Introduction to orbital effects in hard scattering Mauro Anselmino - Torino University \& INFN
exploring the 3D nucleon structure

3D Parton Distributions: path to the LHC
LNF, 29/11-2/12, 2016
usual (successful) way of exploring the proton structure (collinear parton model)

DIS : $\ell p \rightarrow \ell X$

$$
Q^{2}=-q^{2} \quad x=\frac{Q^{2}}{2 P \cdot q} \quad y=\frac{P \cdot \ell}{P \cdot q}
$$

Naive parton model: $\frac{\mathrm{d} \sigma^{\ell p \rightarrow \ell}}{\mathrm{~d} x \mathrm{~d} Q^{2}}=\sum_{q} e_{q}^{2} q(x) \frac{\mathrm{d} \hat{\sigma}^{\ell q \rightarrow \ell q}}{\mathrm{~d} Q^{2}}$

QCD interactions induce a well known Q^{2} dependence

$$
\mathrm{DIS}-\mathrm{pQCD}: \quad q(x) \Rightarrow \underbrace{q\left(x, Q^{2}\right)}_{\text {PDFs }}
$$

factorization:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} x \mathrm{~d} Q^{2}}=\sum_{q} q\left(x, Q^{2}\right) \otimes \frac{\mathrm{d} \hat{\sigma}_{q}}{\mathrm{~d} Q^{2}}
$$

universality: same $q\left(x, Q^{2}\right)$ measured in DIS can be used in other processes

H1 and ZEUS

$F_{2}=\sum_{q} x q\left(x, Q^{2}\right) \quad$ from M. Pennington, arXiv:1604.01441

N	x
0	0.85
1	0.74
2	0.65
3	0.55
4	0.45
5	0.34
6	0.28
7	0.23
8	0.18
9	0.14
10	0.11
11	0.10
12	0.09
13	0.07
14	0.05
15	0.04
16	0,026
17	0,018
18	0,013
19	0,008
20	0,005

JLab inser \dagger

I	\circ	N
A	38°	0
B	41°	1
C	45°	2
D	55°	3
E	60°	4
F	70°	5

H1 and ZEUS

unpolarized distribution
 $x f_{a}\left(x, Q^{2}\right)$

H. Abramowicz et al., Eur. Phys. J. C75 (2015) 580

PDFs are

 very useful, but do we really know the partonic nucleon structure?despite 50 years of studies the nucleon is still a very mysterious object, and the most abundant piece of matter in the visible Universe

which processes are sensitive to parton intrinsic motion?
(polarised) semi-inclusive deep inelastic scattering (SIDIS)

$$
\ell p^{\uparrow} \rightarrow \ell h X
$$

P_{T} and azimuthal dependences generated by parton transverse (orbital) motion and spin and nucleon spin

P_{T} dependence

$\Lambda_{\mathrm{QCD}} \simeq k_{\perp} \simeq P_{T} \ll Q$
$\boldsymbol{P}_{T} \simeq \boldsymbol{p}_{\perp}+z_{h} \boldsymbol{k}_{\perp}$
leading order elementary interaction: $\gamma^{*} q \rightarrow q^{\prime}$

single spin asymmetry: the Sivers effect

$$
\begin{aligned}
& f_{q / p, \boldsymbol{S}}\left(x, \boldsymbol{k}_{\perp}\right)=f_{q / p}\left(x, k_{\perp}\right)+\frac{1}{2} \Delta^{N} f_{q / p^{\dagger}}\left(x, k_{\perp}\right) \boldsymbol{S} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right) \\
& =f_{q / p}\left(x, k_{\perp}\right)-\frac{k_{\perp}}{M} f_{1 T}^{\perp q}\left(x, k_{\perp}\right) \boldsymbol{S} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right)
\end{aligned}
$$

single spin asymmetry for the process $\ell p^{\uparrow} \rightarrow \ell h X$
the spin- \mathbf{k}_{\perp} correlation is an intrinsic property of the nucleon; it should be related to the parton orbital motion

