =

~
0?). We define the

longitudinal momentum fraction of the photon to be � ⌘ q+/p+ and the momentum fraction
exchanged in the t-channel to be � ⌘ r+/p+. As before, four-momentum conservation and the
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SIDIS final state interactions (⇒ AN)

Examples and interpretation of the Sivers function: 
simple quark-scalar diquark model of the proton 

Brodsky, Hwang, Schmidt, PL B530 (2002) 99; NP B642 (2002) 344                                            
Brodsky, Hwang, Kovchegov, Schmidt, Sievert, PR D88 (2013) 014032

Figure 6: Diagrammatic representation of the origin of complex phase leading to the single-spin
asymmetry in the Drell-Yan process. The longer cut denotes the final state of the process, while
the shorter cut demonstrates the origin of the phase needed for the asymmetry.

It is interesting to investigate the diagrammatic origin of the sign-flip in Eqs. (61) and (62).
To do that we consider the diagram contributing to the single-spin asymmetry in the Drell-Yan
process shown in Fig. 6. As follows from the calculation in Appendix B, the asymmetry in
the Drell-Yan case arises due to putting the (q � k)- and k-lines in Fig. 5 (A) (corresponding
to lines ¨ and ≠ in Figs. 13 and 14) on mass-shell: this is illustrated in Fig. 6 by the second
(shorter) cut, in analogy to Fig. 4. Comparing Figures 6 and 4, we see that the minus sign in
Eqs. (61) and (62) arises due to the replacement of the outgoing eikonal quark in Fig. 4 by the
incoming eikonal anti-quark in Fig. 6: this is in complete analogy with the original Wilson-line
time-reversal argument of Collins [8] (see also [36]).

However, a closer inspection of Figures 4 and 6 reveals that the cuts generating the complex
phase appear to be different: in Fig. 4 the (shorter) cut crosses the struck quark and the diquark
lines, while in Fig. 6 the (shorter) cut crosses the anti-quark line and the line of the quark in
the proton wave function. While we have already identified the outgoing quark/incoming anti-
quark duality in SIDIS vs. DY as generating the sign flip, the fact that in the proton’s wave
function the diquark is put on mass shell in SIDIS and the quark is put on mass shell in DY
makes one wonder why the absolute magnitudes of the asymmetries in Eq. (62) are equal. After
all, different cuts may lead to different contributions to the magnitudes of the asymmetry.

Ultimately the origin of Eq. (62) is in the fact that spin-asymmetry is a pseudo T -odd
quantity and the Wilson lines describing the outgoing quark in SIDIS and the incoming anti-
quark in DY are related by a time-reversal transformation [8]. However, in the diagrams at
hand the origin of the equivalence of the shorter cuts in Figs. 4 and 6 is as follows. Consider the
splitting of a polarized proton into a quark and a diquark as shown in Fig. 7: this subprocess
is common to both diagrams in Figs. 4 and 6. The essential difference between Figs. 4 and 6
that we are analyzing is in the fact that in Fig. 4 the diquark is on mass shell, while in Fig. 6
the quark is on mass shell.

Concentrating on the denominators of the quark and diquark propagators in Fig. 7 we shall
write for the SIDIS case of Fig. 4 (quark is off mass shell, diquark is on mass shell)

1

k2
�
�
(p � k)

2 � �2
�

=

�1

p+ (

~k2
? + a2

)

�

 
k� � M2

p+
+

~k2
? + �2

(1 � �) p+

!
⇡ �1

p+ (

~k2
? + a2

)

�(k�
), (66)

where we have used Eqs. (21), (34), and (30) along with x ⇡ �, and, in the last step, neglected
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D-Y initial state interactions (⇒ -AN)



γ∗
γ∗

attractive repulsive

r (gb) r r

(d)(c)

(b)(a)

+

−

γ∗−
γ∗

+

+

−

Figure 1: (a),(b) Simple QED example for process-dependence of the Sivers functions in DIS and

the Drell-Yan process. (c),(d) Same for QCD.

case is “initial-state” and is between the remnant of the transversely polarized “hadron” and the

initial parton from the other, unpolarized, “hadron”. These necessarily have identical charges,

and the interaction is repulsive. As a result, the spin-effect in this case needs to be of opposite

sign as that in DIS.

These simple models are readily generalized to true hadronic scattering in QCD. In DIS, the

final-state interaction is through a gluon exchanged between the 3 and 3̄ states of the struck quark
and the nucleon remnant, which is attractive, as indicated in Fig. 1(c). In the Drell-Yan process,

the interaction is between the 3 and 3 states (or 3̄ and 3̄) and therefore repulsive, as shown in
Fig. 1(d). This is the essence of the – by now widely quoted – result that the Sivers functions

contributing to DIS and to the Drell-Yan process have opposite sign [3, 4, 5, 6]:

fSivers(x, k⊥)
∣∣∣
DY

= −fSivers(x, k⊥)
∣∣∣
DIS

. (1)

In the full gauge theory, the phases generated by the additional (final-state or initial-state) inter-

actions can be summed to all orders into a “gauge-link”, which is a path-ordered exponential of

the gluon field and makes the Sivers functions gauge-invariant. The non-universality of the Sivers

functions is then reflected in a process-dependence of the space-time direction of the gauge-link.

The crucial role played by the gauge link has given rise to intuitive model interpretations of

single-spin asymmetries in terms of spatial deformations of parton distributions in a transversely

polarized nucleon [19]. The process-dependence of the Sivers functions will also manifest itself

in more complicated QCD hard-scattering, albeit in a more intricate way [20]. An example is

the single-spin asymmetry in di-jet angular correlations [21, 22, 23], which is now under inves-

tigation at RHIC [24]. We note that a related initial-state interaction may give rise to azimuthal

angular dependences in the unpolarized Drell-Yan process [25, 26].

