3D Parton Distributions: Path to the LHC

November 29th - December $2^{\text {nd }}, 2016$ - LNF, Frascati, Italy

Studies of TMDs at hermes

21 years ago

NUCLEAR PHYSICS B

The complete tree-level result up to order $1 / Q$ for polarized deep-inelastic leptoproduction

P.J. Mulders ${ }^{\text {a,b }}$, R.D. Tangerman ${ }^{\text {a }}$
${ }^{\text {a }}$ National Institute for Nuclear Physics and High-Energy Physics (NIKHEF), P.O. Box 41882, NL-1009 DB Amsterdam, The Netherlands
${ }^{\text {b }}$ Department of Physics and Astronomy, Free University, De Boelelaan 1081, NL-1081 HV Amsterdam, The Netherlands

Received 18 October 1995; accepted 1 December 1995

Abstract

We present the results of the tree-level calculation of deep-inelastic leptoproduction, including polarization of target hadron and produced hadron. We also discuss the dependence on transverse momenta of the quarks, which leads to azimuthal asymmetries for the produced hadrons.

21 years ago

NUCLEAR PHYSICS B

The complete tree-level result up to order $1 / Q$ for polarized deep-inelastic leptoproduction

P.J. Mulders ${ }^{\text {a,b }}$, R.D. Tangerman ${ }^{\text {a }}$
${ }^{a}$ National Institute for Nuclear Physics and High-Energy Physics (NIKHEF), P.O. Box 41882, NL-1009 DB Amsterdam, The Netherlands
${ }^{\text {b }}$ Department of Physics and Astronomy, Free University. De Boelelaan 1081, NL-1081 HV Amsterdan., The Netherlands
Received 18 October 1995; accepted 1 December 1995

Abstract

We present the results of the tree-level calculation of deep-inelastic leptoproduction, including polarization of target hadron and produced hadron. We also discuss the dependence on transverse momenta of the quarks, which leads to azimuthal asymmetries for the produced hadrons.

21 years ago

NUCLEAR PHYSICS B

The complete tree-level result up to order $1 / Q$ for polarized deep-inelastic leptoproduction

P.J. Mulders ${ }^{\text {a,b }}$, R.D. Tangerman ${ }^{\text {a }}$
${ }^{\text {a }}$ National Institute for Nuclear Physics and High-Energy Physics (NIKHEF), P.O. Box 41882, NL-1009 DB Amsterdam, The Netherlands
${ }^{\text {b }}$ Department of Physics and Astronomy, Free University, De Boelelaan 1081, NL-1081 HV Amsterdam, The Netherlands

Received 18 October 1995; accepted 1 December 1995

Abstract

We present the results of the tree-level calculation of deep-inelastic leptoproduction, including polarization of target hadron and produced hadron. We also discuss the dependence on transverse momenta of the quarks, which leads to azimuthal asymmetries for the produced hadrons.

21 years ago

Nuclear Physics B 461 (1996) 197-237

NUCLEAR PHYSICS B
\qquad

The complete tree-level result up to order $1 / Q$ for polarized deep-inelastic leptoproduction
P.J. Mulders ${ }^{\text {a,b }}$, R.D. Tangerman ${ }^{\text {a }}$

- use semi-inclusive DIS for
- accessing the full momentum structure
- parton polarimetry

probing TMDs in semi-inclusive DIS

in SIDIS*) couple PDFs to:

*) semi-inclusive DIS with unpolarized final state

probing TMDs in semi-inclusive DIS

quark pol.				
		U	L	T
8	U	f_{1}		h_{1}^{\perp}
\%	L		$g_{1 L}$	$h_{1 L}^{\perp}$
)	T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

in SIDIS*) couple PDFs to:
Collins FF: $\quad H_{1}^{\perp, q \rightarrow h}$

*) semi-inclusive DIS with unpolarized final state

probing TMDs in semi-inclusive DIS

probing TMDs in semi-inclusive DIS

gives rise to characteristic azimuthal dependences
*) semi-inclusive DIS with unpolarized final state

one-hadron production (ep \rightarrow ehX)

$$
\begin{array}{r}
d \sigma=d \sigma_{U U}^{0}+\cos 2 \phi d \sigma_{U U}^{1}+\frac{1}{Q} \cos \phi d \sigma_{U U}^{2}+\lambda_{e} \frac{1}{Q} \sin \phi d \sigma_{L U}^{3} \\
+S_{L}\left\{\sin 2 \phi d \sigma_{U L}^{4}+\frac{1}{Q} \sin \phi d \sigma_{U L}^{5}+\lambda_{e}\left[d \sigma_{L L}^{6}+\frac{1}{Q} \cos \phi d \sigma_{L L}^{7}\right]\right\} \\
+S_{T}\left\{\sin \left(\phi-\phi_{S}\right) d \sigma_{U T}^{8}+\sin \left(\phi+\phi_{S}\right) d \sigma_{U T}^{9}+\sin \left(3 \phi-\phi_{S}\right) d \sigma_{U T}^{10}\right.
\end{array}
$$

