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collinear  1h  FF :    fresh news
Quark-parton Model Interpretation of SIDIS: 

Transverse Momentum Dependent PDFs (TMDs)
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1. DSS (2007) → major update  DSS 2015  (only for q→ h=π)

De Florian et al., P.R. D91 (15) 014035

- more/better data for e+e− (Belle, BaBar)  
- SIDIS (Hermes, Compass)  
- RHIC (STAR) 
- LHC (Alice) 
- new error analysis 
- global χ2/dof ~ 2.2 → 1.2
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FIG. 1: The individual FFs for positively charged pions zDπ+

i (z,Q2) at Q2 = 10GeV2 along with uncertainty estimates at
68% and 90% C.L. indicated by the inner and outer shaded bands, respectively. The panels on the right-hand-side show the
corresponding relative uncertainties. Also shown is a comparison to the previous global analysis by DSS [10] (dashed lines).

mum zDπ+

i at NLO accuracy for i = u+ ū, d+ d̄, ū = d,
s = s̄, c = c̄, and the gluon g (solid lines) along with our
uncertainty estimates at 68% C.L. (inner bands) and 90%
C.L. (outer bands), obtained as described in Sec. II C.
For better visibility, the rightmost panels give the rela-
tive uncertainties for the same set of zDπ+

i . The results
of the previous NLO DSS fit are shown as dashed lines.
As can be inferred from Fig. 1, for the light quark fla-

vors the old DSS results are either close to the updated
fit or within its 90% C.L. uncertainty band. The best
determined pion FFs is Dπ+

u+ū, where the relative uncer-
tainties are below 10% at 90% C.L. throughout most of
the relevant z range. Only for z ! 0.8 the errors rapidly
increase because of the lack of experimental constraints
in this region. The corresponding uncertainties for Dπ+

d+d̄
turn out to be slightly larger as they also include possi-
ble violations of SU(2) charge symmetry through Eq. (3).
We stress again, that at variance with the DSS analysis
[10], the new fit does not favor any SU(2) breaking. For

the unfavored FFs, Dπ+

ū = Dπ+

d are determined well in a
much more limited range of z, and uncertainties start to
increase already for z ! 0.5. The corresponding ambigu-
ities on Dπ+

s = Dπ+

s̄ are about a factor of two larger and
amount to at least 25% at 90% C.L. for z ≃ 0.3.
Bigger deviations from the DSS analysis are found for

both the gluon and the charm FFs. In the latter case,
this is driven by the greater flexibility of the functional
form, five fit parameters rather than three, which helps

with the overall quality of the global fit and cannot be
pin-pointed to a particular data set. In fact, there had
been no new charm (or bottom) tagged data since the

LEP and SLAC era. The significantly reduced Dπ+

g as
compared to the DSS fit is a result of the new Alice pp
data [32], which have a strong preference for less pions
from gluon fragmentation for basically all values of z.
We will discuss this finding, and possible tensions arising
with the pp data from RHIC, in more detail in Sec. III D.
The relative uncertainties on Dπ+

g at Q2 = 10GeV2 are
about 20% at 90% C.L. up to z ≃ 0.5 and quickly increase
towards larger z values.

We refrain from performing a detailed comparison to
the uncertainty estimates based on the data sets avail-
able for the original DSS analysis [10, 26] as they can be
viewed at best as a rough approximation. Only with the
quality and variety of data sets available for the current
global analysis one can arrive at a first meaningful deter-
mination of uncertainties for parton-to-pion FFs, which
therefore constitutes as one of the main results of this
study.

We note that the new very precise SIA data from
BaBar [28] and Belle [29] help to reliably constrain
light quark FFs to much higher values of z than before,
in particular, Dπ+

u+ū. In combination with the LEP and
SLAC data, which, at Q2 = M2

Z , mainly constrain the to-
tal quark singlet fragmentation function, the new precise
data at

√
S ≃ 10.5GeV also help to provide some partial

- major improvement only for  
         total up & down channels: 
 (       rel. uncertainty ≲10% for 0.2< z< 0.8 

- for other channels, improvement upon 
DSS 2007 only for 0.2< z< 0.5 

- Compass data for SIDIS multiplicities 
for deuteron target only 

- Kaon fragmentation data not included

collinear  1h  FF :    DSS 2015

De Florian et al.,  
P.R. D91 (15) 014035
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2. new fit from JAM collaboration: JAMFF   (for q→ h=π, K)

Sato et al., arXiv:1609.00899

- only S.I. e+e− data 
- 18 parameters for π, 24 for K 
- Iterative Monte Carlo methodology 
- global χ2/dof ~ 1.3 (π) , 1.01 (K)



collinear  1h  FF :    JAMFF
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FIG. 10: Comparison of the JAM fragmentation functions (solid curves) for ⇡+ (red curves) andK+