The verification of the predicted non-universality of the Sivers functions is an outstanding

challenge in strong-interaction physics. It is most cleanly possible in the Drell-Yan process,

3

DIS: 
“attractive”

D-Y: 
“repulsive”

[fq�
1T ]SIDIS = �[fq�

1T ]DY

process-dependence of Sivers functions 

Collins, PL B536 (2002) 43
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FIG. 4. [Color online] Transverse single-spin asymmetry amplitude for W+ (left plot) and W− (right plot) versus yW compared
with the non TMD-evolved KQ [11] model, assuming (solid line) or excluding (dashed line) a sign change in the Sivers function.
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FIG. 3. [Color online] The amplitude of the transverse single-spin asymmetry for W± and Z0 boson production measured by
STAR in proton-proton collisions at

√
s = 500 GeV with a recorded luminosity of 25 pb−1. The solid gray band represent the

uncertainty on the KQ [11] model due to the unknown sea quark Sivers function. The crosshatched region indicates the current
uncertainty in the theoretical predictions due to TMD evolution.

A combined fit on W+ and W− asymmetries, AN (yW ),
to the theoretical prediction in the KQ model (no TMD
evolution), shown in Fig. 4, gives a χ2/ndf = 7.4/6 as-
suming a sign-change in the Sivers function (solid line)
and a χ2/ndf = 19.6/6 otherwise (dashed line). The cur-
rent data thus favor theoretical models that include a
change of sign for the Sivers function relative to observa-
tions in SIDIS measurements, if TMD evolution effects
are small.
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FIG. 3: Predictions for W+ (a) and W

� (b) with sign change of Sivers functions compared with experimental data as function
of y. qT is integrated in the region [0, 5] GeV.

FIG. 4: Probability density functions for �2 of our predictions of W± asymmetry from all parameter sets used to calculate the
error band. Fitted normal distributions are shown as solid lines.

h�2
/n.o.d.i = 2.35 while sign change yields lower h�2

/n.o.d.i = 1.63. Notice that either scenario has tension with our
model, indeed the values of �2 are greater than zero. Using our results from Fig. 5 we may conclude that indeed W±

data provides an indication of the sign change according to Eq. (1).
Another interesting question that we would like to investigate in this paper is whether W± has any significant

impact on parameters of the model. Notice that we do not include W± data in our fit. Bayes theorem allows to
incorporate information from new data by applying re-weighting of probability densities for model parameters. The
details of application of re-weighting are explained in Ref. [27]. Probability density function for model parameters ,
P(↵), is going to be modified in presence of new data and the Bayes theorem states that

P(↵|D) =
P(D|↵)
P(D)

P(↵), (25)

where P(↵|D) is the so-called posterior density, is the updated pdf from the prior density P(↵). The quantity P(D|↵)
called the likelihood function, represents the conditional probability for a data set D given the parameters ↵ of the
model. The quantity P(D) ensures the normalization of the posterior density to unity.

analysis of data (in preparation):  
M.A., M. Boglione, U. D’Alesio, F. Murgia, A. Prokudin   
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error band. Fitted normal distributions are shown as solid lines.
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/n.o.d.i = 1.63. Notice that either scenario has tension with our
model, indeed the values of �2 are greater than zero. Using our results from Fig. 5 we may conclude that indeed W±

data provides an indication of the sign change according to Eq. (1).
Another interesting question that we would like to investigate in this paper is whether W± has any significant

impact on parameters of the model. Notice that we do not include W± data in our fit. Bayes theorem allows to
incorporate information from new data by applying re-weighting of probability densities for model parameters. The
details of application of re-weighting are explained in Ref. [27]. Probability density function for model parameters ,
P(↵), is going to be modified in presence of new data and the Bayes theorem states that

P(↵|D) =
P(D|↵)
P(D)

P(↵), (25)

where P(↵|D) is the so-called posterior density, is the updated pdf from the prior density P(↵). The quantity P(D|↵)
called the likelihood function, represents the conditional probability for a data set D given the parameters ↵ of the
model. The quantity P(D) ensures the normalization of the posterior density to unity.
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FIG. 4: Probability density functions for �2 of our predictions of W± asymmetry from all parameter sets used to calculate the
error band. Fitted normal distributions are shown as solid lines.

h�2
/n.o.d.i = 2.35 while sign change yields lower h�2

/n.o.d.i = 1.63. Notice that either scenario has tension with our
model, indeed the values of �2 are greater than zero. Using our results from Fig. 5 we may conclude that indeed W±

data provides an indication of the sign change according to Eq. (1).
Another interesting question that we would like to investigate in this paper is whether W± has any significant

impact on parameters of the model. Notice that we do not include W± data in our fit. Bayes theorem allows to
incorporate information from new data by applying re-weighting of probability densities for model parameters. The
details of application of re-weighting are explained in Ref. [27]. Probability density function for model parameters ,
P(↵), is going to be modified in presence of new data and the Bayes theorem states that

P(↵|D) =
P(D|↵)
P(D)

P(↵), (25)

where P(↵|D) is the so-called posterior density, is the updated pdf from the prior density P(↵). The quantity P(D|↵)
called the likelihood function, represents the conditional probability for a data set D given the parameters ↵ of the
model. The quantity P(D) ensures the normalization of the posterior density to unity.

with no sign change

(talk by D’Alesio)
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FIG. 5. (color online) Invariant cross sections for (a) ⇡+ and (b) ⇡� with pQCD predictions using the DSS [37] and AKK08 [39]
FFs. Top panel: PHENIX [52] and STAR [53] results are also compared. Bottom: systematic (boxes) and statistical (bars)
uncertainties are shown with relative di↵erence between data and prediction. (c) Comparison of averaged charged pion cross
section and ⇡

0 cross section by PHENIX [54]. Bottom panel: data-theory comparisons.

TABLE II. Invariant cross section for ⇡+ and ⇡

� hadrons, as well as the statistical and systematic uncertainties. In addition,
there is an absolute scale uncertainty of 9.6%.