Single Spin Asymmetries from elementary dynamics?
Transverse single spin asymmetries in elastic scattering

$$
\begin{gathered}
A_{N} \equiv \frac{\mathrm{~d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}}{\mathrm{d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}} \propto \boldsymbol{S} \cdot\left(\boldsymbol{p} \times \boldsymbol{P}_{T}\right) \propto \sin \theta \\
\text { Example: } p p \rightarrow p p \\
\text { 5independent helicity amplitudes } \\
A_{N} \propto \operatorname{Im}\left[\Phi_{5}\left(\Phi_{1}+\Phi_{2}+\Phi_{3}-\Phi_{4}\right)^{*}\right]
\end{gathered}\left\{\begin{array}{l}
H_{++;++} \equiv \Phi_{1} \\
H_{--;++} \equiv \Phi_{2} \\
H_{+-;+-} \equiv \Phi_{3} \\
H_{-+;+-} \equiv \Phi_{4} \\
H_{-+;++} \equiv \Phi_{5}
\end{array}\right.
$$

Single spin asymmetries at partonic level

$$
\left(q q^{\prime} \rightarrow q q^{\prime} \quad \ell q \rightarrow \ell q\right)
$$

$A_{N} \neq 0$ needs helicity flip + relative phase

QED and QCD interactions conserve helicity, up to corrections $\mathcal{O}\left(\frac{m_{q}}{E_{q}}\right)$

$$
A_{N} \propto \frac{m_{q}}{E_{q}} \alpha_{s} \quad \text { at quark level }
$$

large SSA observed at hadron level are not generated in elementary QED or QCD interactions

TMDs in SIDIS

TMD factorization holds at large Q^{2}, and $P_{T} \approx k_{\perp} \approx \Lambda_{\mathrm{eCD}}$ Two scales: $P_{T} \ll Q^{2}$

$$
\mathrm{d} \sigma^{\ell p \rightarrow \ell h X}=\sum_{q}\left(f_{q}\left(x, \boldsymbol{k}_{\perp} ; Q^{2}\right) \otimes\left(\mathrm{d} \hat{\sigma}^{\ell q \rightarrow \ell q}\left(y, \boldsymbol{k}_{\perp} ; Q^{2}\right) \otimes D_{q}^{\text {TMD-PDFs }} \text { hard scattering } \boldsymbol{p}_{\perp} ; Q^{2}\right)\right.
$$

(Collins, Soper, Ji, J.P. Ma, Yuan, Qiu, Vogelsang, Collins, Metz...) (talks by Bacchetta, Martin, D'Alesio, Gamberg, Schnell, Boer,)

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \phi} & =F_{U U}+\cos (2 \phi) F_{U U}^{\cos (2 \phi)}+\frac{1}{Q} \cos \phi F_{U U}^{\cos \phi}+\lambda \frac{1}{Q} \sin \phi F_{L U}^{\sin \phi} \\
& +S_{L}\left\{\sin (2 \phi) F_{U L}^{\sin (2 \phi)}+\frac{1}{Q} \sin \phi F_{U L}^{\sin \phi}+\lambda\left[F_{L L}+\frac{1}{Q} \cos \phi F_{L L}^{\cos \phi}\right]\right\} \\
& +S_{T}\left\{\begin{array}{c}
\sin \left(\phi-\phi_{S}\right) F_{U T}^{\sin \left(\phi-\phi_{S}\right)}+\sin \left(\phi+\phi_{S}\right) F_{U T}^{\sin \left(\phi+\phi_{S}\right)}+\sin \left(3 \phi-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi-\phi_{S}\right)} \\
\text { Sollinsers }
\end{array}\right. \\
& +\frac{1}{Q}\left[\sin \left(2 \phi-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi-\phi_{S}\right)}+\sin \phi_{S} F_{U T}^{\sin \phi_{S}}\right] \\
& \left.+\lambda\left[\cos \left(\phi-\phi_{S}\right) F_{L T}^{\cos \left(\phi-\phi_{S}\right)}+\frac{1}{Q}\left(\cos \phi_{S} F_{L T}^{\cos \phi_{S}}+\cos \left(2 \phi-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi-\phi_{S}\right)}\right)\right]\right\}
\end{aligned}
$$

the $F_{S_{B} S_{T}}^{(\cdots)}$ contain the TMDs; plenty

TMDs in Drell-Yan processes COMPASS, RHIC, Fermilab, NICA, AFTER...

