3D Parton Distributions - Path to the LHC (LNF, Frascati)

 29 Nov - 02 Dec 2016
Gluon TMDs at low x and diffractive processes

Piet J Mulders

mulders@few.vu.nl

Abstract

Abstract

We discuss the momentum distributions of gluons and consider the dependence of the gluon parton distribution functions (PDFs) on both fractional (longitudinal) momentum x and transverse momentum p_{T}, referred to as the gluon TMDs. Looking at the operator structure of the TMDs, we are able to unify various descriptions at small-x including the dipole picture and the notions of pomeron and odderon exchange The results also may be used in diffractive processes.

1. TMD correlators and their operator structure, color gauge invariance
2. Rank of TMD and operator structure
3. The Wilson loop correlator unifying ideas on diffraction, dipole picture and small-x behavior

Standard TMDs

■ TMDs incorporate hadron structure

$$
\begin{gathered}
u_{i}(k) \bar{u}_{j}(k) \sim(\not \not)_{i j} \Longrightarrow \Phi_{i j}(k ; P, S) \\
\epsilon^{\alpha}(k) \epsilon^{\beta *}(k) \sim-g_{T}^{\alpha \beta} \Longrightarrow \Gamma^{\alpha \beta}(k ; P, S)
\end{gathered}
$$

■ High energies (lightlike $\mathrm{n}=\mathrm{P}^{\prime} / P . \mathrm{P}^{\prime}$ and P.n=1) and including transverse momenta

$$
\begin{aligned}
k^{\mu}= & x P^{\mu}+k_{T}^{\mu}+\left(k^{2}-k_{T}^{2}\right) n^{\mu} \\
& \Longrightarrow \Phi\left(x, k_{T} ; P, S\right) \quad \text { and } \quad \Gamma^{\alpha \beta}\left(x, k_{T} ; P, S\right)
\end{aligned}
$$

- Polarized targets provide opportunities and challenges

$$
\begin{aligned}
& M S^{\mu}=S_{L} P^{\mu}+M S_{T}^{\mu}+M^{2} S_{L} n^{\mu} \\
& M^{2} S^{\mu \nu}=-S_{L L} P^{\mu} P^{\nu}+\frac{1}{2} P^{\{\mu} S_{L T}^{\nu^{\psi}}+\frac{1}{2} M^{2} S_{T T}^{\mu \nu}+\ldots
\end{aligned}
$$

■ At high energies x linked to scaling variables (e.g. $x=Q^{2} / 2 P . q$) and convolutions of transverse momenta are linked to azimuthal asymmetries (noncollinearity) requiring semi-inclusivity and/or polarization

Matrix elements for TMDs

■ quark-quark

$$
\Phi_{i j}\left(x, p_{T} ; n\right)=\left.\int \frac{d \xi \cdot P d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P, S\rangle\right|_{\xi \cdot n=0}
$$

- gluon-gluon

$$
\Gamma^{\mu \nu}\left(x, p_{T} ; n\right)=\left.\int \frac{d \xi \cdot P d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P, S| F^{n \mu}(0) F^{n \nu}(\xi)|P, S\rangle\right|_{\xi \cdot n=0}
$$

■ quark-gluon-quark

$$
\begin{aligned}
& \Phi_{D ; i j}^{\alpha}\left(p-p_{1}, p_{1} \mid p\right)=\int \frac{d^{4} \xi d^{4} \eta}{(2 \pi)^{8}} e^{i\left(p-p_{1}, \xi+\dot{p} p_{1}, \eta\right.}\langle P| \bar{\psi}_{j}(0) D^{\alpha}(\eta) \psi_{i}(\xi)|P\rangle \\
& \Phi_{F ; j}^{\alpha}\left(p-p_{1}, p_{1} \mid p\right)=\int \frac{d^{4} \xi d^{4} \eta}{(2 \pi)^{8}} e^{i\left(p-p_{1}, \cdot \xi+p_{1}, \eta\right.}\langle P| \bar{\psi}_{j}(0) F^{n \alpha}(\eta) \psi_{i}(\xi)|P\rangle
\end{aligned}
$$