⇡

+
⇡

�

pT bin hpT i E ⇤ d3�
dp3

STAT SYST E ⇤ d3�
dp3

STAT SYST

(GeV/c) (GeV/c) (mb/GeV

2) (mb/GeV

2)
5–6 5.39 1.75⇥10�5 0.05⇥10�5 0.24⇥10�5 1.49⇥10�5 0.04⇥10�5 0.20⇥10�5

6–7 6.39 5.01⇥10�6 0.15⇥10�6 0.33⇥10�6 4.30⇥10�6 0.13⇥10�6 0.29⇥10�6

7–8 7.41 1.56⇥10�6 0.07⇥10�6 0.10⇥10�6 1.283⇥10�6 0.060⇥10�6 0.080⇥10�6

8–9 8.44 6.19⇥10�7 0.39⇥10�7 0.40⇥10�7 4.94⇥10�7 0.35⇥10�7 0.32⇥10�7

9–11 9.71 2.14⇥10�7 0.16⇥10�7 0.14⇥10�7 1.57⇥10�7 0.13⇥10�7 0.10⇥10�7

11–13 11.70 4.83⇥10�8 0.71⇥10�8 0.38⇥10�8 3.57⇥10�8 0.60⇥10�8 0.28⇥10�8

A more quantitative interpretation requires the inclu-
sion of such data into a global fit using the next-to-
leading order (NLO) pQCD framework. The midrapidity
production of charged pions with 5 < pT < 12 GeV/c atp
s = 200 GeV covers the kinematic range of 0.03 <⇠ x

<⇠
0.16. The relevant ingredients for a global analysis are
available: unpolarized quark and gluon PDFs, polarized
quark PDFs, charge-separated unpolarized FFs [37] and
hard scattering cross sections at NLO. The invariant dif-
ferential cross sections for ⇡

+ and ⇡

� as a function of
pT can be used to check the validity of the NLO pQCD
calculation as well as the PDFs and FFs adopted for the
global analysis on �G.

The double-spin asymmetry ALL for inclusive charged
pion production is measured as

ALL =
1

hPB · PY i
N

++ �R ·N+�

N

++ +R ·N+� , R =
L

++

L

+� (2)

where N is the number of charged pions and L is the lu-
minosity for a given helicity combination. The notation
++ (+�) follows the same convention as in Eq. 1. The

polarizations of the two counter-circulating RHIC beams
are denoted as PB and PY and for 2009 were 0.56 and
0.55, respectively. The luminosity-weighted beam polar-
ization product hPBPY i, important for ALL, was 0.31
with a global relative scale uncertainty of 6.5% on the
product. An additional uncertainty based on the preci-
sion with which we can determine the degree of longitu-
dinal polarization in the collision [56] must be included,
leading to a total relative scale uncertainty of +7.0%

�7.7%.

The relative luminosity, R, between the sampled lu-
minosities for the di↵erent helicities is determined from
the yield of BBC triggered events on a fill-by-fill basis.
The systematic uncertainty on relative luminosity is de-
termined by comparing to the yield of ZDC triggers [56],
and was found in 2009 to be 1.4⇥ 10�3.

Beyond the systematic uncertainties from polarization
and relative luminosity, the dominant systematic uncer-
tainty on the asymmetries are from tracks misidentified
as charged pions. The size of the possible asymmetry
from this background was determined to be ⇠ 10�4.
The determination was performed by calculating the spin

mid-rapidity RHIC data, unpolarised cross sections  
(arXiv:1409.1907 [hep-ex], Phys. Rev. D91 (2015) 3, 032001)

good agreement between RHIC data and 
collinear pQCD calculations; similarly for 

jet production at LHC
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Transverse spin structure of the proton 
A natural next step in the investigation of nucleon structure is an expansion of our current picture of the 
nucleon by imaging the proton in both momentum and impact parameter space. At the same time we need to 
further our understanding of color interactions and how they manifest in different processes. In the new 
theoretical framework of transverse momentum dependent parton distributions (TMDs) we can obtain an 
image in the transverse as well as longitudinal momentum space (2+1 dimensions).  This has attracted 
renewed interest, both experimentally and theoretically in transverse single spin asymmetries (SSA) in 
hadronic processes at high energies, which have a more than 30 years history. First measurements at RHIC 
have extended the observations from the fixed-target energy range to the collider regime. Future PHENIX 
and STAR measurements at RHIC with transversely polarized beams will provide unique opportunities to 
study the transverse spin asymmetries in Drell-Yan lepton pair, direct photon, and W boson productions, and 
other complementary processes. Also evolution and universality properties of these functions can be studied. 
Polarized nucleon-nucleus collisions may provide further information about the origin of SSA in the forward 
direction and the saturation phenomena in large nuclei at small x. 

Transverse asymmetries at RHIC  

Single spin asymmetries in inclusive hadron production in proton-proton collisions have been measured at 
RHIC for the highest center-of-mass energies to date, ¥s=500 GeV.  Figure 6 summarizes the measured 
asymmetries from different experiments as functions of Feynman-x (xF ~ x1-x2) and transverse momentum. 
Surprisingly large asymmetries are seen that are nearly independent of  over a very broad range. To 
understand the observed significant SSAs one has to go beyond the conventional collinear parton picture in 
the hard processes.  Two theoretical formalisms have been proposed to generate sizable SSAs in the QCD 
framework: transverse momentum dependent parton distributions and fragmentation functions, which 
provide the full transverse momentum information and the collinear quark-gluon-quark correlation, which 
provides the average transverse information.   

 
At RHIC the pT-scale is sufficiently large to make the collinear quark-gluon-quark correlation formalism the 
appropriate approach to calculate the spin asymmetries. At the same time, a transverse momentum dependent 
model has been applied to the SSAs in these hadronic processes as well. Here, various underlying 
mechanisms can contribute and need to be disentangled to understand the experimental observations in 
detail, in particular the pT-dependence. These mechanisms are associated with the spin of the initial state 
nucleon (Sivers/Qiu-Sterman effects) and outgoing hadrons (Collins effects). We identify observables below, 
which will help to separate the contributions from initial and final states, and will give insight to the 
transverse spin structure of hadrons.  

