Angular Distributions of the Drell-Yan Process

Jen-Chieh Peng

University of Illinois at Urbana-Champaign

Workshop on "3D Parton Distributions: path to the LHC" Laboratori Nationali di Frascati November 29 – Decmber 2, 2016

Based on the paper of JCP, Wen-Chen Chang, Evan McClellan, Oleg Teryaev, Phys. Lett. B758 (2016) 384, arXiv: 1511.08932

The Drell-Yan Process

MASSIVE LEPTON-PAIR PRODUCTION IN HADRON-HADRON COLLISIONS AT HIGH ENERGIES*

Sidney D. Drell and Tung-Mow Yan

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305 (Received 25 May 1970)

On the basis of a parton model studied earlier we consider the production process of large-mass lepton pairs from hadron-hadron inelastic collisions in the limiting region, $s \rightarrow \infty$, Q^2/s finite, Q^2 and s being the squared invariant masses of the lepton pair and the two initial hadrons, respectively. General scaling properties and connections with deep inelastic electron scattering are discussed. In particular, a rapidly decreasing cross section as $Q^2/s \rightarrow 1$ is predicted as a consequence of the observed rapid falloff of the inelastic scattering structure function νW_2 near threshold.

Angular Distribution in the "Naïve" Drell-Yan

VOLUME 25, NUMBER 5

PHYSICAL REVIEW LETTERS

3 August 1970

(3) The virtual photon will be predominantly transversely polarized if it is formed by annihilation of spin- $\frac{1}{2}$ parton-antiparton pairs. This means a distribution in the di-muon rest system varying as $(1 + \cos^2\theta)$ rather than $\sin^2\theta$ as found in Sakurai's¹⁰ vector-dominance model, where θ is the angle of the muon with respect to the timelike photon momentum. The model used in Fig.

Drell-Yan angular distribution Lepton Angular Distribution of "naïve" Drell-Yan:

$$\frac{d\sigma}{d\Omega} = \sigma_0 (1 + \lambda \cos^2 \theta); \quad \lambda = 1$$

Data from Fermilab E772

(Ann. Rev. Nucl. Part. Sci. 49 (1999) 217-253)

Why is the lepton angular distribution $1 + \cos^2 \theta$?

Helicity conservation and parity

Adding all four helicity configurations : $d\sigma \sim 1 + \cos^2 \theta$

 $RL \rightarrow RL$ $d\sigma \sim (1 + \cos\theta)^2$ $RL \rightarrow LR$ $d\sigma \sim (1 - \cos\theta)^2$ $LR \rightarrow LR$ $d\sigma \sim (1 + \cos\theta)^2$ $LR \rightarrow RL$ $d\sigma \sim (1 - \cos\theta)^2$

Drell-Yan lepton angular distributions

Θ and Φ are the decay polar and azimuthal angles of the $μ^$ in the dilepton rest-frame

Collins-Soper frame

A general expression for Drell-Yan decay angular distributions: $\left(\frac{1}{\sigma}\right)\left(\frac{d\sigma}{d\Omega}\right) = \left[\frac{3}{4\pi}\right]\left[1 + \lambda\cos^2\theta + \mu\sin2\theta\cos\phi + \frac{\nu}{2}\sin^2\theta\cos2\phi\right]$ Lam-Tung relation: $1 - \lambda = 2\nu$

- Reflect the spin-1/2 nature of quarks
 (analog of the Callan-Gross relation in DIS)
- Insensitive to QCD corrections

Data from NA10 (Z. Phys. 37 (1988) 545)

Violation of the Lam-Tung relation suggests interesting new origins (Brandenburg, Nachtmann, Mirkes, Brodsky, Khoze, Müller, Eskolar, Hoyer, Väntinnen, Vogt, etc.)

Boer-Mulders function h_1^{\perp} \bigcirc – \bigcirc

- Boer pointed out that the cos2¢ dependence can be caused by the presence of the Boer-Mulders function.
- h_1^{\perp} can lead to an azimuthal dependence with $v \propto \left(\frac{h_1^{\perp}}{f_1}\right) \left(\frac{h_1^{\perp}}{\overline{f_1}}\right)$

Boer, PRD 60 (1999) 014012

 $h_{1}^{\perp}(x,k_{T}^{2}) = \frac{\alpha_{T}}{\pi} c_{H} \frac{M_{C}M_{H}}{k_{T}^{2} + M_{C}^{2}} e^{-\alpha_{T}k_{T}^{2}} f_{1}(x)$

$$v = 16\kappa_1 \frac{Q_T^2 M_C^2}{(Q_T^2 + 4M_C^2)^2}$$

$$\kappa_1 = 0.47, M_C = 2.3 \text{ GeV}$$

v>0 implies valence BM functions for pion and nucleon have same signs ⁸

With Boer-Mulders function h_1^{\perp} :

 $v(\pi W \rightarrow \mu^{+} \mu^{-} X) \sim [valence h_{1}^{\perp}(\pi)] * [valence h_{1}^{\perp}(p)]$

 $v(pd \rightarrow \mu + \mu - X) \sim [valence h_1^{\perp}(p)] * [sea h_1^{\perp}(p)]$

Sea-quark BM function is much smaller than valence BM function

- Strong $p_T(q_T)$ dependence of λ and ν
- Lam-Tung relation $(1-\lambda = 2\nu)$ is satisfied within experimental uncertainties

Recent CMS data for Z-boson production in p+p collision at 8 TeV

- Striking q_T dependencies for λ and ν were observed at two rapidity regions
- Is Lam-Tung relation violated?