TMDs and color gauge invariance

- Gauge invariance in a non-local situation requires a gauge link $\mathrm{U}(0, \xi)$

$$
\bar{\psi}(0) \psi(\xi)=\sum_{n} \frac{1}{n!} \xi^{\mu_{1}} \ldots \xi^{\mu_{N}} \bar{\psi}(0) \partial_{\mu_{1}} \ldots \partial_{\mu_{N}} \psi(0) \quad U(0, \xi)=\boldsymbol{P} \exp \left(-i g \int_{0}^{\xi} d s^{\mu} A_{\mu}\right)
$$

$\bar{\psi}(0) U(0, \xi) \psi(\xi)=\sum_{n} \frac{1}{n!} \xi^{\mu_{1}} \ldots \xi^{\mu_{N}} \bar{\psi}(0) D_{\mu_{1}} \ldots D_{\mu_{N}} \psi(0)$

- Introduces path dependence for $\Phi\left(\mathrm{x}, \mathrm{p}_{\mathrm{T}}\right)$

■ 'Dominant' paths: along lightcone connected at lightcone infinity (staples)

- Reduces to 'straight line' for $\Phi(\mathrm{x})$

$$
\Phi^{[U]}\left(x, p_{T}\right) \Rightarrow \Phi(x)
$$

Matrix elements for TMDs

■ quark-quark

$$
\Phi_{i j}^{[U]}\left(x, p_{T} ; n\right)=\left.\int \frac{d \xi \cdot P d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) U_{[0, \xi]} \psi_{i}(\xi)|P, S\rangle\right|_{\xi \cdot n=0}
$$

■ gluon-gluon
$\Gamma^{\left[U, U^{\prime}\right] \mu \nu}\left(x, p_{T} ; n\right)=\left.\int \frac{d \xi \cdot P d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P, S| F^{n \mu}(0) U_{[0, \xi]} F^{n \nu}(\xi) U_{[\xi, 0]}^{\prime}|P, S\rangle\right|_{\xi \cdot n=0}$

■ ... and even single Wilson loop correlator
$\delta(x) \Gamma_{0}^{\left[U, U^{\prime}\right]}\left(p_{T} ; n\right)=\left.\int \frac{d \xi \cdot P d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P, S| U_{[0, \xi]} U_{[\xi, 0]}^{\prime}|P, S\rangle\right|_{\xi \cdot n=0}$

Quark correlators and gauge links

$$
\Phi_{i j}^{q[C]}\left(x, p_{T} ; n\right)=\int \frac{d(\xi \cdot P) d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p, \xi}\langle P| \bar{\psi}_{j}(0) U_{[0, \xi]}^{[C]} \psi_{i}(\xi)|P\rangle_{\xi, n=0}
$$

- Gauge links associated with resummation of dimension zero (not suppressed!) collinear $\mathrm{A}^{\mathrm{n}}=\mathrm{A}^{+}$gluons, leading for TMD correlators to process-dependence:

$\Phi^{[-]}$

$\Phi^{[+]}$

Gluon correlators and gauge links

$$
\Gamma^{\alpha \beta\left[C, C^{\prime}\right]}\left(x, p_{T} ; n\right)=\int \frac{d(\xi \cdot P) d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p . \xi}\langle P| U_{[\xi, 0]}^{[C]} F^{n \alpha}(0) U_{[0, \xi]}^{\left[C^{\prime}\right]} F^{n \beta}(\xi)|P\rangle_{\xi, n=0}
$$

- The TMD gluon correlators need two links, which can have different paths. N

$\Gamma^{[-,-]}$

$\Gamma^{[5,+]}$

- Note presence of transverse gluons in the perturbative expansion of $\Gamma^{\alpha \beta[0]}$