 
Figure 6: Transverse single spin asymmetry measurements for neutral pions at different center-of-mass energies as function of 

Feynman-x (left) and pT-dependence at = 500 GeV (right). 

p
s = 19.4 GeV/c2, E704
p

s = 62.4 GeV/c2, PHENIX 3.2 < ⌘ < 3.7
p

s = 200 GeV/c2, STAR h⌘i = 3.3
p

s = 200 GeV/c2, STAR h⌘i = 3.7
p

s = 500 GeV/c2, STAR 2.7 < ⌘ < 4.0

but AN ≠ 0 persists at high energies ….          



…. and at large PT          
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FIG. 1: The Z-boson transverse momentum qT spectrum in pp collisions at the LHC [1].

enhanced contributions in the ratio M/qT to the perturbation series expansions for the physical observables
to all higher orders in the QCD coupling. It is only after this generalized factorization analysis — going
beyond the collinear factorization — is carried through that the physical behavior of the Z boson spectrum
observed in Fig. 1 can be predicted.

A second example concerns the rise of proton’s structure functions at small longitudinal momentum
fractions. Since in pp collisions the product of initial-state longitudinal fractions scales like 1/s at fixed
momentum transfer, where s is the squared centre-of-mass energy, as we push forward the high-energy frontier
more and more events at small longitudinal fractions contribute to processes probing short-distance physics.
Many hard-production cross sections at the LHC receive sizeable contributions from proton’s structure
functions in this region. As parton longitudinal momenta become small, the fraction of momentum carried
by transverse degrees of freedom becomes increasingly important.

Fig. 2 shows the proton’s gluon density resulting from global fits [9] to hadronic collision data, performed
at LO, NLO, NNLO [10–12] of perturbation theory, as a function of the longitudinal momentum fraction
x for di↵erent values of the evolution mass scale Q2. In the low-x regime the perturbative higher-order
corrections to structure functions are large, and the gluon pdf uncertainty is large. The strong corrections at
low x come from multiple radiation of gluons over long intervals in rapidity [13, 14], in regions not ordered in
the gluon transverse momenta pT , and are present beyond NNLO to all orders of perturbation theory [15, 16].
The theoretical framework to resum these unordered multi-gluon emissions is a generalized form of QCD
factorization [17, 18] in terms of TMD pdfs. Analogously to the Drell-Yan case discussed earlier, the TMD
pdfs obey a suitable set of evolution equations [19–21], appropriate to this kinematic region. These provide
another generalization, valid in the high-energy limit, of the ordinary renormalization-group evolution. The
TMD factorization in this case allows one to resum logarithmically enhanced corrections in the ratio

p
s/Q

to all higher orders in the QCD coupling.
Besides the above examples of Drell-Yan and structure functions, TMD factorization theorems apply to a

wide variety of processes at the LHC. In particular, with extensive measurements of Higgs boson production
at the LHC Run II, a new set of QCD processes becomes available in which the Higgs boson acts as a
color-singlet, pointlike source (in the heavy top limit) which couples to gluons. This is to be contrasted
with Drell-Yan and deep-inelastic scattering cases, based on weak and electromagnetic currents providing
color-singlet pointlike sources coupled to quarks. This opens up the possibility of a new program of precision
QCD measurements in gluon fusion at high mass scales in the LHC high-luminosity runs [22, 23].

Analogously to the case of vector bosons in the example of Fig. 1, theoretical predictions for the Higgs-
boson production di↵erential spectrum over the whole range in transverse momenta accessible at the LHC

Z-boson transverse momentum qT spectrum in pp collisions at the LHC 

The small qT region cannot be explained by usual 
collinear PDF factorization: needs TMD-PDFs  

Phys. Rev. D85 (2012) 032002
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SSA in hadronic processes: TMDs, higher-twist correlations?

 

Two main different (?) approaches

1. Generalization of collinear scheme (GPM) 
(assuming factorization)

Field-Feynman
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⇥

main contribution from Sivers effect, can explain qualitatively 
most SIDIS and A_N data 

(M.A. M. Boglione, D’Alesio, E. Leader, S. Melis, F. Murgia, A. Prokudin, 
PRD86 (2012) 074032; PRD88 (2013) 054023 )

TMD contributions to AN (assuming TMD factorisation) 



2. Higher-twist partonic correlations (ETQS)          
(Efremov, Teryaev, Ratcliffe; Qiu, Sterman; Kouvaris, Vogelsang, Yuan; 

Bacchetta, Bomhof, Mulders, Pijlman; Koike; Gamberg, Kang...) 
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Ta(k1, k2,S⇥)� fb/B(xb)�Hab�c(k1, k2)�Dh/c(z)

twist-3 correlators product of hard amplitudes, 
not cross sections

higher-twist partonic correlations - factorization OK  

4

into non-perturbative PDFs, FFs, or the correlation functions. Consequently, unlike for the TMD distributions, all
field operators defining the non-perturbative functions in the collinear factorization approach are evaluated at the
same light-cone separation with zero “+” and “⊥” components, as shown for example in Eq. (8).
Since the quark-gluon correlation functions in the collinear factorization approach have all their active partons’

transverse momenta integrated, these correlation functions can be related to k⊥-moments of the TMD parton distri-
bution functions. It was shown at the operator level [23, 33, 36] that the ETQS function Tq,F (x, x) is closely related
to the k⊥-moment of Sivers function:

gTq,F (x, x) = −
∫

d2k⊥
|k⊥|2

M
f⊥q
1T (x, k2⊥)|SIDIS (10)

where the subscript “SIDIS” emphasizes that the Sivers functions here are probed in the SIDIS process. We stress
again the importance of the sign convention for the coupling constant g in the definition of the gauge link. If the sign
convention used to define Tq,F (x, x) is different from that in the definition of f⊥q