Recent data from CMS for Z-boson production in p+p collision at 8 TeV

- Yes, the Lam-Tung relation is violated $(1-\lambda > 2\nu)!$
- Can one understand the origin of the violation of the Lam-Tung relation?

Interpretation of the CMS Z-production results

$$\frac{d\sigma}{d\Omega} \propto (1 + \cos^2 \theta) + \frac{A_0}{2} (1 - 3\cos^2 \theta) + A_1 \sin 2\theta \cos \phi$$
$$+ \frac{A_2}{2} \sin^2 \theta \cos 2\phi + A_3 \sin \theta \cos \phi + A_4 \cos \theta$$
$$+ A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi$$

Questions:

- How is the above expression derived?
- Can one express $A_0 A_7$ in terms of some quantities?
- Can one understand the Q_T dependence of A_0, A_1, A_2 , etc?
- Can one understand the origin of the violation of Lam-Tung relation?

Define three planes in the Collins-Soper frame

- 1) Hadron Plane
- Contains the beam \vec{P}_B and target \vec{P}_T momenta
- Angle β satisfies the relation $\tan \beta = q_T / Q$

Define three planes in the Collins-Soper frame

1) Hadron Plane

- Contains the beam \vec{P}_B and target \vec{P}_T momenta
- Angle β satisfies the relation $\tan \beta = q_T / Q$

2) Quark Plane

- q and \overline{q} have head-on collision along the \hat{z}' axis
- \hat{z}' axis has angles θ_1 and φ_1 in the C-S frame

Define three planes in the Collins-Soper frame

- 1) Hadron Plane
- Contains the beam \vec{P}_B and target \vec{P}_T momenta
- Angle β satisfies the relation $\tan \beta = q_T / Q$

2) Quark Plane

- q and \overline{q} have head-on collision along the \hat{z}' axis
- \hat{z}' axis has angles θ_1 and φ_1 in the C-S frame

3) Lepton Plane

- l^- and l^+ are emitted back-to-back with equal $|\vec{P}|$
- l^- is emitted at angle θ and φ in the C-S frame

Ø

 \vec{p}_B

Lepton Plane

 \hat{y}

 \hat{z}

 θ

 \hat{x}

 θ_0

 \vec{p}_T

 ϕ_1 Hadron Plane

<u>What is the lepton angular distribution</u> with respect to the \hat{z}' (natural) axis?

$$\frac{d\sigma}{d\Omega} \propto 1 + \frac{a\cos\theta_0}{\cos\theta_0} + \cos^2\theta_0$$

How to express the angular distribution in terms of θ and ϕ ?

 $\cos\theta_0 = \cos\theta\cos\theta_1 + \sin\theta\sin\theta_1\cos(\phi - \phi_1)$

$$\frac{d\sigma}{d\Omega} \propto (1 + \cos^2 \theta) + \frac{\sin^2 \theta_1}{2} (1 - 3\cos^2 \theta) + (\frac{1}{2}\sin 2\theta_1 \cos \phi_1) \sin 2\theta \cos \phi + (\frac{1}{2}\sin^2 \theta_1 \cos 2\phi_1) \sin^2 \theta \cos 2\phi + (a\sin \theta_1 \cos \phi_1) \sin \theta \cos \phi + (a\cos \theta_1) \cos \theta + (\frac{1}{2}\sin^2 \theta_1 \sin 2\phi_1) \sin^2 \theta \sin 2\phi + (\frac{1}{2}\sin 2\theta_1 \sin \phi_1) \sin 2\theta \sin \phi + (a\sin \theta_1 \sin \phi_1) \sin \theta \sin \phi.$$

$$\frac{d\sigma}{d\Omega} \propto (1 + \cos^2 \theta) + \frac{A_0}{2} (1 - 3\cos^2 \theta) + A_1 \sin 2\theta \cos \phi + \frac{A_2}{2} \sin^2 \theta \cos 2\phi + A_3 \sin \theta \cos \phi + A_4 \cos \theta + A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi$$

