3D Parton Distributions: Path to the LHC

29/11 - 2/12/2016, INFN - Laboratori Nazionali di Frascati

Marco Radici INFN - Pavia

Fragmentation Functions : status and perspectives

3D Parton Distributions: Path to the LHC

29/11 - 2/12/2016, INFN - Laboratori Nazionali di Frascati

Only phenomenology. For models Matevosyan

Marco Radici INFN - Pavia

Fragmentation Functions : status and perspectives

TMD FF map

next talk by Liang TMD FF up to S_h=1 including twist 3

		Quark polarization				
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)		
Hadron Polarization	U	D ₁ o Unpolarized		H_1^{\perp} \circ - \circ		
	L		$G_{1L} \odot \bullet \bullet \bullet \bullet \bullet$	H_{1L}^{\perp} \bullet - \bullet		
	т	$D_{1\mathrm{T}}^{\perp}$ • •	G _{1T} 💿 - 💿	$H_1 \stackrel{\bullet}{\circ} - \stackrel{\bullet}{\circ}$ $H_{1T}^{\perp} \stackrel{\bullet}{\circ} - \stackrel{\bullet}{\circ}$		

$$D_1(z) \bullet \longrightarrow \bigcirc_h$$

De Florian et al., P.R. D**91** (15) 014035

1. DSS (2007) \rightarrow major update DSS 2015 (only for $q \rightarrow h=\pi$)

- more/better data for e⁺e⁻ (Belle, BaBar)
- SIDIS (Hermes, Compass)
- RHIC (STAR)
- LHC (Alice)
- new error analysis
- global $\chi^2/dof \sim 2.2 \rightarrow 1.2$

collinear 1h FF: DSS 2015

<u>caveat</u>

- major improvement only for total up & down channels: rel. uncertainty ≤10% for 0.2< z< 0.8
- for other channels, improvement upon DSS 2007 only for 0.2< z< 0.5

- Compass data for SIDIS multiplicities for deuteron target only
- Kaon fragmentation data not included

collinear 1h FF: JAMFF

$$D_1(z) \bullet \longrightarrow \bigcirc_h$$

Sato et al., arXiv:1609.00899

2. new fit from JAM collaboration: JAMFF (for $q \rightarrow h=\pi$, K)

- only S.I. e⁺e⁻ data
- 18 parameters for π , 24 for K
- Iterative Monte Carlo methodology
- = global $\chi^2/dof \sim 1.3 (\pi)$, 1.01 (K)

collinear 1h FF: JAMFF

— JAM Sato et al., arXiv:1609.00899 ---- HKNS Hirai et al., P.R.D75 (07) 094009

····· DSS 2007 De Florian et al., P.R.D75 (07) 114010

$$D_1(z) \bullet \longrightarrow \bigcirc_h$$

New extractions from NNLO analysis $(q \rightarrow h=\pi \text{ only})$

- 3. Anderle, Ringer, Stratmann P.R. D92 (15) 114017
- only S.I. e⁺ e⁻ data
 - old SLAC & LEP + Belle + BaBar data (288)
 - 16 parameters
- global χ^2 /dof : LO=0.89 → NNLO=0.64

4. NNPDF Collaboration: NNFF1.0

E. Nocera, talk at QCD-N16 (Bilbao)

- more or less same data set
- neural network methodology
- global χ^2/dof : LO=1.14 \rightarrow NNLO=0.91

unpolarized TMD FF

What do we know about the \mathbf{P}_{hT} dependence ?

unpolarized TMD FF

- 1. Does the P_{hT} dependence change with flavor?
- 2. Does the P_{hT} dependence change with Z?
- 3. Does the P_{hT} dependence change with energy \sqrt{s} ?
- 4. Does the P_{hT} dependence change with scale Q^2 ?

D₁ from unintegrated SIDIS multiplicities

D₁ from unintegrated SIDIS multiplicities

available fits

	Framework	Hermes	Compass	# points
Pavia 2013 Bacchetta et al., JHEP 1311 (13) 194	Gaussian < p _T ² > _q (z) 7 parameters no evolution	~	×	1538
Torino 2014 Anselmino et al., JHEP 1404 (14) 005	Gaussian < p _T ² > (1 parameter) only collinear DGLAP evolution N _y =A+By (y=Q ² /xs) (C)	separately	separately	576 (H) 6284 (C)
	↓ Framework of	TMD evolu	ution 4	
EIKV 2014 Echevarria et al., P.R.D89 (14) 074013	TMD framework, NLL level not a real fit	1 bin	(x,Q ²)	(?)
Pavia 2016 in preparation	TMD framework, NLL level first global fit (includes Drell-Yan and Z ⁰)	•	~	8156

talk Bacchetta

I. does P_{hT} dependence change with flavor?

I. does P_{hT} dependence change with flavor ?

Torino 2014 (Hermes) flavor indep. $\rightarrow \chi^2/dof = 1.69$ unfav > fav $\rightarrow \chi^2/dof = 1.60$ A. Signori, talk at QCD-N16 (Bilbao) Pavia 2016 (global) flavor indep. global x²/dof~ 1.55

(flavor dep. in progress)

Answer : maybe...