Single Wilson loop correlator in diffraction

$$
\delta(x) \Gamma_{0}^{\left[U, U^{\prime}\right]}\left(p_{T} ; n\right)=\left.\int \frac{d \xi \cdot P d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P, S| U_{[0, \xi]} U_{[\xi, 0]}^{\prime}|P, S\rangle\right|_{\xi \cdot n=0}
$$

Collinear momentum fraction $\mathrm{x} \rightarrow 0$ and diffraction

$$
\begin{array}{ll}
p=\left[\frac{t-p_{T}^{2}}{2 x P^{+}}, x P^{+}, p_{T}\right] & P^{+} \Longrightarrow \frac{M_{X}}{x \sqrt{2}} \\
P=\left[\frac{M^{2}}{2 P^{+}}, P^{+}, 0_{T}\right] & p_{T} \sim q_{T} \\
P^{\prime}=\left[\frac{M^{\prime 2}-p_{T}^{2}}{2(1-x) P^{+}},(1-x) P^{+},-p_{T}\right]
\end{array}
$$

$$
t-\frac{p_{T}^{2}}{1-x}=-x\left(\frac{M^{\prime 2}}{1-x}-M^{2}\right)
$$

At small x (and small t :

$$
t=p_{T}^{2}-x\left(M^{\prime 2}-M^{2}\right)
$$

$$
x=0 \Longleftrightarrow t=p_{T}^{2}
$$

Parametrization of gluon correlators

■ Unpolarized target

$$
\Gamma^{i j[U]}\left(x, k_{T}\right)=\frac{x}{2}\left\{-g_{T}^{i j} f_{1}^{[U]}\left(x, k_{T}^{2}\right)+\frac{k_{T}^{i j}}{M^{2}} h_{1}^{\perp[U]}\left(x, k_{T}^{2}\right)\right\}
$$

■ Vector polarized target

$$
\begin{aligned}
\Gamma_{L}^{i j[U]}\left(x, k_{T}\right)= & \frac{x}{2}\left\{i \epsilon_{T}^{i j} S_{L} g_{1}^{[U]}\left(x, k_{T}^{2}\right)+\frac{\epsilon_{T \alpha}^{\{i} k_{T}^{j\} \alpha}}{M^{2}} S_{L} h_{1 L}^{\perp[U]}\left(x, k_{T}^{2}\right)\right\} \\
\Gamma_{T}^{i j[U]}\left(x, k_{T}\right)= & \frac{x}{2}\left\{\frac{g_{T}^{i j} \epsilon_{T}^{k S_{T}}}{M} f_{1 T}^{\perp[U]}\left(x, k_{T}^{2}\right)-\frac{i \epsilon_{T}^{i j} k_{T} \cdot S_{T}}{M} g_{1 T}^{[U]}\left(x, k_{T}^{2}\right)\right. \\
& \left.-\frac{\epsilon_{T}^{k i i} S_{T}^{j\}}+\epsilon_{T}^{S_{T}\{i} k_{T}^{j\}}}{4 M} h_{1}\left(x, k_{T}^{2}\right)-\frac{\epsilon_{T \alpha}^{\{i} k_{T}^{j\} \alpha S_{T}}}{2 M^{3}} h_{1 T}^{\perp}\left(x, k_{T}^{2}\right)\right\}
\end{aligned}
$$

Definite rank TMDs

- Expansion in constant tensors in transverse momentum space

$$
\left.g_{T}^{\mu \nu}=g^{\mu \nu}-P^{\{\mu} n^{\nu}\right\} \quad \epsilon_{T}^{\mu \nu}=\epsilon^{P n \mu \nu}=\epsilon^{-+\mu \nu}
$$

■ ... or traceless symmetric tensors (of definite rank)
k_{T}^{i}
$k_{T}^{i j}=k_{T}^{i} k_{T}^{j}-\frac{1}{2} k_{T}^{2} g_{T}^{i j}$
$k_{T}^{i j k}=k_{T}^{i} k_{T}^{j} k_{T}^{k}-\frac{1}{4} k_{T}^{2}\left(g_{T}^{i j} k_{T}^{k}+g_{T}^{i k} k_{T}^{j}+g_{T}^{j k} k_{T}^{i}\right)$

