3D structure: present and future

Alessandro Bacchetta

Funded by

ISTITUTO Nazionale di Fisica Nucleare

Even if I will present an overview, I acknowledge the contribution of my research group in shaping and developing many of the ideas that I will mention

- Filippo Delcarro, Luca Mantovani, Fulvio Piacenza (PhD students)
- Giuseppe Bozzi, Cristian Pisano (post-docs)
- Barbara Pasquini, Marco Radici (staff)

Disclaimer

My task was to talk about the present and the future, but

It is difficult to predict, especially the future

N. Bohr

In the end, I will mainly focus on present and mainly about TMDs

Disclaimer

My task was to talk about the present and the future, but

It is difficult to predict, especially the future **99** N. Bohr

In the end, I will mainly focus on present and mainly about TMDs

see, e.g., C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (11)

see, e.g., C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (11)

see, e.g., C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (11)

3D structure in momentum space

3D structure in impact parameter space

down valence

Fourier t. of
GPDs at (x,0,t)
Model assumptions are critical
up: smaller distorsion and opposite sign

Diehl, Kroll, arXiv:1302.4604, and talk by M. Diehl at DIS 2013

Recent review

The European Physical Journal A All Volumes & Issues

The 3-D Structure of the Nucleon

ISSN: 1434-6001 (Print) 1434-601X (Online)

In this topical collection (17 articles)

EPJ A (2016) 52

 We have some indications about the qualitative behaviour of some of these densities (much better than just five years ago), but we are still far from precision

- We have some indications about the qualitative behaviour of some of these densities (much better than just five years ago), but we are still far from precision
- "Model assumptions" (intended in a broad way) are critical

- We have some indications about the qualitative behaviour of some of these densities (much better than just five years ago), but we are still far from precision
- "Model assumptions" (intended in a broad way) are critical
- A good amount of data is already available (but still insufficient)

• Obtain precise determinations of TMDs and GPDs (and direct or indirect determinations of Wigner distributions/generalized TMDs)

- Obtain precise determinations of TMDs and GPDs (and direct or indirect determinations of Wigner distributions/generalized TMDs)
- Find applications of this knowledge outside the field of "proton structure" studies (and react accordingly)

- Obtain precise determinations of TMDs and GPDs (and direct or indirect determinations of Wigner distributions/generalized TMDs)
- Find applications of this knowledge outside the field of "proton structure" studies (and react accordingly)
- Train young generations (and find jobs for them)

Some of the present-day challenges

Sivers function SIDIS = - Sivers function Drell-Yan Collins, PLB 536 (02)

We hope to have a clear result from COMPASS

GPD parametrizations

Example of data: target spin asymmetry at CLAS

GPD parametrizations

Example of data: target spin asymmetry at CLAS

GPD parametrizations

Example of data: target spin asymmetry at CLAS

Most parametrizations are not describing ALL data in a satisfactory way.

de Florian, Sassot, Stramann, Vogelsang, PRL 113 (14) NNPDF, Ball et al. NPB 887 (14), Tab. 12, 13

:2

NNPDF, Ball et al. NPB 887 (14), Tab. 12, 13

NNPDF, Ball et al. NPB 887 (14), Tab. 12, 13

NNPDF, Ball et al. NPB 887 (14), Tab. 12, 13

TMD evolution

TMD evolution

CDF, Q ≈ 91 GeV

TMD evolution

Width of TMDs changes of one order of magnitude: can we explain this in detail? (TMD evolution)

TMD evolution

TMD phenomenologist

16

1D

(standard parton distribution functions - PDFs)

1D

(standard parton distribution functions - PDFs)

Parton model

1D

(standard parton distribution functions - PDFs)

1D

(standard parton distribution functions - PDFs)

1D

(standard parton distribution functions - PDFs)

3D

1D

(standard parton distribution functions - PDFs)

3D

1D

(standard parton distribution functions - PDFs)

3D

1D

(standard parton distribution functions - PDFs)

3D

Phase 1 "parton model"

Phase 2 "global fits"

TMD evolution: Fourier transform

$$f_1^a(x,k_{\perp};\mu^2) = \frac{1}{2\pi} \int d^2 b_T e^{-ib_T \cdot k_{\perp}} \widetilde{f}_1^a(x,b_T;\mu^2)$$

Rogers, Aybat, PRD 83 (11) Collins, "Foundations of Perturbative QCD" (11)

possible schemes, e.g., Collins, Soper, Sterman, NPB250 (85) Laenen, Sterman, Vogelsang, PRL 84 (00) Echevarria, Idilbi, Schaefer, Scimemi, EPJ C73 (13)