$$
\begin{array}{cc}
\overbrace{\text { Bear Target }}^{\sigma_{\text {Ber }}} \begin{array}{cc}
\text { Polarization } \\
& \left.+\lambda_{e}\left[\cos \left(\phi-\phi_{S}\right) d \sigma_{L T}^{13}+\frac{1}{Q}\left(\cos \phi_{S} d \sigma_{L T}^{14}+\cos \left(2 \phi-\phi_{S}\right) d \sigma_{L T}^{15}\right)\right]\right\}
\end{array} \quad+\frac{1}{Q}\left(\sin \left(2 \phi-\phi_{S}\right) d \sigma_{U T}^{11}+\sin \phi_{S} d \sigma_{U T}^{12}\right)
\end{array}
$$

Mulders and Tangerman, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309 Bacchetta et al., JHEP 0702 (2007) 093
"Trento Conventions", Phys. Rev. D 70 (2004) 117504

one-hadron production (ep \rightarrow ehX)

$$
\begin{array}{r}
d \sigma=d \sigma_{U U}^{0}+\cos 2 \phi d \sigma_{U U}^{1}+\frac{1}{Q} \cos \phi d \sigma_{U U}^{2}+\lambda_{e} \frac{1}{Q} \sin \phi d \sigma_{L U}^{3} \\
+S_{L}\left\{\sin 2 \phi d \sigma_{U L}^{4}+\frac{1}{Q} \sin \phi d \sigma_{U L}^{5}+\lambda_{e}\left[d \sigma_{L L}^{6}+\frac{1}{Q} \cos \phi d \sigma_{L L}^{7}\right]\right\} \\
+S_{T}\left\{\sin \left(\phi-\phi_{S}\right) d \sigma_{U T}^{8}+\sin \left(\phi+\phi_{S}\right) d \sigma_{U T}^{9}+\sin \left(3 \phi-\phi_{S}\right) d \sigma_{U T}^{10}\right.
\end{array}
$$

$$
+\frac{1}{Q}\left(\sin \left(2 \phi-\phi_{S}\right) d \sigma_{U T}^{11}+\sin \phi_{S} d \sigma_{U T}^{12}\right)
$$

Mulders and Tangerman, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309
Bacchetta et al., JHEP 0702 (2007) 093
"Trento Conventions", Phys. Rev. D 70 (2004) 117504

one-hadron production (ep \rightarrow ehX)

$$
\begin{gathered}
d \sigma=d \sigma_{U U}^{0}+\cos 2 \phi d \sigma_{U U}^{1}+\frac{1}{Q} \cos \phi d \sigma_{U U}^{2}+\lambda_{e} \frac{1}{Q} \sin \phi d \sigma_{L U}^{3} \\
+S_{L}\left\{\sin 2 \phi d \sigma_{U L}^{4}+\frac{1}{Q} \sin \phi d \sigma_{U L}^{5}+\lambda_{e}\left[d \sigma_{L L}+\frac{1}{Q} \cos \phi d \sigma_{L L}^{7}\right]\right\} \\
+S_{T}\left\{\sin \left(\phi-\phi_{S}\right) d \sigma_{U T}^{8}+\sin \left(\phi+\phi_{S}\right) d \sigma_{U T}^{9}+\sin \left(3 \phi-\phi_{S}\right) d \sigma_{U T}^{10}\right.
\end{gathered}
$$

$$
+\frac{1}{Q}\left(\sin \left(2 \phi-\phi_{S}\right) d \sigma_{U T}^{11}+\sin \phi_{S} d \sigma_{U T}^{12}\right)
$$

Mulders and Tangerman, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309
Bacchetta et al., JHEP 0702 (2007) 093
"Trento Conventions", Phys. Rev. D 70 (2004) 117504

The HERMES Experiment

- 27.6 GeV HERA e^{+} / e^{-}beam
- longitudinally polarized

The HERMES Experiment

- pure gas targets
- internal to lepton ring
- unpolarized $\left({ }^{1} \mathrm{H} . . . \mathrm{Xe}\right)$
- long. polarized: ${ }^{1} \mathrm{H},{ }^{2} \mathrm{H},{ }^{3} \mathrm{He}$
- transversely polarized: ${ }^{1} \mathrm{H}$