 $A_0 - A_7$ are entirely described by θ_1, ϕ_1 and a

Angular distribution coefficients $A_0 - A_7$

$$A_{0} = \left\langle \sin^{2} \theta_{1} \right\rangle$$

$$A_{1} = \frac{1}{2} \left\langle \sin 2\theta_{1} \cos \phi_{1} \right\rangle$$

$$A_{2} = \left\langle \sin^{2} \theta_{1} \cos 2\phi_{1} \right\rangle$$

$$A_{3} = a \left\langle \sin \theta_{1} \cos \phi_{1} \right\rangle$$

$$A_{4} = a \left\langle \cos \theta_{1} \right\rangle$$

$$A_{5} = \frac{1}{2} \left\langle \sin^{2} \theta_{1} \sin 2\phi_{1} \right\rangle$$

$$A_{6} = \frac{1}{2} \left\langle \sin 2\theta_{1} \sin \phi_{1} \right\rangle$$

$$A_{7} = a \left\langle \sin \theta_{1} \sin \phi_{1} \right\rangle$$

Some implications of the angular distribution coefficients $A_0 - A_7$

- $A_0 = \langle \sin^2 \theta_1 \rangle$ $A_1 = \frac{1}{2} \left\langle \sin 2\theta_1 \cos \phi_1 \right\rangle$ $A_2 = \left\langle \sin^2 \theta_1 \cos 2\phi_1 \right\rangle$ $A_3 = a \left\langle \sin \theta_1 \cos \phi_1 \right\rangle$ $A_{4} = a \left\langle \cos \theta_{1} \right\rangle$ $A_5 = \frac{1}{2} \left\langle \sin^2 \theta_1 \sin 2\phi_1 \right\rangle$ $A_6 = \frac{1}{2} \left\langle \sin 2\theta_1 \sin \phi_1 \right\rangle$ $A_7 = a \left\langle \sin \theta_1 \sin \phi_1 \right\rangle$
- • $A_0 \ge A_2 \text{ (or } 1 \lambda 2\nu \ge 0)$
- Lam-Tung relation $(A_0 = A_2)$ is satisfied when $\varphi_1 = 0$
- Forward-backward asymmetry, *a*, is reduced by a factor of $\langle \cos \theta_1 \rangle$ for A_4
- A_5, A_6, A_7 are odd function of φ_1 and must vanish from symmetry consideration
- Some equality and inequality relations among $A_0 - A_7$ can be obtained 20

Compare with CMS data on λ (*Z* production in *p*+*p* collision at 8 TeV)

Compare with CMS data on v (*Z* production in *p*+*p* collision at 8 TeV)

$$v = \frac{2q_T^2}{2Q^2 + 3q_T^2} \quad \text{for } q\overline{q} \to Zg$$
$$v = \frac{10q_T^2}{2Q^2 + 15q_T^2} \quad \text{for } qG \to Zq$$

Dashed curve corresponds to a mixture of 58.5% qGand 41.5% $q\bar{q}$ processes

Solid curve corresponds to

$$\left\langle \sin^2 \theta_1 \cos 2\phi_1 \right\rangle / \left\langle \sin^2 \theta_1 \right\rangle = 0.77$$

 $q - \bar{q}$ axis is non-coplanar relative to the hadron plane ₂₄

Origins of the non-coplanarity 1) Processes at order α_s^2 or higher

2) Intrinsic k_T from interacting partons

Compare with CMS data on Lam-Tung relation

Solid curves correspond to a mixture of 58.5% qG and 41.5% $q\overline{q}$ processes, and $\langle \sin^2 \theta_1 \cos 2\phi_1 \rangle / \langle \sin^2 \theta_1 \rangle = 0.77$

Violation of Lam-Tung relation is well described

Compare with CDF data (*Z* production in $p + \bar{p}$ collision at 1.96 TeV)

Solid curves correspond to a mixture of 27.5% qG and 72.5% $q\overline{q}$ processes, and $\langle \sin^2 \theta_1 \cos 2\phi_1 \rangle / \langle \sin^2 \theta_1 \rangle = 0.85$

Violation of Lam-Tung relation is not ruled out

Compare with ATLAS data on A₀-A₇

(Peng, Chang, McClellan, Teryaev, to be published) 28

Pion-induced D-Y

See Lambertsen and Vogelsang, arXiv: 1605.02625

- The v data should be between the $q\overline{q}$ and qG curves, if the effect is entirely from pQCD. The $q\overline{q}$ process should dominate.
- Surprisingly large pQCD effect is predicted!
- Extraction of the B-M functions must remove the pQCD effect. ²⁹

Summary

- The lepton angular distribution coefficients A_0 - A_7 are described in terms of the polar and azimuthal angles of the $q \bar{q}$ axis.
- The striking q_T dependence of A_0 (or equivalently, λ) can be well described by the mis-alignment of the $q \bar{q}$ axis and the Collins-Soper *z*-axis.
- Violation of the Lam-Tung relation $(A_0 \neq A_2)$ is described by the non-coplanarity of the $q - \overline{q}$ axis and the hadron plane. This can come from order α_s^2 or higher processes or from intrinsic k_T .
- This study can be extended to fixed-target Drell-Yan data.