- Simple azimuthal behavior: $k_{T}^{i_{1} \ldots i_{m}} \longleftrightarrow\left|k_{T}\right| e^{ \pm i m \varphi}$ functions showing up in $\cos (m \phi)$ or $\sin (m \phi)$ asymmetries (wrt e.g. ϕ_{T})
- Simple Bessel transform to b-space (relevant for evolution):

$$
\begin{aligned}
& F_{m}\left(x, k_{T}\right)=\int_{0}^{\infty} b d b J_{m}\left(k_{T} b\right) F_{m}(x, b) \\
& F_{m}(x, b)=\int_{0}^{\infty} k_{T} d k_{T} J_{m}\left(k_{T} b\right) F_{m}\left(x, k_{T}\right)
\end{aligned}
$$

Structure of gluon TMD PDFs in polarized target

■ TMDs $\Gamma \ldots\left(\mathrm{x}, \mathrm{k}_{\mathrm{T}}{ }^{2}\right)$
PARTON SPIN

	GLUONS	$-g_{T}^{\alpha \beta}$	$\varepsilon_{T}^{\alpha \beta}$	$p_{T}^{\alpha \beta}, \ldots$
	U	f_{1}		$h_{1}^{\perp g}$
	L		g_{1}	$h_{1 L}^{\perp g}$
	T	$f_{1 T}^{\perp g}$	$g_{1 T}^{g}$	$h_{1}^{g} \quad h_{1 T}^{\perp g}$

■ Integrated (collinear) correlator: only circled ones survive
■ Collinear functions are spin-spin correlations
■ TMDs also momentum-spin correlations (spin-orbit) including also T-odd (single-spin) functions (appearing in single-spin asymmetries)

Structure of gluon TMD PDFs in spin 1 target

Untangling operator structure in collinear case (reminder)

■ Collinear functions and x-moments

$$
\begin{aligned}
& \Phi^{q}(x)=\int \frac{d(\xi . P)}{(2 \pi)} e^{i p . \xi}\langle P| \bar{\psi}(0) U_{[0, \xi]}^{[n]} \psi(\xi)|P\rangle_{\xi \cdot n=\xi_{T}=0} \\
& x^{N-1} \Phi^{q}(x)=\int \frac{d(\xi . P)}{(2 \pi)} e^{i p . \xi}\langle P| \bar{\psi}(0)\left(\partial_{\xi}^{n}\right)^{N-1} U_{[0, \xi]}^{[n]} \psi(\xi)|P\rangle_{\xi \cdot n=\xi_{T}=0} \\
& \mathrm{x}=\mathrm{p} . \mathrm{n} \quad=\int \frac{d(\xi . P)}{(2 \pi)} e^{i p . \xi}\langle P| \bar{\psi}(0) U_{[0, \xi]}^{[n]}\left(D_{\xi}^{n}\right)^{N-1} \psi(\xi)|P\rangle_{\xi \cdot n=\xi_{T}=0}
\end{aligned}
$$

- Moments correspond to local matrix elements of operators that all have the same twist since $\operatorname{dim}\left(D^{n}\right)=0$

$$
\Phi^{(N)}=\langle P| \bar{\psi}(0)\left(D^{n}\right)^{N-1} \psi(0)|P\rangle
$$

■ Moments are particularly useful because their anomalous dimensions can be rigorously calculated and these can be Mellin transformed into the splitting functions that govern the QCD evolution.