factorization holds, two scales, M^{2}, and $q_{T} \ll M$

$$
\mathrm{d} \sigma^{D-Y}=\sum_{a} f_{q}\left(x_{1}, \boldsymbol{k}_{\perp 1} ; Q^{2}\right) \otimes f_{\bar{q}}\left(x_{2}, \boldsymbol{k}_{\perp 2} ; Q^{2}\right) \mathrm{d} \hat{\sigma}^{q \bar{q} \rightarrow \ell^{+} \ell^{-}}
$$

direct product of TMDs no fragmentation process (talks by Peng, Lorenzon, Quintans, Vogelsang)

Case of one polarized nucleon only

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d}^{4} q \mathrm{~d} \Omega}= & \frac{\alpha^{2}}{\Phi q^{2}}\left\{\left(1+\cos ^{2} \theta\right) F_{U}^{1}+\left(1-\cos ^{2} \theta\right) F_{U}^{2}+\sin 2 \theta \cos \phi F_{U}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi F_{U}^{\cos 2 \phi}\right. \\
+ & S_{L}\left(\sin 2 \theta \sin \phi F_{L}^{\sin \phi}+\sin ^{2} \theta \sin 2 \phi F_{L}^{\sin 2 \phi}\right) \\
+ & S_{T}\left[\left(F_{T}^{\sin \phi_{S}}+\cos ^{2} \theta \tilde{F}_{T}^{\sin \phi_{S}}\right) \sin \phi_{S}+\sin 2 \theta\left(\sin \left(\phi+\phi_{S}\right) F_{T}^{\sin \left(\phi+\phi_{S}\right)}\right.\right. \\
& \left.\quad+\sin \left(\phi-\phi_{S}\right) F_{T}^{\sin \left(\phi-\phi_{S}\right)}\right) \\
& \quad \begin{array}{l}
\text { Sivers }
\end{array} \\
+ & \left.\left.\sin ^{2} \theta\left(\sin \left(2 \phi+\phi_{S}\right) F_{T}^{\sin \left(2 \phi+\phi_{S}\right)}+\sin \left(2 \phi-\phi_{S}\right) F_{T}^{\sin \left(2 \phi-\phi_{S}\right)}\right)\right]\right\}
\end{aligned}
$$

Collins-Soper frame

Unpolarized cross section already very interesting

$$
\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}=\frac{3}{4 \pi} \frac{1}{\lambda+3}\left(1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right)
$$

Collins-Soper frame
naive collinear parton model: $\lambda=1 \quad \mu=\nu=0$

Sivers effect in D-Y processes

By looking at the $d^{4} \sigma / d^{4} q$ cross section one can single out the Sivers effect in D-Y processes

$$
\begin{aligned}
& \mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow} \propto \sum_{q} \otimes^{N} f_{q / p^{\uparrow}}\left(x_{1}, \boldsymbol{k}_{\perp 1}\right) \otimes f_{\bar{q} / p}\left(x_{2}, k_{\perp 2}\right) \otimes \mathrm{d} \hat{\sigma} \\
& q=u, \bar{u}, d, \bar{d}, s, \bar{s}
\end{aligned}
$$

$$
A_{N}^{\sin \left(\phi_{S}-\phi_{\gamma}\right)} \equiv \frac{2 \int_{0}^{2 \pi} \mathrm{~d} \phi_{\gamma}\left[\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}\right] \sin \left(\phi_{S}-\phi_{\gamma}\right)}{\int_{0}^{2 \pi} \mathrm{~d} \phi_{\gamma}\left[\mathrm{d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}\right]}
$$