HERMES schematically

 HERA 27.6 GeV lepton ring

- unpolarized $\left({ }^{1} \mathrm{H} . . . \mathrm{Xe}\right)$
- long. polarized: ${ }^{1} \mathrm{H},{ }^{2} \mathrm{H},{ }^{3} \mathrm{He}$
- transversely polarized: ${ }^{1} \mathrm{H}$

Particle ID detectors allow for

- lepton/hadron separation
- RICH: pion/kaon/proton discrimination $2 \mathrm{GeV}<\mathrm{p}<15 \mathrm{GeV}$

hadron multiplicities in DIS

$$
\begin{aligned}
\frac{d^{5} \sigma}{d x d y d z d \phi_{h} d P_{h \perp}^{2}} & \propto\left(1+\frac{\gamma^{2}}{2 x}\right)\left\{F_{U U, T}+\epsilon F_{U U, L}\right. \\
& \left.+\sqrt{2 \epsilon(1-\epsilon)} F_{U U}^{\cos \phi_{h}} \cos \phi_{h}+\epsilon F_{U U}^{\cos 2 \phi_{h}} \cos 2 \phi_{h}\right\}
\end{aligned}
$$

G. Schnell

$$
\begin{aligned}
\gamma & =\frac{2 M x}{Q} \\
\varepsilon & =\frac{1-y-\frac{1}{4} \gamma^{2} y^{2}}{1-y+\frac{1}{2} y^{2}+\frac{1}{4} \gamma^{2} y^{2}}
\end{aligned}
$$

3dPDFs: Path to the LHC

hadron multiplicities in DIS

$$
\begin{aligned}
& \text { hadron multiplicity: } \\
& \text { normalize to inclusive DIS } \\
& \text { cross section } \\
& \frac{d^{4} \boldsymbol{\mathcal { M }}^{\boldsymbol{h}}\left(x, y, z, P_{h \perp}^{2}\right)}{d x d y d z d P_{h \perp}^{2}} \propto\left(1+\frac{\gamma^{2}}{2 x}\right) \frac{F_{U U, T}+\epsilon F_{U U, L}}{F_{T}+\epsilon F_{L}} \\
& \approx \frac{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, p_{T}^{2}\right) \otimes D_{1}^{q \rightarrow h}\left(z, K_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x)} \\
& \frac{d^{5} \sigma}{d x d y d z d \phi_{h} d P_{h \perp}^{2}} \propto\left(1+\frac{\gamma^{2}}{2 x}\right)\left\{F_{U U, T}+\epsilon F_{U U, L}\right. \\
& \left.+\sqrt{2 \epsilon(1-\epsilon)} F_{U U}^{\cos \phi_{h}} \cos \phi_{h}+\epsilon F_{U U}^{\cos 2 \phi_{h}} \cos 2 \phi_{h}\right\}
\end{aligned}
$$

multiplicities @ HERMES

- extensive data set on pure proton and deuteron targets for identified charged mesons http://www-hermes.desy.de/ multiplicities
- extracted in a multidimensional unfolding procedure
[Airapetian et al., PRD 87 (2013) 074029]

multiplicities @ HERMES

- extensive data set on pure proton and deuteron targets for identified charged mesons http://www-hermes.desy.de/ multiplicities
- extracted in a multidimensional unfolding procedure
- access to flavor dependence of fragmentation through different mesons and targets

multiplicities @ HERMES

- extensive data set on pure proton and deuteron targets for identified charged mesons http://www-hermes.desy.de/ multiplicities
- extracted in a multidimensional unfolding procedure
- access to flavor dependence of fragmentation through different mesons and targets
- input to fragmentation function analyses
[Airapetian et al., PRD 87 (2013) 074029]

$\left\langle\mathcal{M}\left(Q^{2}\right)\right\rangle_{Q^{2}} \neq \mathcal{M}\left(\left\langle Q^{2}\right\rangle\right)$

$\left\langle\mathcal{M}\left(Q^{2}\right)\right\rangle_{Q^{2}} \neq \mathcal{M}\left(\left\langle Q^{2}\right\rangle\right)$

$\left\langle\mathcal{M}\left(Q^{2}\right)\right\rangle_{Q^{2}} \neq \mathcal{M}\left(\left\langle Q^{2}\right\rangle\right)$

$\left\langle\mathcal{M}\left(Q^{2}\right)\right\rangle_{Q^{2}} \neq \mathcal{M}\left(\left\langle Q^{2}\right\rangle\right)$