(blue curves) with the HKNS [12] (dashed curves) and DSS [10] (dotted curves) parametrizations

at the input scale Q2 = 1 GeV2 for the light quark and gluon distributions, and Q2 = 10 and

20 GeV2 for the c+ and b+ flavors, respectively.
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at the input scale Q2 = 1 GeV2 for the light quark and gluon distributions, and Q2 = 10 and

20 GeV2 for the c+ and b+ flavors, respectively.
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Sato et al., arXiv:1609.00899JAM
HKNS Hirai et al., P.R.D75 (07) 094009

DSS 2007 De Florian et al., P.R.D75 (07) 114010
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q for the heavy quarks q = c and b). A random sample of 100 posteriors (yellow curves for

⇡+, green for K+) is shown together with the mean and variance (red and blue bands).
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3. Anderle, Ringer, Stratmann

New extractions from NNLO analysis
( q→ h=π only )

P.R. D92 (15) 114017

- only S.I. e+ e−  data 
- old SLAC & LEP + Belle + BaBar data (288) 
- 16 parameters  
- global χ2/dof :  LO=0.89 → NNLO=0.64

4. NNPDF Collaboration: 
NNFF1.0
E. Nocera, talk at QCD-N16 (Bilbao)

- more or less same data set 
- neural network methodology  
- global χ2/dof :  LO=1.14 → NNLO=0.91
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Fragmentation functions: comparison with other FF sets
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can be also obtained when the “conventional” data are used
instead but at the expense of a less favorable total χ2, e.g.,
236.4 rather than 190.0 units at NLO, and, more impor-
tantly, for undesirable corners of the parameter space
describing the Dπþ

i ðz; μ0Þ in Eq. (28). For instance, the uþ
ū fragmentation tends to saturate the energy-momentum
sum rule, which is summed over all hadrons, already
for pions.
Table II and Fig. 3 also reveal that some flavor-tagged

data from SLD can be described best at LO but at the
expense of larger χ2 values for inclusive Aleph and
Opal data. In general, the NLO and NNLO results are
very similar for all data sets used in the fits except, as
just discussed, for a few points from BABAR at small z.
This observation also carries over to the obtained FFs at
NLO and NNLO accuracy, in particular, those flavor
combinations which are constrained best by the SIA
data alone.
Figure 4 shows our fitted LO, NLO, and NNLO

Dπþ
i ðz;Q2Þ at Q2 ¼ 10 GeV2 for i ¼ uþ ū, sþ s̄, g,

and the flavor singlet combination in (16) for Nf ¼ 4.
As a comparison with previous NLO results, we consider
the most recent global analysis of the DSS group [8], based
on the same set of SIA data plus SIDIS and pp data, and the
old fit by Kretzer [3]. The latter still provides a good
description of all pion data, including those from SIDIS and
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FIG. 3 (color online). Ratios for [data-theory]/theory for our LO (dot-dashed), NLO (dashed), and NNLO (solid lines) fits computed
with the scale μ ¼ Q for the data sets listed in Table II. The shaded bands illustrate the remaining scale ambiguity at NNLO accuracy in
the range Q=2 ≤ μ ≤ 2Q. The points along the zero axis indicate the relative experimental uncertainty.
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i ðz; Q2Þ atQ2 ¼ 10 GeV2 for i ¼ uþ ū, sþ s̄, g, and the
flavor singlet combination in (16) for Nf ¼ 4. Also shown are the
optimum NLO FFs from Kretzer [3], obtained also solely from
SIA data, and the latest global analysis of the DSS group [8]
based on SIA, SIDIS, and pp data. For the latter, we also
illustrate their 90% C.L. uncertainty estimates (shaded bands).
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difficult comparison, 
but at NNLO 
still evident 

discrepancies for gluon
at not very small z…

collinear  1h  FF :    fresh news
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can be also obtained when the “conventional” data are used
instead but at the expense of a less favorable total χ2, e.g.,
236.4 rather than 190.0 units at NLO, and, more impor-
tantly, for undesirable corners of the parameter space
describing the Dπþ

i ðz; μ0Þ in Eq. (28). For instance, the uþ
ū fragmentation tends to saturate the energy-momentum
sum rule, which is summed over all hadrons, already
for pions.
Table II and Fig. 3 also reveal that some flavor-tagged

data from SLD can be described best at LO but at the
expense of larger χ2 values for inclusive Aleph and
Opal data. In general, the NLO and NNLO results are
very similar for all data sets used in the fits except, as
just discussed, for a few points from BABAR at small z.
This observation also carries over to the obtained FFs at
NLO and NNLO accuracy, in particular, those flavor
combinations which are constrained best by the SIA
data alone.
Figure 4 shows our fitted LO, NLO, and NNLO