TMD evolution: Fourier transform

$$f_1^a(x,k_{\perp};\mu^2) = \frac{1}{2\pi} \int d^2 b_T e^{-ib_T \cdot k_{\perp}} \tilde{f}_1^a(x,b_T;\mu^2)$$

$$\widetilde{f}_{1}^{a}(x,b_{T};\mu^{2}) = \sum_{i} \left(\widetilde{C}_{a/i} \otimes f_{1}^{i} \right)(x,b_{*};\mu_{b}) e^{\widetilde{S}(b_{*};\mu_{b},\mu)} e^{g_{K}(b_{T})\ln\frac{\mu}{\mu_{0}}} \widehat{f}_{\mathrm{NP}}^{a}(x,b_{T})$$

Rogers, Aybat, PRD 83 (11) Collins, "Foundations of Perturbative QCD" (11)

possible schemes, e.g., Collins, Soper, Sterman, NPB250 (85) Laenen, Sterman, Vogelsang, PRL 84 (00) Echevarria, Idilbi, Schaefer, Scimemi, EPJ C73 (13)

TMD evolution: Fourier transform

$$f_1^a(x,k_{\perp};\mu^2) = \frac{1}{2\pi} \int d^2 b_T e^{-ib_T \cdot k_{\perp}} \widetilde{f}_1^a(x,b_T;\mu^2)$$

Presently or soon available fits

	Framework	HERMES	COMPASS	DY	Z production	N of points
KN 2006 <u>hep-ph/0506225</u>	NLL	*	×		•	98
Pavia 2013 (+Amsterdam,Bilbao) <u>arXiv:1309.3507</u>	No evo		×	*	×	1538
Torino 2014 (+JLab) <u>arXiv:1312.6261</u>	No evo	(separately)	(separately)	*	*	576 (H) 6284 (C)
DEMS 2014 <u>arXiv:1407.3311</u>	NNLL	*	×			223
EIKV 2014 <u>arXiv:1401.5078</u>	NLL	1 (x,Q ²) bin	1 (x,Q ²) bin		~	500 (?)
Pavia 2016	NLL				~	8156

DEMS 2014

D'Alesio, Echevarria, Melis, Scimemi, JHEP 1411 (14)

NNLL-NNLO

21

Glimpses of Pavia's results

This is the first fit putting together data from SIDIS to Z production

 $\chi^2/dof = 1.55\pm0.05$

Bacchetta, Delcarro, Pisano, Radici, Signori, in preparation

S. Melis, Nuovo Cim. CO36 (13)

S. Melis, <u>Nuovo Cim. CO36 (13)</u>

ers sign change.

S. Melis, Nuovo Cim. CO36 (13)

Different implementations of TMD evolution affect the asymmetry in a different way (Pavia 2016: g₂ = 0.12)

23

Collins et al., arXiv: 1605.00671 and T. Rogers's talk at Trento 2016

Collins et al., arXiv: 1605.00671 and T. Rogers's talk at Trento 2016

$$F_{UU,T}(x, z, \boldsymbol{P}_{hT}^{2}, Q^{2}) = x \sum_{a} \mathcal{H}_{UU,T}^{a}(Q^{2}; \mu^{2}) \int \frac{d\boldsymbol{b}_{\perp}^{2}}{4\pi} J_{0}(|\boldsymbol{b}_{T}||\boldsymbol{P}_{h\perp}|) \tilde{f}_{1}^{a}(x, z^{2}\boldsymbol{b}_{\perp}^{2}; \mu^{2}) \tilde{D}_{1}^{a \to h}(z, \boldsymbol{b}_{\perp}^{2}; \mu^{2}) + Y_{UU,T}(Q^{2}, \boldsymbol{P}_{hT}^{2}) + \mathcal{O}(M^{2}/Q^{2})$$

Collins et al., arXiv: 1605.00671 and T. Rogers's talk at Trento 2016

 $\frac{{\rm The \ W \ term}}{{\it Good \ approximation}} \\ {\it If} \\ {\it q_{\rm T}} \ll Q$

$$F_{UU,T}(x, z, \boldsymbol{P}_{hT}^{2}, Q^{2}) = x \sum_{a} \mathcal{H}_{UU,T}^{a}(Q^{2}; \mu^{2}) \int \frac{d\boldsymbol{b}_{\perp}^{2}}{4\pi} J_{0}(|\boldsymbol{b}_{T}||\boldsymbol{P}_{h\perp}|) \tilde{f}_{1}^{a}(x, z^{2}\boldsymbol{b}_{\perp}^{2}; \mu^{2}) \tilde{D}_{1}^{a \to h}(z, \boldsymbol{b}_{\perp}^{2}; \mu^{2}) + Y_{UU,T}(Q^{2}, \boldsymbol{P}_{hT}^{2}) + \mathcal{O}(M^{2}/Q^{2})$$