1T (x, k2⊥), the difference will introduce
an extra factor “−1” in the relation between these two functions, so that there will be no minus sign on the right-hand
side of Eq. (10).
We emphasize that the operator definition in Eq. (8) does not completely fix the quark-gluon correlation function

Tq,F (x, x), unless the renormalization scheme is specified. As is well known from the case of ordinary PDFs, the matrix
element in Eq. (8) is ultraviolet (UV) divergent [39]. Like in the case of PDFs, the quark-gluon correlation function
is really defined in terms of the QCD factorization formalism. The leading UV divergent (the large k⊥) region of the
matrix element on the right-hand-side of Eq. (8) corresponds to the region of phase space with large parton virtuality,
and is required by factorization to be moved from the matrix element into the perturbatively calculated short-distance
functions. The removal or subtraction of the UV divergence is not unique, which leads to the factorization scheme
and scale (µ) dependence of the correlation functions Tq,F (x, x, µ) [40]. In this way, also the relation in Eq. (10) is
subject to the UV subtractions and the adopted factorization scheme, and hence not a unique identity. That said, the
relation (10) provides a natural “zeroth-order” connection between the Sivers and the ETQS functions. It plays an
important role in establishing the consistency between the TMD factorization approach and the collinear twist-three
quark-gluon correlation approach in the descriptions of the SSAs in SIDIS and the Drell-Yan process [33]. It also is a
useful starting point for phenomenological studies and is of much help in testing the various constraints on the quark
Sivers and quark-gluon correlation functions. In the following, we will therefore make use of relation (10), keeping
however in mind the caveats we have made regarding UV renormalization.

III. THE “SIGN MISMATCH”

The quark Sivers functions f⊥q
1T (x, k2⊥) (or equivalently, ∆Nfq/A↑(x, k⊥)) and the twist-3 quark-gluon correlation

functions Tq,F (x, x) have been extracted from experimental data on SSAs for single hadron production in SIDIS and
in hadron-hadron scattering, respectively. In this section, we compare the existing parameterizations of these two
functions and present our findings concerning the “sign mismatch”. We also introduce and discuss various loopholes
that might resolve the apparent inconsistency.

So far the quark Sivers functions have been extracted from the Asin(φh−φs)
UT azimuthal asymmetries in SIDIS. We

consider two such parametrizations here. One is from Ref. [10] (we refer it as “old Sivers”), the other one (“new Sivers”)
from Ref. [11] . They both parametrize the spin-averaged TMD PDFs f q

1 (x, k
2
⊥) and Sivers functions ∆Nfq/h↑(x, k⊥)

for each quark flavor q in the form

f q
1 (x, k

2
⊥) = f q

1 (x)g(k⊥), (11)

∆Nfq/h↑(x, k⊥) = 2Nq(x)f
q
1 (x)h(k⊥)g(k⊥), (12)

where f q
1 (x) is the quark’s spin-averaged collinear PDF,Nq(x) is a fitted function whose functional form is not relevant

for our discussion below, and g(k⊥) is assumed to have a Gaussian form,

g(k⊥) =
1

π⟨k2⊥⟩
e−k2

⊥/⟨k2
⊥⟩ (13)

with a fitting parameter ⟨k2⊥⟩ for the width. However, the two parameterizations adopt different functional forms for
the k⊥-dependence of the Sivers function:

old Sivers: h(k⊥) =
2k⊥M0

k2⊥ +M2
0

, (14)

new Sivers: h(k⊥) =
√
2e

k⊥
M1

e−k2
⊥/M2

1 , (15)
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Towards an explanation of transverse single-spin asymmetries in
proton-proton collisions: the role of fragmentation in collinear factorization

Koichi Kanazawa,1,2 Yuji Koike,3 Andreas Metz,2 and Daniel Pitonyak4
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We study the transverse single-spin asymmetry for single-hadron production in proton-proton
collisions within the framework of collinear twist-3 factorization in Quantum Chromodynamics.
By taking into account the contribution due to parton fragmentation we obtain a very good de-
scription of all high transverse-momentum data for neutral and charged pion production from the
Relativistic Heavy Ion Collider. Our study may provide the crucial step towards a final solution to
the longstanding problem of what causes transverse single-spin asymmetries in hadronic collisions
within Quantum Chromodynamics. We show for the first time that, in a conceptually satisfactory
framework, it is possible to simultaneously describe spin/azimuthal asymmetries in proton-proton
collisions, semi-inclusive deep-inelastic scattering, and electron-positron annihilation.

PACS numbers: 12.38.-t, 12.38.Bx, 12.39.St, 13.75.Cs, 13.88.+e

Introduction The field of transverse single-spin asym-
metries (SSAs) in hard semi-inclusive processes began
some four decades ago with the observation of the large
transverse polarization (up to about 30%) of neutral Λ-
hyperons in the process pBe → Λ↑X at FermiLab [1].
People noticed early on that the näıve collinear parton
model cannot generate such large effects [2]. It was then
pointed out that SSAs for single-particle production in
hadronic collisions are genuine twist-3 observables for
which, in particular, collinear 3-parton correlations have
to be taken into account in order to have a proper descrip-
tion within Quantum Chromodynamics (QCD) [3]. This
formalism later on was worked out in more detail and
also successfully applied to SSAs in processes like hadron
production in proton-proton collisions, p↑p → hX — see,
e.g., Refs. [4–10]. Here we focus on SSAs in such reac-
tions, which were extensively investigated in fixed target
and in collider experiments.
Let us now look at the generic structure of the spin-

dependent cross section for A(P, S⃗⊥)+B(P ′) → C(Ph)+
X , where the 4-momenta and polarizations of the incom-
ing protons A, B and outgoing hadron C are specified.
In twist-3 collinear QCD factorization one has

dσ(S⃗⊥) = H ⊗ fa/A(3) ⊗ fb/B(2) ⊗DC/c(2)