Dπþ
i ðz;Q2Þ at Q2 ¼ 10 GeV2 for i ¼ uþ ū, sþ s̄, g,

and the flavor singlet combination in (16) for Nf ¼ 4.
As a comparison with previous NLO results, we consider
the most recent global analysis of the DSS group [8], based
on the same set of SIA data plus SIDIS and pp data, and the
old fit by Kretzer [3]. The latter still provides a good
description of all pion data, including those from SIDIS and
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with the scale μ ¼ Q for the data sets listed in Table II. The shaded bands illustrate the remaining scale ambiguity at NNLO accuracy in
the range Q=2 ≤ μ ≤ 2Q. The points along the zero axis indicate the relative experimental uncertainty.
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flavor singlet combination in (16) for Nf ¼ 4. Also shown are the
optimum NLO FFs from Kretzer [3], obtained also solely from
SIA data, and the latest global analysis of the DSS group [8]
based on SIA, SIDIS, and pp data. For the latter, we also
illustrate their 90% C.L. uncertainty estimates (shaded bands).
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3. Does the PhT dependence change with energy √s ?
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 D1 from unintegrated SIDIS multiplicities

hermes

Airapetian et al.,  
P.R. D87 (13) 074029

further analysis: transverse momentum dependence 
of the unpolarized SIDIS cross section ... 
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Fig. 4.
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PRD87 (2013) 074029

(multi-dimensional analysis sensitive to <k⊥
2> and evolution, 

work in progress, TO-CA group)

- target: proton, deuteron 
- final state: π+, π−, K+, K− 

- 2688 points

Adolph et al., E.P.J. C73 (13) 2531 
Erratum: E.P.J. C75 (15) 94

about 20000 data points (!) 
- target: deuteron 
- final state:  

- h+, h−  (run 2004) 
- π+,π−,K+,K−  (run 2006)  
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. The z-dependence as well as the hadron charge dependence of the
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distributions will be further investigated below and is related to the intrinsic transverse momentum of
the partons.
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Fig. 9 shows lines, which represent fits of the data points assuming a linear function of lnW
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the Q
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that hp
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should depend linearly on the µN center of mass energy squared s. They have verified their
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²  Total: 4918 kinematic bins 

²  Correction for diffractive 
vector meson (DVM)  
production evaluated  

²  Results available with/without 
correction for vector meson 
contribution and radiative 
effects 

²  Publication being prepared, 
expected soon 

²  Valuable input for TMD 
analyses and evolution studies 

•  h+
•  h-

0.4 < z < 0.6	

Multiplicities of charged hadron vs. pT
2, cont. 
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available fits
Framework Hermes Compass # points

Pavia 2013 Gaussian  <pT2>q (z)
7 parameters 
no evolution

✔ ✘ 1538

Torino 2014 Gaussian <pT2>
(1 parameter)

only collinear DGLAP evolution
Ny=A+By (y=Q2/xs)  (C)

✔ 
separately

✔ 
separately

576 (H)
6284 (C)

↓ Framework of  TMD evolution ↓
EIKV 2014 TMD framework, NLL level

not a real fit 1 bin    (x,Q2) (?)

Pavia 2016
in preparation

TMD framework, NLL level
first global fit

(includes Drell-Yan 
and Z0)

✔ ✔ 8156

talk Bacchetta

 D1 from unintegrated SIDIS multiplicities

Bacchetta et al.,  
JHEP 1311 (13) 194

Anselmino et al.,  
JHEP 1404 (14) 005

Echevarria et al.,  
P.R.D89 (14) 074013



What do we know about  D1 (z, PhT) ?

1. does  PhT dependence change with flavor ? 



flavor indep.   
global χ2/dof~ 1.55 

(flavor dep. in progress)

flavor indep.→ χ2/dof =1.69

unfav > fav → χ2/dof =1.60

unfav > fav

K fav > π fav
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χ2/dof = 1.63

Torino 2014 
(Hermes)

Answer :  maybe… 
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What do we know about  D1 (z, PhT) ?

A. Signori, talk at QCD-N16 (Bilbao)
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What do we know about  D1 (z, PhT) ?

2. does  PhT dependence change with z ? 
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Answer:  it is likely,  
but need processes at much higher s → e+e−

average width of  

 transverse momentum 
Gaussian distributions

Schweitzer, Teckentrup, Metz,  
P.R. D81 (10) 094019

What do we know about  D1 (z, PhT) ?