Transverse moments \rightarrow operator structure of TMD PDFs

■ Operator analysis for [U] dependence (e.g. [+] or [-]) TMD functions: in analogy to Mellin moments consider transverse moments \rightarrow role for quark-gluon m.e.

$$
\begin{aligned}
& p_{T}^{\alpha} \Phi^{[\pm]}\left(x, p_{T} ; n\right)=\int \frac{d(\xi . P) d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P| \bar{\psi}(0) U_{[0, \pm \infty]} i D_{T}^{\alpha} U_{[\pm \alpha, \xi]} \psi(\xi)|P\rangle_{\xi, n=0} \\
& \int d p_{T} p_{T}^{\alpha} \Phi^{[U]}\left(x, p_{T} ; n\right)=\tilde{\Phi}_{\partial}^{\alpha}(x)+C_{G}^{[U]} \Phi_{G}^{\alpha}(x) \\
& \text { T-even }
\end{aligned}
$$

$$
\underbrace{\Phi_{\Phi}^{\alpha}(x)=\Phi_{D}^{\alpha}(x)-\Phi_{A}^{\alpha}(x) \text { T-even (gauge-invariant derivative) }}_{\Phi_{D}^{\alpha}(x)=\int d x_{1} \Phi_{D}^{\alpha}\left(x-x_{1}, x_{1} \mid x\right)} \begin{aligned}
& \text { (} \Phi^{\alpha}(x)=P V \int \frac{d x_{1}}{x_{1}} \Phi_{F}^{n \alpha}\left(x-x_{1}, x_{1} \mid x\right)
\end{aligned}
$$

$$
\Phi_{G}^{\alpha}(x)=\pi \Phi_{F}^{n \alpha}(x, 0 \mid x)
$$

T-odd (soft-gluon or gluonic pole, ETQS m.e.)

Gluonic pole factors are calculable

- $\mathrm{C}_{\mathrm{G}}{ }^{[\mathrm{UU]}}$ calculable gluonic pole factors (quarks)

U	$U^{[\pm]}$	$U^{[+]} U^{[\square]}$	$\frac{1}{N_{c}} \operatorname{Tr}_{c}\left(U^{[\square]}\right) U^{[+]}$
$\Phi^{[U]}$	$\Phi^{[\pm]}$	$\Phi^{[+\square]}$	$\Phi^{[(\square)+]}$
$C_{G}^{[J]}$	± 1	3	1
$C_{G G, 1}^{[U]}$	1	9	1
$C_{G G, 2}^{[U]}$	0	0	4

■ Complicates life for 'double p_{T} ' situation such as Sivers-Sivers in DY, etc.
■ In essence the factors would come naturally in perturbative calculations (Gamberg, Kang)
Buffing, Mukherjee, M, PRD86 (2012) 074030, ArXiv 1207.3221

Operator classification of gluon TMDs

factor	RANK OF GLUON TMDs FOR SPIN 1/2 HADRON				
	0		1	2	3
1	$f_{1} g_{1}$	$g_{1 T}^{[\partial]}$	$h_{1}^{\perp[\partial \partial]}$		
$C_{G, c}^{[U]}$		$f_{1 T}^{\perp[G c]} h_{1}^{[G c]}$	$h_{1 L}^{\perp[\partial G c]}$	$h_{1 T}^{\perp[\partial \partial G c]}$	
$C_{G G, c}^{[U]}$	$\delta f_{1}^{[G G c]} \cdots$	\cdots	$h_{1}^{\perp[G G c]}$		
$C_{G G G, c}^{[U]}$		\ldots	\cdots	$h_{1 T}^{\perp[G G G c]}$	

Process dependence in p_{T} dependence of TMDs due to gluonic pole operators (e.g. affecting $\left\langle\mathrm{p}_{\mathrm{T}}{ }^{2}\right\rangle$
$f_{1}^{[U]}\left(x, p_{T}^{2}\right)=f_{1}+C_{G G, c}^{[U]} \delta f_{1}^{[G G c]}$ with $\delta \mathrm{f}_{1}{ }^{[\mathrm{GG} \mathrm{c]}}(\mathrm{x})=0$

Multiple functions for rank 2 (double gluonic poles, multiple color configurations c)