Transverse motion of hadrons in fragmentation processes Collins function from $e^{+} e^{-}$processes

$$
\begin{aligned}
& \quad \frac{\mathrm{d} \sigma^{e^{+}} e^{-} \rightarrow q^{\uparrow} \bar{q}^{\uparrow}}{\mathrm{d} \cos \theta}=\frac{3 \pi \alpha^{2}}{4 s} e_{q}^{2} \cos ^{2} \theta \quad \frac{\mathrm{~d} \sigma^{e^{+} e^{-} \rightarrow q^{\downarrow} \bar{q}^{\uparrow}}}{\mathrm{d} \cos \theta}=\frac{3 \pi \alpha^{2}}{4 s} e_{q}^{2} \\
& A_{12}\left(z_{1}, z_{2}, \theta, \varphi_{1}+\varphi_{2}\right) \equiv \frac{1}{\langle d \sigma\rangle} \frac{d \sigma^{e^{+} e^{-} \rightarrow h_{1} h_{2} X}}{d z_{1} d z_{2} d \cos \theta d\left(\varphi_{1}+\varphi_{2}\right)} \\
& =1+\frac{1}{4} \frac{\sin ^{2} \theta}{1+\cos ^{2} \theta} \cos \left(\varphi_{1}+\varphi_{2}\right) \times \frac{\sum_{q} e_{q}^{2}\left(\Delta ^ { N } D _ { h _ { 1 } / q ^ { \uparrow }) } (z _ { 1 }) \left(\Delta^{N} D_{h_{2} / \bar{q}}()\left(z_{2}\right)\right.\right.}{\sum_{q} e_{q}^{2} D_{h_{1} / q}\left(z_{1}\right) D_{h_{2} / \bar{q}}\left(z_{2}\right)}
\end{aligned}
$$

another similar asymmetry can be measured, A_{0}

independent evidence for Collins effect

 from $e^{+} e^{-}$data at Belle, BaBar and BES-III$$
A_{12}\left(z_{1}, z_{2}\right) \sim \Delta^{N} D_{h_{1} / q^{\uparrow}}\left(z_{1}\right) \otimes \Delta^{N} D_{h_{2} / \bar{q}^{\uparrow}}\left(z_{2}\right)
$$

(talks on FFs by Matevosyan, Radici, Liang, Goldstein, ...)

Some (effects of) TMDs have been clearly measured, TMDs have been extracted from data
$f_{1}^{q}\left(x, \boldsymbol{k}^{2}\right) \quad$ unpolarised quarks in unpolarised protons unintegrated unpolarised distribution
$f_{1 T}^{\perp q}\left(x, \boldsymbol{k}_{\perp}^{2}\right)$ Sivers function: correlate \boldsymbol{k}_{\perp} of quark with S_{T} of parent proton
$H_{1}^{\perp q}\left(z, \boldsymbol{p}_{\perp}^{2}\right)$ Collins function: correlate \mathbf{p}_{\perp} of hadron and ST of fragmenting quark
and even some first 3D nucleon imaging is available, but do we know better the orbital motion of quarks and gluons inside the nucleon?

Is there a direct access to parton angular momentum?

Sivers function and angular momentum

Ji's sum rule

$$
J^{q}=\frac{1}{2} \int_{0}^{1} d x x\left[H^{q}(x, 0,0)+E^{q}(x, 0,0)\right]
$$

anomalous magnetic moments

$$
\begin{gathered}
\kappa^{p}=\int_{0}^{1} \frac{d x}{3}\left[2 E^{u_{v}}(x, 0,0)-E^{d_{v}}(x, 0,0)-E^{s_{v}}(x, 0,0)\right] \\
\kappa^{n}=\int_{0}^{1} \frac{d x}{3}\left[2 E^{d_{v}}(x, 0,0)-E^{u_{v}}(x, 0,0)-E^{s_{v}}(x, 0,0)\right] \\
\left(E^{q_{v}}=E^{q}-E^{\bar{q}}\right) \\
\text { (talk on GPDs by Dupré) }
\end{gathered}
$$