2. does \mathbf{P}_{hT} dependence change with z ?

(h+) ≈ (h-) + 0.1

 $\langle \boldsymbol{P}_{hT}^2 \rangle = z^{\alpha} (1-z)^{\beta} \langle \boldsymbol{P}_{\perp}^2 \rangle + z^2 \langle \boldsymbol{k}_{\perp}^2 \rangle \qquad \alpha = 0.5, \, \beta = 1.5$ $\langle \boldsymbol{P}_{hT}^2 \rangle = \langle \boldsymbol{P}_{\perp}^2 \rangle + z^2 \langle \boldsymbol{k}_{\perp}^2 \rangle$

Claude Marchand - DIS 2011

3. does P_{hT} dependence change with energy \sqrt{s} ?

Answer: it is likely, but need processes at much higher s \rightarrow e⁺e⁻

10⁻²

 10^{-3}

1

1

strong dependence predicted at much larger scales

4. does P_{hT} dependence change with scale Q^2 ?

Answer: at SIDIS scales, very moderately

SIDIS unpolarized
cross section
$$\frac{d\sigma_N^h}{dx \, dz \, dP_{hT}^2 \, dQ^2} \approx \sum_q e_q^2 \left[f_1^q \otimes D_1^q \right] \mathcal{H}_q(Q^2) + Y(Q^2, \boldsymbol{q}_T^2) + \mathcal{O}(M^2/Q^2)$$
$$\boldsymbol{q}_T^2 = \boldsymbol{P}_{hT}^2/z$$

J

need to match collinear (fixed-order) description such that

$$\int_0^\infty d\mathbf{P}_{hT}^2 \, \frac{d\sigma_N^h}{dx \, dz \, d\mathbf{P}_{hT}^2 \, dQ^2} = \frac{d\sigma_N^h}{dx \, dz \, dQ^2}$$

talk Gamberg

in order to define D₁^q

Current Wednesday, November 16, 16 (non factorizable)

soft

target

factorization th.'s for (current) fragmentation and (target) fracture functions assume that current and target regions are well separated in rapidity $y_h = \frac{1}{2} \log \frac{P_h^+}{P_h^-}$

factorization th.'s for (current) fragmentation and (target) fracture functions assume that current and target regions are well separated in rapidity $y_h = \frac{1}{2} \log \frac{P_h^+}{P_h^-}$

D₁ from unintegrated SIDIS multiplicities

 $P_{hT}^2/z \ll O^2$

- E12-06-112 $H_2(e,e'\pi)$

- E12-09-007 $D_2(e,e'\pi/K)$

talk Rossi

 h_1, h_{1T}^{\perp}

 H_{1}^{26}

D₁ from unintegrated SIDIS multiplicities

Another problem: SIDIS anticorrelations

$D_1(z,P_{hT})$ from e^+e^-

1. only way to break anticorrelation in SIDIS

2. we need large e⁺e⁻ scales \gg SIDIS scales to study how $<\mathbf{P}_{hT}^2>$ changes with Q² and s

e⁺e⁻ unintegrated multiplicity

e⁺e⁻ cross section

upcoming Belle data for unintegrated e⁺e⁻ cross section

Access to D_{1T}^{\perp}

encodes "spontaneous" polarization of h

new data from Belle on $e^+e^- \rightarrow \Lambda/\overline{\Lambda} + X$ $e^+e^- \rightarrow \Lambda/\overline{\Lambda} + \pi/K + X$ with full (z_Λ , $P_{\Lambda T}$) dependence

polarization P

 $\frac{1}{N} \frac{dN}{d\cos\theta} = 1 + \alpha P \,\cos\theta$

∧ polarization data

Y. Guan, talk at SPIN2016

∧ polarization data

Collins function

What do we know about the \mathbf{P}_{hT} dependence ?