Collins et al., arXiv: 1605.00671 and T. Rogers's talk at Trento 2016

 $\frac{\text{The W term}}{\text{Good approximation}}$ If $q_{\rm T} \ll Q$

$$F_{UU,T}(x, z, \boldsymbol{P}_{hT}^{2}, Q^{2}) = x \sum_{a} \mathcal{H}_{UU,T}^{a}(Q^{2}; \mu^{2}) \int \frac{d\boldsymbol{b}_{\perp}^{2}}{4\pi} J_{0}(|\boldsymbol{b}_{T}||\boldsymbol{P}_{h\perp}|) \tilde{f}_{1}^{a}(x, z^{2}\boldsymbol{b}_{\perp}^{2}; \mu^{2}) \tilde{D}_{1}^{a \to h}(z, \boldsymbol{b}_{\perp}^{2}; \mu^{2}) + Y_{UU,T}(Q^{2}, \boldsymbol{P}_{hT}^{2}) + \mathcal{O}(M^{2}/Q^{2})$$

 $\frac{\text{The Y term}}{\text{Good approximation}}$ If $q_{\rm T} \gg m$

Collins et al., arXiv: 1605.00671 and T. Rogers's talk at Trento 2016

 $\frac{\text{The W term}}{\text{Good approximation}}$ If $q_{\rm T} \ll Q$

$$\begin{split} F_{UU,T}(x,z,\boldsymbol{P}_{hT}^{2},Q^{2}) &= x \sum_{a} \mathcal{H}_{UU,T}^{a}(Q^{2};\mu^{2}) \int \frac{d\boldsymbol{b}_{\perp}^{2}}{4\pi} J_{0}(|\boldsymbol{b}_{T}||\boldsymbol{P}_{h\perp}|) \tilde{f}_{1}^{a}\left(x,z^{2}\boldsymbol{b}_{\perp}^{2};\mu^{2}\right) \tilde{D}_{1}^{a \to h}\left(z,\boldsymbol{b}_{\perp}^{2};\mu^{2}\right) \\ &+ Y_{UU,T}\left(Q^{2},\boldsymbol{P}_{hT}^{2}\right) + \mathcal{O}\left(M^{2}/Q^{2}\right) \\ &\frac{\text{The Y term}}{\text{Good approximation}} \\ & If \\ &q_{T} \gg m \end{split}$$

The Y term guarantees that the calculation at high P_{hT} agrees with perturbative calculation done with collinear factorization

Collins et al., arXiv: 1605.00671 and T. Rogers's talk at Trento 2016

 $\frac{\text{The W term}}{\text{Good approximation}}$ If $q_{\rm T} \ll Q$

$$\begin{split} F_{UU,T}(x,z,\boldsymbol{P}_{hT}^{2},Q^{2}) &= x \sum_{a} \mathcal{H}_{UU,T}^{a}(Q^{2};\mu^{2}) \int \frac{d\boldsymbol{b}_{\perp}^{2}}{4\pi} J_{0}(|\boldsymbol{b}_{T}||\boldsymbol{P}_{h\perp}|) \tilde{f}_{1}^{a}\left(x,z^{2}\boldsymbol{b}_{\perp}^{2};\mu^{2}\right) \tilde{D}_{1}^{a \to h}\left(z,\boldsymbol{b}_{\perp}^{2};\mu^{2}\right) \\ &+ Y_{UU,T}\left(Q^{2},\boldsymbol{P}_{hT}^{2}\right) + \mathcal{O}\left(M^{2}/Q^{2}\right) \\ &\frac{\text{The Y term}}{\text{Good approximation}} \\ & If \\ &q_{T} \gg m \end{split}$$

The Y term guarantees that the calculation at high P_{hT} agrees with perturbative calculation done with collinear factorization

Bozzi et al. <u>arXiv:0812.2862</u>

In these conditions, the matching works. Almost the full range is dominated by resummation

Bozzi et al. <u>arXiv:0812.2862</u>

In these conditions, the matching works.

Almost the full range is dominated by resummation

Bozzi et al. <u>arXiv:0812.2862</u>

In these conditions, the matching works.

Almost the full range is dominated by resummation

Bozzi et al. <u>arXiv:0812.2862</u>

In these conditions, the matching works.

Almost the full range is dominated by resummation

New COMPASS data and Y term

M. Stolarsky, SPIN 2014
New COMPASS data and Y term

Is this the onset of high-transverse-momentum perturbative contributions?