Sivers function and angular momentum

assume

$$
\begin{gathered}
f_{1 T}^{\perp(0) a}\left(x ; Q_{L}^{2}\right)=-L(x) E^{a}\left(x, 0,0 ; Q_{L}^{2}\right) \\
f_{1 T}^{\perp(0) a}(x, Q)=\int d^{2} \boldsymbol{k}_{\perp} \widehat{f}_{1 T}^{\perp a}\left(x, k_{\perp} ; Q\right) \\
L(x)=\text { lensing function }
\end{gathered}
$$

(unknown, can be computed in models)
parameterise Sivers and lensing functions
fit SIDIS and magnetic moment data
obtain E^{9} and estimate total angular momentum

$$
\text { results at } Q^{2}=4 \mathrm{GeV}^{2}: \mathrm{J}^{u} \approx 0.23, \mathrm{~J}^{\neq u} \approx 0
$$

Bacchetta, Radici, PRL 107 (2011) 212001
(talk by Burkardt)

Examples and interpretation of the Sivers function: simple quark-scalar diquark model of the proton

SIDIS final state interactions $\left(\Rightarrow A_{N}\right)$

D-Y initial state interactions $\left(\Rightarrow-A_{N}\right)$

Brodsky, Hwang, Schmidt, PL B530 (2002) 99; NP B642 (2002) 344 Brodsky, Hwang, Kovchegov, Schmidt, Sievert, PR D88 (2013) 014032

process-dependence of Sivers functions

DIS:

"attractive"

(a)

(c)

(b)

(d)

$$
\left[f_{1 T}^{q \perp}\right]_{\mathrm{SIDIS}}=-\left[f_{1 T}^{q \perp}\right]_{\mathrm{DY}}
$$

Collins, PL B536 (2002) 43

First results from RHIC, $p^{\uparrow} p \rightarrow W^{ \pm} X$ STAR Collaboration, arXiv:1511.06003

some hints at sign change

experimental data up to large рт values.... $^{\text {v }}$
analysis of data (in preparation):
M.A., M. Boglione, U. D'Alesio, F. Murgia, A. Prokudin

(talk by D'Alesio)

TMDs in pp single inclusive processes? The mysterious SSAs in large P_{T} single hadron inclusive production

Cross section for $p p \rightarrow \pi^{0} X$ in $p Q C D$, only one scale, P_{T} based on factorization theorem
(in collinear configuration)

$$
\mathrm{d} \sigma=\left.\sum_{a, b, c, d=q, \bar{q}, g} \underbrace{f_{a / p}\left(x_{a}\right) \otimes f_{b / p}\left(x_{b}\right)}_{\text {PDF }} \otimes\right|_{\substack{\text { pQCD elementary } \\ \text { interactions }}} ^{\mathrm{d} \hat{\sigma}^{a b \rightarrow c d} \otimes \underbrace{D_{\pi / c}(z)}_{\mathrm{FF}}}
$$

mid-rapidity RHIC data, unpolarised cross sections

 (arXiv:1409.1907 [hep-ex], Phys. Rev. D91 (2015) 3, 032001)
good agreement between RHIC data and collinear PQCD calculations; similarly for jet production at LHC

$$
\begin{aligned}
& p, S \\
& \mathrm{~d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}=\sum_{a, b, c, d=q, \bar{q}, g} \underbrace{\Delta_{T} f_{a}}_{\begin{array}{c}
\text { transversity }
\end{array}} \otimes f_{b} \otimes \underbrace{\left[\mathrm{~d} \hat{\sigma}^{\uparrow}-\mathrm{d} \hat{\sigma}^{\downarrow}\right]}_{\begin{array}{c}
\text { PQCD elementary } \\
\text { SSA }
\end{array}} \otimes \underbrace{D_{\pi / c}}_{\mathrm{FF}} \\
& A_{N}=\frac{\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}}{\mathrm{d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}} \propto \hat{a}_{N} \propto \frac{m_{q}}{E_{q}} \alpha_{s} \quad \begin{array}{c}
\text { was considered } \\
\text { almost a theorem }
\end{array}
\end{aligned}
$$

but $A_{N} \neq 0$ persists at high energies

.... and at large P_{T}

Z-boson transverse momentum q_{T} spectrum in pp collisions at the LHC

The small q_{T} region cannot be explained by usual collinear PDF factorization: needs TMD-PDFs Phys. Rev. D85 (2012) 032002