- even though having similar average kinematics, multiplicities in the two projections are different

$\left\langle\mathcal{M}\left(Q^{2}\right)\right\rangle_{Q^{2}} \neq \mathcal{M}\left(\left\langle Q^{2}\right\rangle\right)$

$\left\langle\mathcal{M}\left(Q^{2}\right)\right\rangle_{Q^{2}} \neq \mathcal{M}\left(\left\langle Q^{2}\right\rangle\right)$

- the average along the valley will be smaller than the average along the gradient

$\left\langle\mathcal{M}\left(Q^{2}\right)\right\rangle_{Q^{2}} \neq \mathcal{M}\left(\left\langle Q^{2}\right\rangle\right)$
- the average along the valley will be smaller than the average along the gradient
- still the average kinematics can be the same
- the average along the valley will be smaller than the average along the gradient
- still the average kinematics can be the same
take-away message: integrate your cross sections over the kinematic ranges dictated by the experiment (and do not simply evaluate it at the average kinematics)

integrating vs. using average kinematics

[R. Sassot, private communication]
(by now old) DSS07 FF fit to $z-Q^{2}$ projection
 HERMES z -x (not included in the fit)

integrating vs. using average kinematics

- (by now old) DSS07 FF fit to $z-Q^{2}$ projection
- z-x "prediction" reasonable well when using integration over phase-space limits (red lines)

integrating vs. using average kinematics

[R. Sassot, private communication]

- (by now old) DSS07 FF fit to $z-Q^{2}$ projection
- z-x "prediction" reasonable well when using integration over phase-space limits (red lines)
- significant changes when using average kinematics

transverse momentum dependence

- multi-dimensional analysis allows going beyond collinear factorization
- flavor information on transverse momenta via target variation and hadron ID
[Airapetian et al., PRD 87 (2013) 074029]

chiral-odd distributions

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

transversely polarized quarks?

- look at characteristic azimuthal dependence of single-hadron lepto-production cross section

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

transversely polarized quarks?

- look at characteristic azimuthal dependence of single-hadron lepto-production cross section
- in practice reverse nucleon-polarization orientation and form spin asymmetries

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

transversely polarized quarks?

- look at characteristic azimuthal dependence of single-hadron lepto-production cross section
- in practice reverse nucleon-polarization orientation and form spin asymmetries
- many of the systematics of polarizationaveraged observables cancel (e.g., luminosity)

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

transversely polarized quarks?

- transverse polarization of quarks leads to large effects!

2005: First evidence from HERMES SIDIS on proton

Non-zero transversity
Non-zero Collins function

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

transversely polarized quarks?

- transverse polarization of quarks leads to large effects!
- opposite in sign for charged pions

2005: First evidence from HERMES SIDIS on proton

Non-zero transversity
Non-zero Collins function

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

transversely polarized quarks?

- transverse polarization of quarks leads to large effects!
- opposite in sign for charged pions
- disfavored Collins FF large and opposite in sign to favored one

2005: First evidence from HERMES SIDIS on proton

Non-zero transversity
Non-zero Collins function

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

transversely polarized quarks?

- transverse polarization of quarks leads to large effects!

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Collins effect for kaons and (anti) protons

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Collins effect for kaons and (anti) protons

- positive Collins SSA amplitude for positive kaons

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Collins effect for kaons and (anti) protons

- positive Collins SSA amplitude for positive kaons
- consistent with zero for negative kaons and (anti)protons
\Rightarrow vanishing sea-quark transversity and baryon Collins effect?

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Transversity through

 2-hadron fragmentation

$$
A_{U T} \sim \sin \left(\phi_{R \perp}+\phi_{S}\right) \sin \theta h_{1} H_{1}^{\varangle}
$$

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

$$
A_{U T} \sim \sin \left(\phi_{R \perp}+\phi_{S}\right) \sin \theta h_{1} H_{1}^{\varangle}
$$

- not only strong invariant-mass dependence, experimental challenges also because of
- transverse-momentum dependence
- theta dependence

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

$$
A_{U T} \sim \sin \left(\phi_{R \perp}+\phi_{S}\right) \sin \theta h_{1} H_{1}^{\varangle}
$$

- not only strong invariant-mass dependence, experimental challenges also because of
- transverse-momentum dependence
- theta dependence
- 9 vs. 6 (for single hadrons) dependences, too many to analyze simultaneously (at least with presently available data)

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Transversity through

 2-hadron fragmentation[A. Airapetian et al., JHEP 06 (2008) 017]

- systematics include
- incomplete integration over transverse momentum (negligible)
- contribution from higher partial waves in (unpolarized) denominator
- integration over other variables, e.g., A (<kin.>) $\neq\langle A$ (kin.)>