Small x physics in terms of TMDs

■ The single Wilson-loop correlator Γ_{0}

$$
\Gamma_{0}\left(k_{T}\right)=\frac{1}{2 M^{2}}\left\{e\left(k_{T}^{2}\right)-\frac{\epsilon^{k S_{T}}}{M} e_{T}\left(k_{T}^{2}\right)+\ldots\right\}
$$

factor	RANK OF WILSON LOOP TMDs FOR SPIN 1/2 HADRON			
	0	1	2	3
1	e			
$C_{G, c}^{[U]}$		$e_{T}^{[G]}$		
$C_{G G, c}^{[U]}$	\cdots	\cdots		
$C_{G G G, c}^{[U]}$		\ldots		

■ Note limit $\mathrm{x} \rightarrow 0$ for gluon TMDs linked to gluonic pole m.e. of Γ_{0}

$$
(2 \pi)^{2} \Gamma^{i j\left[U, U^{\prime}\right]}\left(0, k_{T}\right) \sim C_{G G}^{\left[U, U^{\prime}\right]} M^{2} \Gamma_{0 G G}^{i j\left[U, U^{\prime}\right]}\left(k_{T}\right) \sim C_{G G}^{\left[U, U^{\prime}\right]} \frac{k_{T}^{i} k_{T}^{J}}{M^{2}} \Gamma_{0}^{\left[U, U^{\prime}\right]}\left(k_{T}\right)
$$

RHS depends in fact on t, which for $x=0$ becomes $p_{T}{ }^{2}$

Small x physics in terms of gluon TMDs

- Note limit $\mathrm{x} \rightarrow 0$ for gluon TMDs linked to gluonic pole m.e. of Γ_{0}

$$
\pi^{2} \Gamma^{\alpha \beta}\left[U, U^{\prime}\right]\left(0, p_{T}\right)=C_{G G}^{\left[U, U^{\prime}\right]} \Gamma_{0 G G}^{\alpha \beta}\left(p_{T}\right)
$$

- Dipole correlators: at small x only two structures for unpolarized and transversely polarized nucleons: pomeron \& odderon structure

$$
\begin{aligned}
& x f_{1}^{[+,-]}\left(x, k_{T}^{2}\right) \longrightarrow \frac{k_{T}^{2}}{2 M^{2}} e^{[+,-]}\left(k_{T}^{2}\right) \\
& x h_{1}^{\perp[+,-]}\left(x, k_{T}^{2}\right) \longrightarrow e^{[+,-]}\left(k_{T}^{2}\right) \\
& x f_{1 T}^{\perp[+,-]}\left(x, k_{T}^{2}\right) \longrightarrow \frac{k_{T}^{2}}{2 M^{2}} e_{T}^{[+,-]}\left(k_{T}^{2}\right) \\
& x h_{1}^{[+,-]}\left(x, k_{T}^{2}\right) \longrightarrow \frac{k_{T}^{2}}{2 M^{2}} e_{T}^{[+,-]}\left(k_{T}^{2}\right) \\
& x h_{1 T}^{\perp[+,-]}\left(x, k_{T}^{2}\right) \longrightarrow e_{T}^{[+,-]}\left(k_{T}^{2}\right)
\end{aligned}
$$

(a)

(b)

Agrees for $\mathrm{x} \rightarrow 0$ with perturbatively generated $\mathrm{e}_{\mathrm{T}}{ }^{[G G G]}$

Conclusion

■ (Generalized) universality of TMDs studied via operator product expansion, extending the well-known collinear distributions to TMDs, ordered into functions of definite rank.
■ Knowledge of operator structure is important (e.g. in lattice calculations) as well as for the small-x limits for gluons
■ Multiple operator possibilities for higher rank functions
■ The TMD PDFs appear in cross sections with specific calculable factors that deviate from (or extend on) the naïve parton universality for hadron-hadron scattering but can also be addressed in pQCD
■ Applications in polarized high energy processes, even for unpolarized hadrons (with linearly polarized gluons)
■ Applications in diffractive processes and simplifications at small-x via Wilson loop correlator, confirmed in perturbative calculations