+ H ′ ⊗ fa/A(2) ⊗ fb/B(3) ⊗DC/c(2)

+ H ′′ ⊗ fa/A(2) ⊗ fb/B(2) ⊗DC/c(3) , (1)

with fa/A(t) (fb/B(t)) indicating the distribution func-
tion associated with parton a (b) in proton A (B), while
DC/c(t) represents the fragmentation function associated
with hadron C in parton c. The twist of the functions
is denoted by t. The hard factors corresponding to each
term are given by H , H ′, and H ′′, and the symbol ⊗ rep-
resents convolutions in the appropriate momentum frac-
tions. In Eq. (1) a sum over partonic channels and parton
flavors in each channel is understood.

The first term in (1) has already been studied in quite
some detail in the literature [5, 7–12]. It contains both
quark-gluon-quark correlations and tri-gluon correlations
in the polarized proton, where for the former one needs
to distinguish between contributions from so-called soft
gluon poles (SGPs) and soft fermion poles (SFPs). The
second term in (1), arising from twist-3 effects in the
unpolarized proton, was shown to be small [13]. Only re-
cently a complete analytical result was obtained for the
third term in (1), which describes the twist-3 contribu-
tion due to parton fragmentation [14].
For quite some time many in the community believed

that the first term in (1) dominates the transverse SSA
in p↑p → hX (typically denoted by AN ) for the produc-
tion of light hadrons (see, e.g., Refs. [5, 7, 10]), where the
SGP contribution is generally considered the most impor-
tant part. Note that the SGP contribution to AN is de-
termined by the Qiu-Sterman function TF [4, 5], which
can be related to the transverse-momentum dependent
(TMD) Sivers parton density f⊥

1T [15, 16]. For a given
quark flavor q, these entities satisfy [17]

T q
F (x, x) = −

∫

d2p⃗⊥
p⃗ 2
⊥

M
f⊥q
1T (x, p⃗ 2

⊥)
∣

∣

SIDIS
, (2)

where M is the nucleon mass. Because of the relation
in (2), one can extract TF from data on either AN or on
the Sivers transverse SSA in semi-inclusive deep-inelastic
scattering (SIDIS) ASiv

SIDIS. It therefore came as a ma-
jor surprise when an attempt failed to simultaneously
explain both AN and ASiv

SIDIS [11]. The striking result
pointed out in Ref. [11] was that the two extractions for
TF differ in sign. This “sign-mismatch” puzzle could
not be resolved by more flexible parameterizations of
f⊥
1T [18]. Also tri-gluon correlations are unlikely to fix
this issue [12], while SFPs may play some role [9].
At this point one may start to question the domi-

(1) Twist-3 contribution related to Sivers function  
(2) Twist-3 contribution related to Boer-Mulders function  

(3) Twist-3 fragmentation: has two contributions, 
one related to Collins function + a new one  

the first contribution with a twist-3 quark-gluon-quark 
correlator was expected to be the dominant one, but ….
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into non-perturbative PDFs, FFs, or the correlation functions. Consequently, unlike for the TMD distributions, all
field operators defining the non-perturbative functions in the collinear factorization approach are evaluated at the
same light-cone separation with zero “+” and “⊥” components, as shown for example in Eq. (8).
Since the quark-gluon correlation functions in the collinear factorization approach have all their active partons’

transverse momenta integrated, these correlation functions can be related to k⊥-moments of the TMD parton distri-
bution functions. It was shown at the operator level [23, 33, 36] that the ETQS function Tq,F (x, x) is closely related
to the k⊥-moment of Sivers function:

gTq,F (x, x) = −
∫

d2k⊥
|k⊥|2

M
f⊥q
1T (x, k2⊥)|SIDIS (10)

where the subscript “SIDIS” emphasizes that the Sivers functions here are probed in the SIDIS process. We stress
again the importance of the sign convention for the coupling constant g in the definition of the gauge link. If the sign
convention used to define Tq,F (x, x) is different from that in the definition of f⊥q

1T (x, k2⊥), the difference will introduce
an extra factor “−1” in the relation between these two functions, so that there will be no minus sign on the right-hand
side of Eq. (10).
We emphasize that the operator definition in Eq. (8) does not completely fix the quark-gluon correlation function

Tq,F (x, x), unless the renormalization scheme is specified. As is well known from the case of ordinary PDFs, the matrix
element in Eq. (8) is ultraviolet (UV) divergent [39]. Like in the case of PDFs, the quark-gluon correlation function
is really defined in terms of the QCD factorization formalism. The leading UV divergent (the large k⊥) region of the
matrix element on the right-hand-side of Eq. (8) corresponds to the region of phase space with large parton virtuality,
and is required by factorization to be moved from the matrix element into the perturbatively calculated short-distance
functions. The removal or subtraction of the UV divergence is not unique, which leads to the factorization scheme
and scale (µ) dependence of the correlation functions Tq,F (x, x, µ) [40]. In this way, also the relation in Eq. (10) is
subject to the UV subtractions and the adopted factorization scheme, and hence not a unique identity. That said, the
relation (10) provides a natural “zeroth-order” connection between the Sivers and the ETQS functions. It plays an
important role in establishing the consistency between the TMD factorization approach and the collinear twist-three
quark-gluon correlation approach in the descriptions of the SSAs in SIDIS and the Drell-Yan process [33]. It also is a
useful starting point for phenomenological studies and is of much help in testing the various constraints on the quark
Sivers and quark-gluon correlation functions. In the following, we will therefore make use of relation (10), keeping
however in mind the caveats we have made regarding UV renormalization.

