3D DISTRIBUTIONS, FUTURE

Contalbrigo Marco INFN Ferrara

3D Parton Distributions: path to the LHC December 2, 2016 LNF

Disclaimer

Many concepts already discussed this week

A lot of material grabbed from other talks

Personal (limited) perspective

The General Equations and Dynamics

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

But star dynamics ?

But superconductivity ?

The Strong-Force Confined-Universe

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \sum_{q=u,d,s,c,b,t} \bar{q} \left[i\gamma^{\mu} (\partial_{\mu} - igA_{\mu}) - m_q \right] q$$

Dynamic Spin

- Parton polarization

1

- Orbital motion
- Form Factors
- Magnetic Moment

Hadronization

- Spin-orbit effects
- Parton energy loss
- Jet quenching

Parton Correlations - dPDFs - Short range

- MPI

Color charge density

- Nucleon tomography
- Diffractive physics
- Gluon saturation
- Color force

Lattice Achievements

Contalbrigo M.

QCD can not be a precision science

Should not be confused with pQCD, which can, but is not touching the intimate nature of the strong interaction

Elliptic Flow

Hadron Multiplicity Ratio

The 3D Nucleon Structure

SIDIS Cross-Section & TMDs

$$\frac{d^{6}\sigma}{dxdQ^{2}dzdP_{h}d\phi d\phi_{s}} \propto \left[F_{UU} + \varepsilon \cos(2\phi)F_{UU}^{\cos(2\phi)}\right] + S_{L}\left[\varepsilon \sin(2\phi)F_{UL}^{\sin(2\phi)}\right] \\ + S_{T}\left[\sin(\phi - \phi_{s})F_{UT}^{\sin(\phi - \phi_{s})} + \varepsilon \sin(\phi + \phi_{s})F_{UT}^{\sin(\phi + \phi_{s})} + \varepsilon \sin(3\phi - \phi_{s})F_{UT}^{\sin(3\phi - \phi_{s})}\right] \\ + S_{L}\lambda_{e}\left[\sqrt{1 - \varepsilon^{2}}F_{LL}\right] + S_{T}\lambda_{e}\left[\sqrt{1 - \varepsilon^{2}}\cos(\phi - \phi_{s})F_{LT}^{\cos(\phi - \phi_{s})}\right] + O\left(\frac{1}{Q}\right)$$
Quark fragmentation
$$TMD \text{ Factorization} \\ holds \text{ for } p_{T} < Q \\ Quark parton distribution$$

Wide kinematic coverage is needed to resolve the convolution

$$F_{UU} = f \otimes D = x \sum_{q} e_{q}^{2} \int d^{2} p_{T} d^{2} k_{T} \ \delta^{(2)}(\mathbf{P}_{h\perp} - z\mathbf{k}_{T} - \mathbf{p}_{T}) \ w(\mathbf{k}_{T}, \mathbf{p}_{T}) \ f^{q}(x, k_{T}^{2}) \ D^{q}(z, p_{T}^{2})$$

Parton Correlators

- + Quark correlators at sub-leading twist
- + Gluon correlators (x 2 gauge links)
- + Di-hadron fragmentations

Beauty and complexity of the unique strong-interacting world

Gauge Invariance

TMDs Landscape

Phenomenology:

gather active dynamic mechanisms spin-orbit, short range correlations, energy loss in matter, collective motion

make educated guesses on parton behavior average transverse momentum, orbital motion

is the naïve interpretation of the observable sensible ?

Predictive Power (applicability as for collinear PDFs):

rigorous treatment, i.e. for tensor charge extraction, exploiting

universality

evolution well defined but not necessarily under control at medium-low energy

scale dependence should improve with next-to-leading orders, as for k-factor in DY non perturbative parameters should be constrained by data

Inclusive Jets @ HERA

Non Perturbative QCD Signals

Contalbrigo M.

3D PDFs: path to the LHC, 2nd December 2016, LNF

Non Perturbative QCD Signals

Matching Issue

Within the limited phase-space of fixed target SIDIS experiments, easy to reach $p_T \sim Q$

Matching Issue

Y term required to match the high q_T region

Dominated by un-constrained non-perturbative contribution at fixed target experiments

The SIDIS Landscape

Limit defined by luminosity Different Q² for same x range $< Q^2 > (GeV^2)$ 10 COMPASS HERMES 9 CLAS12 8 CLAS6 7 6 8 5 6 4 COMPASS 4 HERMES EIC 3 2 1034 -ab12 0 0.3 0.4 0.5 0.6 0.7 0.1 0.2 2 Χ **HERMES**: < 2007 10³² COMPASS: < 2017 (2021++)**10**³¹ 10³⁵ JLab6 < 2012 10 -2 10 -1 JLab12: 2017++ XB Valence Sea EIC: 2025++

 $Q^2 (GeV^2)$

Kinematical Plane

The Multi-D Approach

Umpolarized Multiplicities

Disentangle all the kinematic dependences

Asymmetries so far used to suppress systematics effects

$$A_{LL} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}$$
$$A_{LL} = \frac{1}{f P_T P_B} \frac{N^+ - N^-}{N^+ + N^-}$$

They suppress also physics (i.e. evolution)

Multi-D:

- naturally reduces some source of systematics
- blows up the statistical error also due to smearing and acceptance

Requires high-luminosity for next DIS

A World-wide Challenge

Transverse Momentum Dependent Distr.