SSA in hadronic processes: TMDs, higher-twist correlations?
Two main different (?) approaches

1. Generalization of collinear scheme (GPM)
(assuming factorization)

$$
\mathrm{d} \sigma^{\uparrow}=\sum_{a, b, c=q, \bar{q}, g} \underbrace{f_{a / p^{\uparrow}}\left(x_{a}, \boldsymbol{k}_{\perp a}\right)}_{\text {non perturbative single spin effects in TMDs }} \otimes \underbrace{f_{b / p}\left(x_{b}, \boldsymbol{k}_{\perp b}\right)} \otimes \mathrm{d} \hat{\sigma}^{a b \rightarrow c d}\left(\boldsymbol{k}_{\perp a}, \boldsymbol{k}_{\perp b}\right) \otimes \underbrace{D_{\pi / c}\left(z, \boldsymbol{p}_{\perp \pi}\right)}_{\pi / c}
$$

M.A., M. Boglione, U. D'Alesio, E. Leader, S. Melis, F. Murgia, A. Prokudin, ... Field-Feynman

TMD contributions to A_{N} (assuming TMD factorisation)

$$
\begin{aligned}
\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\uparrow}= & \sum_{a, b, c}\left\{\Delta^{N} f_{a / p^{\uparrow}}\left(\boldsymbol{k}_{\perp}\right) \otimes f_{b / p} \otimes \mathrm{~d} \hat{\sigma}\left(\boldsymbol{k}_{\perp}\right) \otimes D_{\pi / c}\right. \\
+ & \left.h_{1}^{a / p}\right) \otimes f_{b / p} \otimes \mathrm{~d} \Delta \hat{\sigma}\left(\boldsymbol{k}_{\perp}\right) \otimes \Delta^{N} D_{\pi / c} \uparrow\left(\boldsymbol{k}_{\perp}\right) \\
+ & \left.h_{1}^{a / p} \otimes \Delta^{N} f_{b^{\uparrow} / p}\left(\boldsymbol{k}_{\perp}\right) \otimes \mathrm{d} \Delta^{\prime} \hat{\sigma}\left(\boldsymbol{k}_{\perp}\right) \otimes D_{\pi / c}\right\} \\
& \text { (1) Sivers effect } \\
& \text { (2) transversity } \otimes \text { Collins } \\
& \text { (3) transversity } \otimes \text { Boer - Mulders }
\end{aligned}
$$

main contribution from Sivers effect, can explain qualitatively most SIDIS and A_N data
(M.A. M. Boglione, D'Alesio, E. Leader, S. Melis, F. Murgia, A. Prokudin, PRD86 (2012) 074032; PRD88 (2013) 054023)

2. Higher-twist partonic correlations (ETQS)

(Efremov, Teryaev, Ratcliffe; Qiu, Sterman; Kouvaris, Vogelsang, Yuan;
Bacchetta, Bomhof, Mulders, Pijlman; Koike; Gamberg, Kang...)
higher-twist partonic correlations - factorization OK

$$
\mathrm{d} \Delta \sigma \propto \sum_{a, b, c} \underbrace{T_{a}\left(k_{1}, k_{2}, \boldsymbol{S}_{\perp}\right)}_{\text {twist-3 correlators }} \otimes f_{b / B}\left(x_{b}\right) \otimes \underbrace{H^{a b \rightarrow c}\left(k_{1}, k_{2}\right)}_{\begin{array}{c}
\text { product of hard amplitudes, } \\
\text { not cross sections }
\end{array}} \otimes D_{h / c}(z)
$$