III. THE “SIGN MISMATCH”

The quark Sivers functions f⊥q
1T (x, k2⊥) (or equivalently, ∆Nfq/A↑(x, k⊥)) and the twist-3 quark-gluon correlation

functions Tq,F (x, x) have been extracted from experimental data on SSAs for single hadron production in SIDIS and
in hadron-hadron scattering, respectively. In this section, we compare the existing parameterizations of these two
functions and present our findings concerning the “sign mismatch”. We also introduce and discuss various loopholes
that might resolve the apparent inconsistency.

So far the quark Sivers functions have been extracted from the Asin(φh−φs)
UT azimuthal asymmetries in SIDIS. We

consider two such parametrizations here. One is from Ref. [10] (we refer it as “old Sivers”), the other one (“new Sivers”)
from Ref. [11] . They both parametrize the spin-averaged TMD PDFs f q

1 (x, k
2
⊥) and Sivers functions ∆Nfq/h↑(x, k⊥)

for each quark flavor q in the form

f q
1 (x, k

2
⊥) = f q

1 (x)g(k⊥), (11)

∆Nfq/h↑(x, k⊥) = 2Nq(x)f
q
1 (x)h(k⊥)g(k⊥), (12)

where f q
1 (x) is the quark’s spin-averaged collinear PDF,Nq(x) is a fitted function whose functional form is not relevant

for our discussion below, and g(k⊥) is assumed to have a Gaussian form,

g(k⊥) =
1

π⟨k2⊥⟩
e−k2

⊥/⟨k2
⊥⟩ (13)

with a fitting parameter ⟨k2⊥⟩ for the width. However, the two parameterizations adopt different functional forms for
the k⊥-dependence of the Sivers function:

old Sivers: h(k⊥) =
2k⊥M0

k2⊥ +M2
0

, (14)

new Sivers: h(k⊥) =
√
2e

k⊥
M1

e−k2
⊥/M2

1 , (15)

the same mismatch does not occur adopting TMD 
factorization; the reason is that the hard scattering 

part in higher-twist factorization is negative  

using the SIDIS Sivers function to build the twist-3 q-g-q 
correlator Tq,F

leads to sizeable value of AN, but with the wrong sign….

AN might be explained by new twist-3 
fragmentation functions  

(Kanazawa, Koike, Metz, Pitonyak, PRD 89 (2014) 111501)  
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FIG. 1. Fit results for Aπ0

N (data from [35–37]) and Aπ±

N (data
from [38]) for the SV1 input. The dashed line (dotted line in
the case of π−) means Ĥℑ

FU switched off.

and implies
∫ 1
0 dz z Hπ+/u

(3) (z) = Nfav, where H(3) rep-

resents the entire second term on the r.h.s. of (5). For

the disfavored FFs Ĥπ+/(d,ū,s,s̄),ℑ
FU we make an ansatz in

full analogy to (6), introducing the additional parameters
Ndis, αdis, α′

dis, βdis, β′
dis. (Idis and Jdis are calculated

using Dπ+/d = Dπ+/ū from [42].) The π− FFs are then
fixed through charge conjugation, and the π0 FFs are
given by the average of the FFs for π+ and π−. The FFs
Hπ/q are computed by means of (5). All parton correla-
tion functions are evaluated at the scale Ph⊥ with leading
order evolution of the collinear functions.
Using the MINUIT package we fit the fragmentation

contribution to data for Aπ0

N [35–37] and Aπ±

N [38]. To

facilitate the fit we only keep 7 parameters in Ĥπ+/q,ℑ
FU

free. We also allow the β-parameters βT
u = βT

d of the
transversity to vary within the error range given in [33].
For the SV1 input the result of our 8-parameter fit is

TABLE I. Fit parameters for SV1 input.

χ2/d.o.f. = 1.03

Nfav = −0.0357 Ndis = 0.220

αfav = α′
fav = −0.293 βfav = 0.0

β′
fav = β′

dis = −0.180 αdis = α′
dis = 4.02

βdis = 3.39 βT
u = βT

d = 1.06

shown in Tab. I. Note that the values for β′
fav = β′

dis
and βfav are at their lower limits, which we introduce
to guarantee a finite integration upon z1 in (3) and a
proper behavior of AN at large xF , respectively. For
the SV2 input the values of the fit parameters are sim-
ilar, with an equally successful fit (χ2/d.o.f. = 1.10).
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FIG. 2. Results for the FFs Hπ+/q and H̃π+/q
FU (defined in

the text) for the SV1 input. Also shown is Hπ+/q without
the contribution from Ĥℑ

FU (dashed line).
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√
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The very good de-
scription of AN is also
reflected by Fig. 1.
We emphasize that
such a positive out-
come is non-trivial
if one keeps in mind
the constraint in (5)
and the need to si-
multaneously fit data
for Aπ0

N and Aπ±

N . Results for the FFs Hπ+/q and

H̃π+/q
FU ≡

∫∞

z
dz1
z2
1

1
1
z
− 1

z1

1
ξ Ĥ

π+/q,ℑ
FU (z, z1) are displayed in

Fig. 2. In either case the favored and disfavored FFs have
opposite signs. This is like for H⊥

1 where such reversed
signs are actually “preferred” by the Schäfer-Teryaev
(ST) sum rule

∑

h

∑

Sh

∫ 1
0 dz zMhĤh/q(z) = 0 [47].