Collins et al., arXiv: 1605.00671

 $Q^2 = 1.92 \text{GeV}^2, x = 0.0318, z = 0.375$

• Fit start working well with data from very different experiments

- Fit start working well with data from very different experiments
- There is still strong dependence on the assumptions made in the fits and on the implementation of TMD evolution

- Fit start working well with data from very different experiments
- There is still strong dependence on the assumptions made in the fits and on the implementation of TMD evolution
- The theory is still not completely under control in the low energy region

Extensions of data sets

Available data

Adolph et al., EPJ C73 (13)

30

Available data

Adolph et al., EPJ C73 (13)

30

Comparison with collinear PDFs

talk by E. Nocera at POETIC2016

Comparison with collinear PDFs

talk by E. Nocera at POETIC2016

Comparison with future perspectives

from EIC white paper EPJA 52 (2016), see talks by A. Deshpande, M. Contalbrigo

33

Comparison with future perspectives

Recent ³He data from JLab Hall A

Yan et al., <u>arXiv:1610.02350</u>

Distribution-fragmentation k_{T}

Pavia 2013 fit based only on SIDIS data showed a strong anticorrelation that could not be resolved without further data

Distribution-fragmentation k_{T}

Pavia 2016 fit uses also DY data. The anticorrelation is weaker than before but still strong. Independent information about fragmentation kT is necessary.

TMD fragmentation functions

Bacchetta, Echevarria, Mulders, Radici, Signori, <u>arXiv:1508.00402</u>

TMD fragmentation functions

Bacchetta, Echevarria, Mulders, Radici, Signori, <u>arXiv:1508.00402</u>

TMD fragmentation functions

Bacchetta, Echevarria, Mulders, Radici, Signori, <u>arXiv:1508.00402</u>

Bruno Touschek, pioneer of e⁺e⁻ colliders

You need also e⁺e⁻ data to study TMD fragmentation functions

see talks by Artru, Matevosyan, Radici, Liang

Status of other extractions

Helicity TMD (F_{LL} structure function)

http://dx.doi.org/10.3204/DESY-THESIS-2010-043

Worm-gear TMDs

see talk by B. Parsamyan see also HERMES, <u>arXiv:1107.4227</u>

Z boson transverse momentum

D'Alesio, Echevarria, Melis, Scimemi, JHEP 1411 (14)

Z boson transverse momentum

D'Alesio, Echevarria, Melis, Scimemi, JHEP 1411 (14)

Z boson transverse momentum

difference between red and magenta lines due to nonperturbative contributions

G. Ferrera, talk at REF 2014, Antwerp, <u>https://indico.cern.ch/event/330428/</u>

W transverse momentum

PhD thesis Andrea Signori

Flavor dependence of TMDs can affect the shape of the transversemomentum spectrum of W bosons. In turn, this might be relevant for precise determinations of M_W

Higgs transverse momentum

G. Ferrera, talk at REF 2014, Antwerp, <u>https://indico.cern.ch/event/330428/</u>

47

Gluon TMDs (and linear polarisation)

Boer, den Dunnen, Pisano, Schlegel, Vogelsang, PRL108 (2012)

Not only we could be potentially sensitive to unpolarized gluon TMDs, but also to linearly polarized gluon TMDs

> see talks by Boer, Schlegel, Pisano and also low-x talks by Kovchecov, Cherednikov

• The description based on TMD formalism works well

- The description based on TMD formalism works well
- Nonperturbative parts of TMDs affect the transverse-momentum distribution even up to 5 GeV

TMDs at LHC

- The description based on TMD formalism works well
- Nonperturbative parts of TMDs affect the transverse-momentum distribution even up to 5 GeV
- Data can be useful for TMD extraction, but finer binning at low transverse momentum is required

TMDs at LHC

- The description based on TMD formalism works well
- Nonperturbative parts of TMDs affect the transverse-momentum distribution even up to 5 GeV
- Data can be useful for TMD extraction, but finer binning at low transverse momentum is required
- Potential for gluon TMD studies

Other important issues related to LHC

Other important issues related to LHC

• Role of parton distribution functions (including 3D ones) in searches for physics beyond the standard model

see talks by Courtoy, Pitschmann

Other important issues related to LHC

• Role of parton distribution functions (including 3D ones) in searches for physics beyond the standard model

see talks by Courtoy, Pitschmann

• 3D distributions are just single-parton density distributions. For LHC, multiparton distributions turn out to be extremely relevant. They are also related to twist-3 parton distribution functions.

see talk by S. Scopetta

5

 Steady progress in the field of 3D nucleon structure, both experimental and theoretical

- Steady progress in the field of 3D nucleon structure, both experimental and theoretical
- Accurate extractions of parton distributions (quark and gluons) require more data

- Steady progress in the field of 3D nucleon structure, both experimental and theoretical
- Accurate extractions of parton distributions (quark and gluons) require more data
- I did not manage to predict much about the future, but I can say for sure that it will be bright!