e⁺e⁻ Collins effect

TMD factorization formula because of thrust axis definition

 $\frac{R_{\exp}^{U}}{R_{\exp}^{C}} \approx 1 + A_{0}^{e^{+}e^{-}} \left(\frac{\pi^{+}\pi^{-} + \pi^{-}\pi^{+}}{\pi^{+}\pi^{-} + \pi^{-}\pi^{+}} \right) - A_{0}^{e^{+}e^{-}} \left(\frac{\text{all}}{\text{all}} \frac{\pi\pi}{\pi\pi} \right)$ to kill false asymmetries

Unlike-sign Like-sign Unlike-sign Charged

Data for e⁺e⁻ Collins effect

 $s = Q^2 = 112 \text{ GeV}^2$

Abe et al., P.R.L. **96** (06) 232002 Seidl et al., P.R. D**78** (08) 032011 D**86** (12) 039905(E)

 $A_{12}^{U/L/C}(z_1, z_2)$ $A_0 U/L/C (z_1, z_2)$

Lees et al., P.R. D90 (14) 052003

Lees et al., P.R. D92 (15) 111101

 $A_{12} U/L/C (z_1, z_2, P_{1T}, P_{2T})$ $A_0 U/L/C (z_1, z_2, P_{1T})$

 A_{12} ^{U/L/C}(Z₁, Z₂) A₀^{U/L/C}(Z₁, Z₂) KK and Kπ pairs

Ablikim et al., P.R.L. **116** (16) 042001

 $A_0 U/L/C (z_1, z_2, P_{1T})$

Data for e⁺e⁻ Collins effect

 $s = Q^2 = 112 \text{ GeV}^2$

Abe et al., P.R.L. **96** (06) 232002 Seidl et al., P.R. D**78** (08) 032011 D**86** (12) 039905(E)

 $A_{12}^{U/L/C}(z_1, z_2)$ $A_0 U/L/C (z_1, z_2)$

Lees et al., P.R. D90 (14) 052003

Lees et al., P.R. D92 (15) 111101

 $A_{12}^{U/L/C}(z_1, z_2, P_{1T}, P_{2T})$ $A_0^{U/L/C}(z_1, z_2, P_{1T})$

 A_{12} U/L/C (Z₁, Z₂) A₀ U/L/C (Z₁, Z₂) KK and Kπ pairs

Ablikim et al., P.R.L. **116** (16) 042001

 $A_0 U/L/C (z_1, z_2, P_{1T})$

phase transition : direct access to transverse dynamics of fragmenting parton and to its QCD evolution

e⁺e⁻ Collins effect

available fits of $H_1 \perp$

both perform global fits (SIDIS + e⁺e⁻) with χ^2 /dof in [0.85 - 1.2]

	Framework	Belle	BaBar A ₀ (z ₁ ,z ₂ ,P _{1T}) U / L / C	# points	BaBar A ₁₂ U / L / C	BESIII A ₀ (z ₁ ,z ₂ ,P _{1T}) U / L / C
Torino 2015 Anselmino et al., P.R.D92 (15) 114023	Gaussian, fixed width various params. for fav (z) unfav (z) = N _{unf} D ₁ (z) only chiral-odd collinear DGLAP evolution 5 parameters	~	•	122	predicted	predicted
KPSY 2015 Kang et al., P.R.D93 (16) 014009	TMD evolution in CSS schemeat NLO + NLL level* $\hat{H}^{(3)}(z) \propto D_1(z)$ fav $(z) \neq$ unfav (z) only homogeneous evo eqs. 7 parameters	~	~	122	*	predicted

*
$$H_1^{\perp q}(z, \boldsymbol{b}_T; Q^2) = \sum_i \left(\delta C_{q/i} \otimes \hat{H}^{(3)\,i} \right) (z, b_*; \mu_b) \, e^{S(b_*, \mu_b; Q)} \, e^{S_{\mathrm{NP}}(b_T; Q)} \, H_{\mathrm{NP}}^q(z, \boldsymbol{b}_T; Q_0^2)$$

$M \overset{\circ}{O} \overset{$

Predicting the BESI asymmetry

0.

0.02

Di-hadron Fragmentation Functions (DiFF)

Bianconi et al., P.R. D**62** (00) 034008

 $P_{h}^{\mu} = P_{1}^{\mu} + P_{2}^{\mu}$ $R^{\mu} = (P_{1}^{\mu} - P_{2}^{\mu}) / 2$

$$R_T^2 = \frac{z_1 z_2}{z^2} M_h^2 - \frac{z_2}{z} M_1^2 - \frac{z_1}{z} M_2^2$$