- Low-pT regime: precise xsec measurements
- Parton correlations: short range, MPI
- Low-x physics: color glass condensate
- Hadronization: parton dynamic in medium

Unpolarized TMDs

Large tiles extending up to the inverse of the gauge field fluctuation scale ρ << M

May short range parton correlations manifest also in pp MPI ?

Reflect different fragmentation

May be enhanced in medium.

Parton propagation in cold matter as complementary study to QGP

Space-Momentum Parton Correlations

May manifest in multi-particle interactions

$$\sigma_{double}^{pp} = rac{m}{2} rac{\sigma_A^{pp'} \sigma_B^{pp'}}{\sigma_{eff}}$$

Scopetta++ @ this Conf.

Flavor Dependence

Medium modification

In terms of the QCD, there are several contributions to P_T distribution of hadrons produced in SIDIS:

- primordial transverse momentum + gluon radiation of the struck quark
- the formation and soft multiple interactions of the "pre-hadron"
- · the interaction of the formed hadrons with the surrounding hadronic medium

HERMES [arXiv: 0906.2478]

A. Accardi et al. [arXiv 1212.1701]

 $\frac{\langle \sin \phi \rangle_{LU}^{eA}}{\langle \sin \phi \rangle_{LU}^{eN}} \approx$

 $\langle \cos \phi \rangle_{UU}^{eA}$

 $\langle \cos \phi \rangle_{UU}^{eN}$

 $= f_s$

Medium modification

Contalbrigo M.

3D PDFs: path to the LHC, 2nd December 2016, LNF

20

STAR

Low-x Physics

Interplay of the data cut at low Q^2 and impact on gluon at low x

QCD Phase Diagram

$x \log, Q^2$ not too high:

- partonic k_T may become important!
 - are (perturbative) parton showers enough to describe this?
 - or does one need something more?
 k_T-dependent parton densities?

BFKL must be the correct theory of low-x QCD

It naturally incorporates k_T -unintegrated PDFs

Mechelen at DIS2014: no clear evidence of BFKL in experimental data

Gluon TMDs

Starting distribution for gluons at q_0

$$x \mathcal{A}_0(x, k_\perp) = N x^{-B} \cdot (1-x)^C \left(1 - Dx + E\sqrt{x}\right) \exp[-k_t^2/\sigma_\perp^2]$$

CCFM (BFKL like) evolution + Herafitter package

3D PDFs: path to the LHC, 2nd December 2016, LNF

 $\sigma^2 = q_0^2 / 2$

Transverse Momentum Dependent Distr.

quark polarisation

_	N/q	U	L	Т
ו polarisatior	U	$f_{\scriptscriptstyle I}$		$\boldsymbol{h}_{I}^{\perp}$
	L		g_1	$\boldsymbol{h}_{IL}^{\perp}$
nucleor	т	$f_{ m 1T}^{\perp}$	g_{1T}^{\perp}	$h, h_{ m 1T}^{\perp}$

Transversity:

different from helicity distribution as rotation and boost do not commute

- sensitive to the relativistic effects
- related to the tensor charge
- non-singlet type evolution
- chirally-odd

it requires a chirally-odd fragmentation

Related to:

- Tensor Charge & Coupling
- SSA in hadron interactins

Collins function:

a spin- p_T correlator in fragmentation

$$D_{q/h}(z, \vec{p}_{\perp}, \vec{s}_q) = D_{q/h}(z, p_{\perp}^2)$$

+
$$\frac{1}{zM_h} H_1^{\perp q}(z, p_{\perp}^2) \vec{s}_q \cdot (\hat{k} \times \vec{p}_{\perp})$$

Transversity & Collins Evidences

Transversity & Tensor Charge

Distributions:

Charges:

How well is Soffer bound know at large x ?

Tensor Charge & BSM Physics

Courtoy++ @ this Conf.

A. Bychkov++ [arXiv:0804.1815] B. Pattie++ [arXiv:1309.2499]

Contalbrigo M.