Note that the ST sum rule, in combination with (5),
implies a constraint on a certain linear combination

of Hh/q and (an integral of) Ĥh/q,ℑ
FU . In view of that,

reversed signs between favored and disfavored FFs
like in Fig. 2 are actually beneficial. Also depicted

in Fig. 2 is Hπ+/q when Ĥπ+/q,ℑ
FU is switched off. As

shown in Fig. 1, in such a scenario, i.e., by turning
off the 3-parton FF, one cannot describe the data for
AN . According to Fig. 3, the Ĥ term (including its
derivative) in (3) contributes only very little to AN .
Also the SGP pole term is small, except for the SV2
input at large xF , where its contribution is opposite
to the data. Clearly AN is governed by the H-term
in (3). This result can mainly be traced back to the hard
scattering coefficients: e.g., for the dominant qg → qg
channel one has SH ∝ 1/t̂3, but SĤ ∝ 1/t̂2 [14] in the
forward region where t̂ is small. Finally, Fig. 4 shows the
Ph⊥-dependence of AN for

√
S = 500GeV. Preliminary

AN from twist-3 fragmentation functions  
(Kanazawa, Koike, Metz, Pitonyak, PRD 89 (2014) 111501 )  

good fit of AN mainly 
due to the new twist-3 
fragmentation function 

it gives too large values of AN  
in                   processes` p" ! ⇡X

Gamberg, Khang, Metz, Pitonyak, 
PRD 90 (2014) 074012
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AN(π) vs. xF : comparison with HERMES data
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but AN in lp → πX can be well explained by TMD 
factorisation + Weizsäcker-Williams approximation 

(U. D’Alesio, C. Flore, F. Murgia, in preparation - 
talk by U. D’Alesio at QCD evolution 2016)



TMDs and QCD - TMD evolution  
study of the QCD evolution of TMDs and TMD factorisation 

in rapid development 

Different TMD evolution schemes and different 
implementations within the same scheme.          

It needs non perturbative inputs 

dedicated workshops, QCD Evolution             
2011, 2012, 2013, 2014, 2015, 2016

TMDlib and TMDplotter: library and plotting tools for 
transverse-momentum-dependent parton distributions

dedicated tools:

(talks by Bacchetta, Gamberg, Mulders, Cherednikov,…)



Aybat, Collins, Qiu, Rogers, Phys. Rev. D85 (2012),                   
Kang, Prokudin, Sun, Yuan, arXiv:1505.05589), ….

 TMD phenomenology with QCD evolution
how does gluon emission affect the transverse motion?
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FIG. 1: (Color online.) The (negative of the) up quark Sivers function at x = 0.1 evolved from Q =
√
2.4 GeV(solid maroon)

to Q = 5 GeV(dashed blue) and Q = 91.19 GeV(dot-dashed red). The upper plot is found by evolving the Gaussian fits of
the Bochum group [14] and the lower plot is found by evolving the Gaussian fits of the Torino group [15]. In the case of the
Bochum fits, the down quark Sivers function is just the negative of the up quark one. For the Torino fits, the down quark
Sivers function is obtained by multiplying the up quark Sivers function by −1.35. These functions acquire an overall reversal
of sign if used in Drell-Yan.

lattice QCD calculations [48] can aid in providing mean-
ingful parametrizations of the nonperturbative input over
the whole of phase space and open up interesting ques-
tions regarding the matching of purely nonperturbative
descriptions of the Sivers function to pQCD.

C. Evolved Gaussian Parametrizations

Figure 1 suggests that, apart from the tail at large
kT , the Sivers function continues to be well described by
a Gaussian shape, even after evolution to large Q. To
describe the evolution of a purely Gaussian parametriza-
tion, with the x and kT dependence factorized, requires
only a specification of the scale dependence of the Gaus-
sian parameters. This saves having to directly calculate
Eq. (44), and its transformation to momentum space,
separately for each value of Q and x. Because of the
general convenience of working with Gaussian functions,
we have obtained Gaussian fits for a range of Q starting
at Q =

√
2.4 GeV for the Bochum and Torino fits up

to Q = 90 GeV. The fits are obtained using the Wol-
fram Mathematica 7 FindFit routine, and examples
are shown as the dashed curves in Fig. 2. A table of the
resulting values for the Gaussian parameters is shown in
Table I. (Fortran, C++, and Wolfram Mathematica

7 code that produce evolved Gaussian fits is available

at [49].)

In Fig. 2, we illustrate the quality of the Gaussian
fits to the Sivers function at intermediate and large
Q (Q = 5 GeV and 91.19 GeV, respectively). In
practice, the Sivers effect is often probed via observ-
ables like Eq. (52), so we have plotted the integrand,
−2πk3TF

⊥ up
1T (x, kT ;µ,Q). Note that, after the evolution

to large Q, the −2πk3TF
⊥ up
1T (x, kT ;µ,Q) acquires a very

broad tail for both the Bochum and Torino fits. The
tail falls off slowly; for Q = 91.19 GeV, the ratio of the
value of the Bochum fit at kT = 10 GeV to the value at
kT = 5 GeV is about 0.65. This is roughly consistent
with the 1/kT fall-off at large kT that is expected from
the power counting arguments in Sec. III C. The last two
columns in Table I show the values of kT where the ra-
tio of the Gaussian fits to the original Sivers functions
is 0.8. That is, above kTorinoT,max (GeV) the Gaussian fits to
the evolved Torino Sivers function drop to less than 0.8
of the original evolved Sivers function and similarly for
kBochum
T,max .

That the description at small kT remains Gaussian is
not entirely surprising given that the input we use for
the nonperturbative evolution is Gaussian (gK(bT ) ∝ b2).
However, it should be emphasized that the perturbative
contribution to evolution results in a substantial modifi-
cation of the shape and normalization of the TMD PDF,

example: TMD evolution of up quark Sivers function 



Conclusions

Sivers and Collins effects are well established, with many    
transverse spin asymmetries resulting from them. 

Sivers function, TMDs and orbital angular momentum?                   
The analysis of TMDs and GPDs is sound and well developed.      

Combined data from SIDIS, Drell-Yan, e+e-, with theoretical 
modelling, should lead to a true 3D imaging of the proton 

Waiting for JLab 12, new COMPASS results, and, crucially, for 
an EIC dedicated facility….

Thank you!

The 3D nucleon structure is mysterious and fascinating. 
Many experimental results show the necessity to go beyond 

the simple collinear partonic picture and give new 
information. Crucial task is interpreting data and building a 

consistent 3D description of the nucleon.  