Bacchetta & Radici, P.R.D**67** (03) 094002

	Quark polarization				
	Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)		
Hadron polarization	D_1	$G_{1}^{\perp} S_{L} \cdot P_{hT} \times R_{T}$ $\left(\bullet \bullet \rightarrow \bigcirc \right) - \left(\bullet \bullet \rightarrow \bigcirc \right)$	$H_{1}^{*} \hat{z} \cdot S_{T} \times R_{T}$ $H_{1}^{\perp} \hat{z} \cdot S_{T} \times P_{hT}$ $\left(\begin{array}{c} \hat{z} \\ \hat{z} \end{array} \right) - \left(\begin{array}{c} \hat{z} \\ \hat{z} \end{array} \right)$		

Di-hadron Fragmentation Functions (DiFF)

Bianconi et al., P.R. D62 (00) 034008

 $P_{h}^{\mu} = P_{1}^{\mu} + P_{2}^{\mu}$ $R^{\mu} = (P_{1}^{\mu} - P_{2}^{\mu}) / 2$

 $\int d\mathbf{P}_{hT}$ collinear framework

leading twist, $R_T^2 \ll Q^2$

chiral-odd partner of transversity

Access to transversity via DiFF

Collins, Heppelman, Ladinsky, N.P. B420 (94)

correlation between **quark polarization** and $\mathbf{R}_T = (z_2 \mathbf{P}_{1T} - z_1 \mathbf{P}_{2T}) / z$ or, equivalently, azimuthal orientation of (h_1, h_2) plane

(only if $h_1 \neq h_2$)

effect encoded in $h_1(x) H_1^{\triangleleft}(z, M_h^2)$

 $z=z_1+z_2$ $P_h^2=M_h^2 <=> R_T^2$

talk Courtoy

alternative to Collins effect

Radici, Jakob, Bianconi, P.R.D65 (02) 074031 Bacchetta & Radici, P.R.D67 (03) 094002

extraction of DiFF from e⁺e⁻

back-to-back hadron pairs $\rightarrow \cos(\Phi_R + \overline{\Phi}_R)$ modulation

Artru & Collins, Z.Ph. C69 (96) 277

Boer, Jakob, Radici,
P.R.D67 (03) 094003

$$A^{\cos(\phi_R + \bar{\phi}_R)} = \frac{\sin^2 \theta_2}{1 + \cos^2 \theta_2} \frac{|\mathbf{R}_T|}{M_h} \frac{|\bar{\mathbf{R}}_T|}{\bar{M}_h} \frac{\sum_q e_q^2 H_1^{\triangleleft q}(z, M_h^2)}{\sum_q e_q^2 D_1^q(z, M_h^2)} \frac{\bar{H}_1^{\triangleleft \bar{q}}(\bar{z}, \bar{M}_h^2)}{\bar{D}_1^{\bar{q}}(\bar{z}, \bar{M}_h^2)}$$
same as in SIDIS

extraction of DiFF from e⁺e⁻

Artru & Collins, Z.Ph. C69 (96) 277

$$A^{\cos(\phi_R + \bar{\phi}_R)} = \frac{\sin^2 \theta_2}{1 + \cos^2 \theta_2} \frac{|\mathbf{R}_T|}{M_h} \frac{|\bar{\mathbf{R}}_T|}{\bar{M}_h} \frac{\sum_q e_q^2 H_1^{\triangleleft q}(z, M_h^2)}{\sum_q e_q^2 D_1^q(z, M_h^2)} \frac{\bar{H}_1^{\triangleleft \bar{q}}(\bar{z}, \bar{M}_h^2)}{\bar{D}_1^{\bar{q}}(\bar{z}, \bar{M}_h^2)}$$
 same as in SIDIS

Vossen et al., P.R.L. 107 (11) 072004

Roor Labob Radici

first extraction of DiFF, but using PYTHIA

Courtoy et al., P.R.D85 (12) 114023 Radici et al., JHEP 1505 (15) 123

upcoming Belle data for unpolarized cross section

e⁺e⁻ cross section for ($\pi\pi$) in same hemisphere

R. Seidl, talk at SPIN2016

upcoming Belle data for (z, M_h) binning of unpolarized di-hadron e⁺e⁻ cross section

The power of DiFF

collinear framework \rightarrow factorization theorems

Radici, Jakob, Bianconi, P.R.D65 (02) 074031 Bacchetta & Radici, P.R. D67 (03) 094002

extraction

Bacchetta, Courtoy, Radici, P.R.L. **107** (11) 012001 Bacchetta, Courtoy, Radici, JHEP **1303** (13) 119 Radici et al., JHEP **1505** (15) 123

The power of DiFF

collinear framework \rightarrow factorization theorems

a phase transition in 3D studies

a phase transition in 3D studies

with TMD FF (and DiFF) we are a little step behind but with the upcoming data for unintegrated e⁺e⁻ cross sections we are well underway to fill the gap...