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Transversity through

 2-hadron fragmentation[A. Airapetian et al., JHEP 06 (2008) 017]

- HERMES, COMPASS: for comparison scaled HERMES data by depolarization factor and changed sign [C. Adolph et al., Phys. Lett. B713 (2012) 10] COMPASS 2010: [C. Braun et al., Nuovo Cimento C 035 (2012) 02]

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Transversity through

 2-hadron fragmentation- HERMES, COMPASS: for comparison scaled HERMES data by depolarization factor and changed sign
- ${ }^{2} \mathrm{H}$ results consistent with zero
[A. Airapetian et al., JHEP 06 (2008) 017]
COMPASS 2007: [C. Adolph et al., Phys. Lett. B713 (2012) 10] COMPASS 2010: [C. Braun et al., Nuovo Cimento C 035 (2012) 02]

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Transversity through

 2-hadron fragmentation- HERMES, COMPASS: for comparison scaled HERMES data by depolarization factor and changed sign
- ${ }^{2} \mathrm{H}$ results consistent with

G. Schnell

3dPDFs: Path to the LHC

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{\frac{1}{1 T}}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Transversity through

 2-hadron fragmentation- HERMES, COMPASS: for comparison scaled HERMES data by depolarization factor and changed sign
- ${ }^{2} \mathrm{H}$ results consistent with zero

$$
x h_{1}^{4^{4}(x)}-x \mathrm{~h}_{1}^{\mathrm{h}^{\mathrm{d}}(x) / 4}
$$

G. Schnell
[A. Airapetian et al., JHEP 06 (2008) 017]
COMPASS 2007: [C. Adolph et al., Phys. Lett. B713 (2012) 10] COMPASS 2010: [C. Braun et al., Nuovo Cimento C 035 (2012) 02]

- data from $e^{+} e^{-}$by BELLE allow first (collinear) extraction of transversity (compared to Anselmino et al.)

updated analysis exists, not part of this talk

Transversity's friends

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Pretzelosity?

- consistent with zero; but suppressed by two powers of $P_{h \perp}$ (compared to, e.g., transversity $\left.\otimes C o l l i n s\right)$

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Pretzelosity?

 by two powers of $P_{h \perp}$ (compared to, e.g., transversity \otimes Collins)

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{\frac{1}{1 T}}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- consistent with zero both for proton and deuteron

	Meson	Deuterium target	Proton target $[2,3]$
$\dot{\sin 2 \phi}$	π^{+}	$0.004 \pm 0.002 \pm 0.002$	$-0.002 \pm 0.005 \pm 0.003$
A_{UL}	π^{0}	$0.009 \pm 0.005 \pm 0.003$	$0.006 \pm 0.007 \pm 0.003$
	π^{-}	$0.001 \pm 0.003 \pm 0.002$	$-0.005 \pm 0.006 \pm 0.005$
	K^{+}	$-0.005 \pm 0.006 \pm 0.003$	-

[PLB 562 (2003) 182-192]

Worm-Gear I

[PLB 562 (2003) 182-192]

- again: chiral-odd

cross section without polarization

$$
\left.+\sqrt{2 \epsilon(1-\epsilon) F_{U U}^{\cos \phi_{h}}} \cos \phi_{h}+\epsilon F_{U U}^{\cos 2 \phi_{h}} \cos 2 \phi_{h}\right\}
$$

$$
\begin{aligned}
\gamma & =\frac{2 M x}{Q} \\
\varepsilon & =\frac{1-y-\frac{1}{4} \gamma^{2} y^{2}}{1-y+\frac{1}{2} y^{2}+\frac{1}{4} \gamma^{2} y^{2}}
\end{aligned}
$$

[see, e.g., Bacchetta et al., JHEP 0702 (2007) 093]

cross section without polarization

$$
\left.+\sqrt{2 \epsilon(1-\epsilon) F_{U U}^{\cos \phi_{h}}} \cos \phi_{h}+\epsilon F_{U U}^{\cos 2 \phi_{h}} \cos 2 \phi_{h}\right\}
$$

$$
\begin{aligned}
& \gamma=\frac{2 M x}{Q} \\
& \varepsilon=\frac{1-y-\frac{1}{4} \gamma^{2} y^{2}}{1-y+\frac{1}{2} y^{2}+\frac{1}{4} \gamma^{2} y^{2}} \\
& {[\text { see, e.g., Bacchetta et al., }} \\
& \text { JHEP 0702 (2007) 093] }
\end{aligned}
$$