Tensor Charge and EDM

Transverse Momentum Dependent Distr.

quark polarisation

nucleon polarisation	N/q	U	L	Т
	U	$f_{\scriptscriptstyle I}$		$\boldsymbol{h}_{I}^{\perp}$
	L		g_1	$\boldsymbol{h}_{1L}^{\perp}$
	т	$f_{1\mathrm{T}}^{\perp}$	g_{1T}^{\perp}	$h, h_{ m 1T}^{\perp}$

Off-diagonal elements:

Interference between wave functions with different angular momenta: testing QCD at the amplitude level

T-odd elements:

 Sign change between DY and SIDIS Generalized universality of TMDs

Related to:

- ✓ SSA in adronic interactions
- ✓ Parton Orbital motion
- Anomalous Magnetic Moment

Sivers Signals

$$\sigma_{UT}^{\sin(\phi-\phi_S)} \propto f_{1T}^{\perp} \otimes D_1$$

Sivers from polarized SIDIS

d σ/dq_{\perp} Sivers $A_{QCD} << q_T << Q$ same physics $q_{\perp} \sim Q$ coll.fact. T_F $q_{\perp} < Q$: TMD fact. A_{QCD} q_{\perp}

$$gT_{q,F}(x,x) = -\int d^2k_{\perp} \frac{|k_{\perp}|^2}{M} f_{1T}^{\perp q}(x,k_{\perp}^2)|_{\text{SIDIS}}$$

3D PDFs: path to the LHC, 2nd December 2016, LNF

Х

Sivers Sign in Drell-Yan

Weak boson production p p \rightarrow WX @ STAR

Solid line: assumption of sign change for Sivers Dashed line: assumption of no sign change for Sivers Kang and Qiu, [PRL 103 (2009) 172001]

Echevarria++, [PRD 89 (2014) 074013]

X_f

Sivers in the Sea ?

PGF @ COMPASS: gluon Sivers from deuterium and proton targets

Fixed Target Program @ LHC(b)

Since 2012: gas target internal to LHC for luminosity determination

Polarized gaseous targets successfully used internal to HERA and COSY at FZJ

Requirements for LHC:

< 10 % beam half-life reduction

Cell openable (at injection) to access

10³³/cm² luminosity

fill" valve PV501 High pressur Piezo gauge High pressur "bypass' volume PV503 SMOG system

Sivers from SIDIS @ EIC A. Accardi++ [arXiv 1212.1701]

 \mathbf{A}_{N}

-0.1

-0.2

3D PDFs: path to the LHC, 2nd December 2016, LNF

Parton 3D Dynamic

GPD E:

Imbalance in the probed parton spatial distribution

$$q_X(x,{f b}_\perp)\,=q(x,{f b}_\perp)-rac{1}{2M}rac{\partial}{\partial b_y}{\cal E}_q(x,{f b}_\perp)$$

Sivers TMDs:

Imbalance in the observed hadron momentum distribution

GPDs from FFs

Contalbrigo M.

Hard Exclusive DIS & GPDs

$$\begin{split} H_{LO}^{\mu\nu} &= \frac{1}{2} \left[\tilde{p}^{\mu} n^{\nu} + \tilde{p}^{\nu} n^{\mu} - g^{\mu\nu} \right] \int_{-1}^{+1} dx \left[\frac{1}{x - \xi + i\epsilon} + \frac{1}{x + \xi - i\epsilon} \right] \\ &\times \left[H_{DVCS}^{p}(x,\xi,t) \ \bar{N}(p')\gamma.nN(p) + \ E_{DVCS}^{p}(x,\xi,t) \ \bar{N}(p')i\sigma^{\kappa\lambda}\frac{n_{\kappa}\Delta_{\lambda}}{2m_{N}}N(p) \right] \\ &+ \frac{1}{2} \left[-i\varepsilon^{\mu\nu\kappa\lambda}\tilde{p}_{\kappa}n_{\lambda} \right] \ \int_{-1}^{+1} dx \left[\frac{1}{x - \xi + i\epsilon} - \frac{1}{x + \xi - i\epsilon} \right] \\ &\times \left[\tilde{H}_{DVCS}^{p}(x,\xi,t)\bar{N}(p')\gamma.n\gamma_{5}N(p) + \tilde{E}_{DVCS}^{p}(x,\xi,t)\bar{N}(p')\gamma_{5}\frac{\Delta \cdot n}{2m_{N}}N(p) \right] \ , \end{split}$$

Only ε and t are experimentally accessible

$$T^{DVCS} \sim \int_{-1}^{+1} \frac{H(x,\xi,t)}{x \pm \xi + i\varepsilon} dx + \dots \sim P \int_{-1}^{+1} \frac{H(x,\xi,t)}{x \pm \xi} dx - i\pi H(\pm\xi,\xi,t) + \dots$$

Nucleon Multi-D Mapping @ JLab +EIC

Impact parameter (GPDs)

Transverse Momentum (TMDs)

6

5

0.01

Conclusions

The last decade provided many evidences that correlation of partonic transverse degrees of freedom in the nucleon do exist and manifest in hadronic interactions

Next step: Moving from phenomenology to rigorous treatment (predictive power)

New data coming from SIDIS, DY, e+e- and pp reactions should allow to:

- Constrain models in the valence region
- Test factorization, universality and evolution
- Study higher twist effects
- Investigate non-perturbative to perturbative transition (along P_T)
- Flavor separation via proton and deuteron targets and hadron ID
- Test of Lattice QCD calculations

A comprehensive study provides access to the peculiar dynamics of the QCD confined world