$$
g T_{q, F}(x, x)=-\left.\int d^{2} k_{\perp} \frac{\left|k_{\perp}\right|^{2}}{M} f_{1 T}^{\perp q}\left(x, k_{\perp}^{2}\right)\right|_{\mathrm{SIDIS}}
$$

possible higher-twist contributions to A_{N} (collinear factorisation)

$$
\begin{aligned}
d \sigma\left(\vec{S}_{\perp}\right) & =H \otimes f_{a / A(3)} \otimes f_{b / B(2)} \otimes D_{C / c(2)} \\
& +H^{\prime} \otimes f_{a / A(2)} \otimes f_{b / B(3)} \otimes D_{C / c(2)} \\
& +H^{\prime \prime} \otimes f_{a / A(2)} \otimes f_{b / B(2)} \otimes D_{C / c(3)}
\end{aligned}
$$

(1) Twist-3 contribution related to Sivers function
(2) Twist-3 contribution related to Boer-Mulders function
(3) Twist-3 fragmentation: has two contributions, one related to Collins function + a new one
the first contribution with a twist-3 quark-gluon-quark correlator was expected to be the dominant one, but

sign mismatch

(Kang, Qiu, Vogelsang, Yuan, PR D83 (2011) 094001)

using the SIDIS Sivers function to build the twist-3 q-g-q correlator $T_{q, F}$

$$
g T_{q, F}(x, x)=-\left.\int d^{2} k_{\perp} \frac{\left|k_{\perp}\right|^{2}}{M} f_{1 T}^{\perp q}\left(x, k_{\perp}^{2}\right)\right|_{\mathrm{SIDIS}}
$$

leads to sizeable value of A_{N}, but with the wrong sign....
the same mismatch does not occur adopting TMD factorization; the reason is that the hard scattering part in higher-twist factorization is negative
A_{N} might be explained by new twist-3
fragmentation functions
(Kanazawa, Koike, Metz, Pitonyak, PRD 89 (2014) 111501)
A_{N} from twist-3 fragmentation functions (Kanazawa, Koike, Metz, Pitonyak, PRD 89 (2014) 111501)

good fit of A_{N} mainly

 due to the new twist-3 fragmentation functionit gives too large values of A_{N} in $\ell p^{\uparrow} \rightarrow \pi X$ processes
Gamberg, Khang, Metz, Pitonyak, PRD 90 (2014) 074012
but A_{N} in $\mathrm{Ip} \rightarrow \pi X$ can be well explained by TMD factorisation + Weizsäcker-Williams approximation (U. D'Alesio, C. Flore, F. Murgia, in preparation talk by U. D'Alesio at QCD evolution 2016)

TMDs and QCD - TMD evolution

study of the QCD evolution of TMDs and TMD factorisation in rapid development

Different TMD evolution schemes and different implementations within the same scheme. It needs non perturbative inputs

dedicated workshops, QCD Evolution 2011, 2012, 2013, 2014, 2015, 2016

dedicated tools:
TMDlib and TMDplotter: library and plotting tools for transverse-momentum-dependent parton distributions
(talks by Bacchetta, Gamberg, Mulders, Cherednikov,...)

TMD phenomenology with QCD evolution

 how does gluon emission affect the transverse motion? example: TMD evolution of up quark Sivers function

Aybat, Collins, Qiu, Rogers, Phys. Rev. D85 (2012), Kang, Prokudin, Sun, Yuan, arXiv:1505.05589),

Conclusions

The 3D nucleon structure is mysterious and fascinating. Many experimental results show the necessity to go beyond
the simple collinear partonic picture and give new information. Crucial task is interpreting data and building a consistent 3D description of the nucleon.

Sivers and Collins effects are well established, with many transverse spin asymmetries resulting from them. Sivers function, TMDs and orbital angular momentum? The analysis of TMDs and GPDs is sound and well developed.

Combined data from SIDIS, Drell-Yan, e+e-, with theoretical modelling, should lead to a true 3D imaging of the proton

Waiting for JLab 12, new COMPASS results, and, crucially, for an EIC dedicated facility....