(Implicit sum over quark flavours)

extraction I - event migration

extraction I - event migration

- migration correlates yields in different bins
- can't be corrected properly in bin-by-bin approach

extraction II - unfolding

- Fully differential analysis in ($\left.x, y, z, P_{h \perp}, \phi\right)$
- Multi-dimensional unfolding: correction for finite acceptance, QED radiation, kinematic smearing, detector resolution

$$
n_{E X P}=S n_{\text {BORN }}+n_{B g}
$$

$$
\downarrow
$$

$$
n_{\text {BoRN }}=S^{-1}\left[n_{E X P}-n_{B g}\right]
$$

extraction III - projecting

$$
\langle\cos \phi\rangle\left(x_{b}\right) \approx \frac{\int_{0.3}^{0.85} d y \int_{0.2}^{0.75} d z \int_{0.05}^{0.75} d P_{h \perp}^{2} \sigma^{4 \pi}\left(\omega_{x_{i}=x_{b}}\right)\langle\cos \phi\rangle_{x_{i}=x_{b}}}{\int_{0.3}^{0.85} d y \int_{0.2}^{0.75} d z \int_{0.05}^{0.75} d P_{h \perp}^{2} \sigma^{4 \pi}\left(\omega_{x_{i}=x_{b}}\right)}
$$

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

(T1) - (at) signs of Boer-Mulders

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

(if) - (A) signs of Boer-Mulders

- modulations are not zero!

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

signs of Boer-Mulders

- modulations are not zero!
- opposite sign for charged pions with larger magnitude for π^{-}

- no dependence on hadron charge expected for Cahn effect
\Rightarrow flavor dependence of transverse momentum
\Rightarrow sign of Boer-Mulders in $\cos \phi$ modulation
(indeed, overall pattern resembles B-M modulations)
\Rightarrow additional "genuine" twist-3 contributions?

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- chiral even
- first direct evidence for worm-gear g1t on
- ${ }^{3} \mathrm{He}$ target at JLab
- H target at HERMES

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Worm-Gear

- chiral even
- first direct evidence for worm-gear g1t on
- ${ }^{3} \mathrm{He}$ target at JLab
- H target at HERMES
- results for protons and antiprotons consistent with zero

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes - 3d binning

- 3d analysis: $4 x 4 \times 4$ bins in (x, z, $P_{h \perp}$)

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes - 3d binning

- 3d analysis: $4 \times 4 \times 4$ bins in (x, z, $P_{h \perp}$)
- disentangle correlations
- isolate phase-space region with strong signal strength

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes - 3d binning

- 3d analysis: $4 \times 4 \times 4$ bins in (x, z, $P_{h_{\perp}}$)
- disentangle correlations
- isolate phase-space region with strong signal strength
- allows more detailed comparison with calculations (e.g., "unofficial" results from Torino 10.1103/PhysRevD.86.014028 fit - courtesy M. Boglione)

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers amplitudes - 3d binning

- large K^{+}amplitudes O(20\%) seen at large values of (x, z)
- region of purest "u-quark probe"

subleading twist

Subleading twist I - <sin $(\phi)>u l$

- in experiments: target polarized w.r.t.
beam direction
[Diehl\&Sapeta EPJC41 (2005)]
- small transverse component w.r.t. ritual-photon direction when longitudinally polarized
- mixing of transverse and longitudinal target-spin asymmetries

Subleading twist I - <sin $(\phi)>u l$

- in experiments: target polarized w.r.t.
beam direction
[Diehl\&Sapeta EPJC41 (2005)]
- small transverse component w.r.t. ritual-photon direction when longitudinally polarized
- mixing of transverse and longitudinal target-spin asymmetries

$$
\left(\begin{array}{c}
\langle\sin \phi\rangle_{U L}^{\prime} \\
\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{U T}^{\prime} \\
\left\langle\sin \left(\phi+\phi_{S}\right)\right\rangle_{U T}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \theta_{\gamma^{*}} & -\sin \theta_{\gamma^{*}} & -\sin \theta_{\gamma^{*}} \\
\frac{1}{2} \sin \theta_{\gamma^{*}} & \cos \theta_{\gamma^{*}} & 0 \\
\frac{1}{2} \sin \theta_{\gamma^{*}} & 0 & \cos \theta_{\gamma^{*}}
\end{array}\right)\left(\begin{array}{c}
\langle\sin \phi\rangle_{U L}^{q} \\
\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{U T} \\
\left\langle\sin \left(\phi+\phi_{S}\right)\right\rangle_{U T}
\end{array}\right)
$$

($\cos \theta_{\gamma^{*}} \simeq 1, \sin \theta_{\gamma^{*}}$ up to 15% at HERMES energies)

Subleading twist I - <sin $(\phi)>u l$

$$
\langle\sin \phi\rangle_{U L}^{q}=\langle\sin \phi\rangle_{U L}^{\prime}+\sin \theta_{\gamma^{*}}\left(\left\langle\sin \left(\phi+\phi_{S}\right)\right\rangle_{U T}^{\prime}+\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{U T}^{\prime}\right)
$$

- experimental Aul dominated by twist-3 contribution
- correction for Aut contribution increases purely longitudinal asymmetry for positive pions
- consistent with zero for π^{-}

Subleading twist II - <sin $\left.\left(\phi_{s}\right)\right\rangle \cup T$

- significant non-zero signal observed for negatively charged mesons
- vanishes in inclusive limit, e.g. after integration over $P_{h \perp}$ and z, and summation over all hadrons

Subleading twist II - <sin $\left.\left(\phi_{s}\right)\right\rangle \cup T$

- significant non-zero signal observed for negatively charged mesons
- vanishes in inclusive limit, e.g. after integration over $P_{h \perp}$ and z, and summation over all hadrons
- various terms related to transversity, worm-gear, Sivers etc.:

$$
\begin{aligned}
\propto & \left(\mathbf{x f}_{\mathbf{T}}^{\perp} \mathbf{D}_{1}-\frac{\mathbf{M}_{\mathbf{h}}}{\mathbf{M}} \mathbf{h}_{1} \frac{\tilde{\mathbf{H}}}{\mathbf{z}}\right) \\
-\mathcal{W}\left(\mathbf{p}_{\mathbf{T}}, \mathbf{k}_{\mathbf{T}}, \mathbf{P}_{\mathbf{h} \perp}\right) & {\left[\left(\mathbf{x h}_{\mathbf{T}} \mathbf{H}_{1}^{\perp}+\frac{\mathbf{M}_{\mathbf{h}}}{\mathbf{M}} \mathbf{g}_{1 \mathrm{~T}} \frac{\tilde{\mathbf{G}}^{\perp}}{\mathbf{z}}\right)\right.} \\
& \left.-\left(\mathrm{xh}_{\mathbf{T}}^{\perp} \mathbf{H}_{1}^{\perp}-\frac{\mathbf{M}_{\mathbf{h}}}{\mathbf{M}} f_{1 \mathrm{~T}}^{\perp} \frac{\tilde{\mathbf{D}}^{\perp}}{\mathbf{z}}\right)\right]
\end{aligned}
$$

Subleading twist II - <sin $\left.\left(\phi_{s}\right)\right\rangle_{\cup T}$

Subleading twist II - <sin $\left.\left(\phi_{s}\right)\right\rangle \cup T$

- positive amplitudes at low $\mathrm{P}_{\mathrm{h} \perp}$ also for positive pions

Subleading twist II - $\left\langle\sin \left(\phi_{s}\right)\right\rangle$ UT

- nonzero amplitudes mainly at large $P_{h \perp}$ in case of negative pions
- positive amplitudes at low Ph_{h} also for positive pions

Subleading twist II - <sin $\left.\left(\phi_{s}\right)\right\rangle \cup T$

- nonzero amplitudes mainly at large $P_{h \perp}$ in case of negative pions
- positive amplitudes at low $\mathrm{P}_{\mathrm{h} \perp}$ also for positive pions

Subleading twist III - <sin $(\phi)\rangle \iota u$

- significant positive amplitudes for (in particular positive) pions

Subleading twist III - <sin(ϕ)>LU

$$
\frac{M_{h}}{M z} h_{1}^{\perp} E \oplus x g^{\perp} D_{1} \oplus \frac{M_{h}}{M z} f_{1} G^{\perp} \oplus x e H_{1}^{\perp}
$$

- mostly consistent w/ zero for other hadrons (except maybe K^{+})

Subleading twist III $-\langle\sin (\phi)>L U$

$$
\frac{M_{h}}{M z} h_{1}^{\perp} E \oplus x g^{\perp} D_{1} \oplus \frac{M_{h}}{M z} f_{1} G^{\perp} \oplus x e H_{1}^{\perp}
$$

- opposite behavior at HERMES ${ }^{x} / C L A S$ of negative pions in in z^{2} projection due to different x-range probed
- CLAS more sensitive to $e(x)$ Collins term due to higher x probed?

Subleading twist III - <sin(ϕ)>LU

- consistent behavior for charged pions / hadrons at HERMES / COMPASS for isoscalar targets

Semi-inclusive hadrons

SXmi-inclusive hadrons

click here if (likely) out of time

Inclusive hadron electro-production

$e p^{\uparrow} \rightarrow e h X$

virtual photon going
into the page
$e p^{\uparrow} \rightarrow h X$

lepton beam going into the page

Inclusive hadron electro-production

- scattered lepton undetected
\Rightarrow lepton kinematics unknown

$e p^{\uparrow} \rightarrow h X$

Inclusive hadron electro-production

- scattered lepton undetected - lepton kinematics unknown
- dominated by quasi-real photo-production (low Q ${ }^{2}$)
\Rightarrow hadronic component of photon relevant?
$e p^{\uparrow} \rightarrow h X$

Inclusive hadron electro-production

- scattered lepton undetected - lepton kinematics unknown
- dominated by quasi-real photo-production (low Q^{2})
\Rightarrow hadronic component of photon relevant?
- cross section proportional to $S_{N}\left(k \times p_{h}\right) \sim \sin \psi$

$$
A_{\mathrm{UT}}\left(P_{T}, x_{F}, \psi\right)=\downarrow
$$

$$
A_{\mathrm{N}} \equiv \frac{\int_{\pi}^{2 \pi} \mathrm{~d} \psi \sigma_{\mathrm{UT}} \sin \psi-\int_{0}^{\pi} \mathrm{d} \psi \sigma_{\mathrm{UT}} \sin \psi}{\int_{0}^{2 \pi} \mathrm{~d} \psi \sigma_{\mathrm{UU}}}
$$

$$
=-\frac{2}{\pi} A_{U T}^{\sin \psi}
$$

1D dependences of Aut $\sin \psi$ amplitude

[Airapetian et al., Phys. Lett. B 728, 183-190 (2014)]

- clear left-right asymmetries for pions and positive kaons
- increasing with X_{F} (as in pp)
- initially increasing with P_{T} with a fall-off at larger P_{T}

1D dependences of Aut $\sin \psi$ amplitude

[Airapetian et al., Phys. Lett. B 728, 183-190 (2014)]

- clear left-right asymmetries for pions and positive kaons
- increasing with X_{F} (as in pp)
- initially increasing with P_{T} with a fall-off at larger P_{T}
- x_{F} and P_{T} correlated
\Leftrightarrow look at 2D dependences

Inclusive hadrons: 2D dependences

[Airapetian et al., Phys. Lett. B 728, 183-190 (2014)]

Asymmetries of subprocesses

[Airapetian et al., Phys. Lett. B 728, 183-190 (2014)]

- asymmetries increase with larger z
- large asymmetries also for π^{-} in case of $z>0.7$

the other inclusive SSA

the other inclusive SSA

the other inclusive SSA

in SIDIS (large Q^{2}) proportional to polarizing FF $D_{1 T}^{\perp}$ (naive T-odd, chiral-eve in twist-3 factorization opposite sign to pp

the other inclusive SSA

- clearly positive for light target nuclei
- consistent with zero for heavy targets

the other inclusive SSA

- larger in backward direction w.r.t. incoming lepton
- consistent with X_{F} dependence of twist-3 calculation (opposite sign conventions for x_{F} !)

the other inclusive SSA

- larger in backward direction w.r.t. incoming lepton
- distinct pt dependences in forward and backward directions: rising with p_{T} in backward direction as in pp

conclusions before the summary

- HERMES conceived almost 3 decades ago in order to solve the "spin crisis"
- measure precisely the quark-spin and somewhat the gluon spin contribution to the proton spin
- no orbital angular momentum on the menu
- no real transverse-spin physics
- up to g_{2} and the Burkhardt-Cottingham S.R. ...
... and that mainly to have a more precise g_{1} measurement

conclusions before the summary

- HERMES conceived almost 3 decades ago in order to solve the "spin crisis"
- measure precisely the quark-spin and somewhat the gluon spin contribution to the proton spin
- no orbital angular momentum on the menu
- no real transverse-spin physics
- up to g_{2} and the Burkhardt-Cottingham S.R. ...
... and that mainly to have a more precise g_{1} measurement
- thanks also to the "believers" in the Frascati group, HERMES has published a wealth of transverse-spin results, among others, HERMES' most cited publications

conclusions before the summary

- HERMES conceived almost 3 decades ago in the "spin crisis" spin contribution to the prot
- no orbital angular mon
- up to af per okhardt-Cottingham S.R. ...
al oP tly to have a more precise g_{1} measurement - ty 5 the "believers" in the Frascati group, HERMES shed a wealth of transverse-spin results, among s. HERMES' most cited publications