3. does  PhT dependence change with energy √s ? 
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FIG. 9. Transversity u-quark distribution as function of b (a) and as function of k⊥ (b) at three different scales Q2 = 2.4
(dotted lines), Q2 = 10 (solid lines) and Q2 = 1000 (dashed lines) GeV2.
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FIG. 10. Unpolarised FF u → π+ as function of b (a) and as function of p⊥ (b) at three different scales Q2 = 2.4 (dotted lines),
Q2 = 10 (solid lines) and Q2 = 1000 (dashed lines) GeV2.

One can see from Fig. 12 that both data and the model obey kinematical suppression of asymmetries at low
zh, and Ph⊥. Additionally the data indicates that asymmetry becomes smaller in the region of small-xB and thus
transversity becomes small in the small-xB region as well as can be seen in Fig. 3 (a). Positive asymmetry of π+

production implies that the product of u-quark transversity and the favored Collins fragmentation function is positive.
We choose the solution with positive u-quark transversity (the same sign as u-quark helicity distribution) and obtain
favored Collins fragmentation function is positive, see Fig. 3 (b). Large negative asymmetry of π− production indicates
that the so-called unfavored Collins fragmentation function is large and negative and indeed it is the case, see Fig. 3
(b). Measurements on proton targets are dominated by u-quark functions as far as e2u/e

2
d = 4, thus we have better

precision for the extraction of u-quark transversity and tensor charge δu.
The COMPASS data [96, 97] extend the region of resolution scale by a factor of three, ⟨Q2⟩ <∼ 21 (GeV2). We present

results of our description in Fig. 13. Again we exclude the region of Ph⊥ > 0.8 GeV where relation Ph⊥/⟨z⟩ < Q is
not satisfied. The COMPASS data extends the region of xB up to xB ∼ 10−2 and the measured asymmetry indicates
that transversity is rather small in the small-x region. Indeed the extracted transversity shown in Fig. 3 (a) becomes
small in the small-x region. The COMPASS data on effective deuterium target Fig. 13 (b) indicate that the sum of
u-quark and d-quark transversities is small, and thus both functions are approximately of the same size, it can be
seen in Fig. 3 (a).
Description of JLab’s HALL A data [9] is shown in Fig. 14. The data extend the region of xB toward large-x

and one can see that our fit is compatible with the data. The measurement on effective neutron target (3He) is
sensitive to d-quark functions, however the current experimental errors are too big to allow better extraction of
d-quark transversity.
Both BELLE [12] and BABAR [98] collaborations measured the Collins asymmetries in e+e− at

√
s ≃ 10.6 GeV.

Comparison of BELLE data [12] on A0 asymmetries for both UL and UC methods is presented in Fig. 15. The data

Q2 = 2.4 GeV2

Q2 = 10 GeV2

Q2 = 1000 GeV2

D1
u→π+

P⏊ (GeV)

Kang, Prokudin, Sun, Yuan,  
P.R. D93 (16) 014009

strong dependence predicted at much larger scales 

What do we know about  D1 (z, PhT) ?

4. does  PhT dependence change with scale Q2 ? 

effects of  
TMD evolution
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Answer:  at SIDIS scales, very moderately

What do we know about  D1 (z, PhT) ?

4. does  PhT dependence change with scale Q2 ? 

A. Signori, talk at QCD-N16 (Bilbao)

z=0.23 

z=0.28 
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z=0.55 
z=0.65 
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Moreover, we need to check that 
we are in the current fragm. region 

in order to define D1q

factorization 
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Functions
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Functions
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the soft fragmentation
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Y term is relevant at EIC it’s ok
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Wednesday, November 16, 16

Example: χ2=1.17 
with no Y term!

grey points are 
outside cut

J. Collins, arXiv:1610.09994 
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Laboratori Nazionali di Frascati 
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Transversity 2014 – Jun. 9th - 13th 2014. 

4th International Workshop on Transverse Polarisation 
Phenomena in Hard Processes (Transversity 2014) 
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Current data for Sivers asymmetry:
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Figure 2.14: Kinematic coverage in x and Q2 for the EIC compared to the coverage of the
planned JLab12 experiment. The kinematics of the existing experimental measurements are also
shown for comparison.

pected impact of data from the EIC us-
ing the parameterization from Ref. [77] as
an arbitrarily chosen model of the Sivers
function. This parameterization, denoted
theor

i

= F (x
i

, z
i

, P i

hT

, Q2

i

;a0) with the M
parameters a0 = {a0

1

, ..., a0
M

} fitted to exist-
ing data, serves to generate a set of pseudo-
data in each kinematic bin i. In each x

i

, Q2

i

,
z
i

and P i

hT

bin, the obtained values, value
i

,
for the Sivers function are distributed using
a Gaussian smearing with a width �

i

corre-
sponding to the simulated event rate at the
center-of-mass energy of

p
s = 45 GeV ob-

tained with an integrated luminosity of 10
fb�1. To illustrate the achievable statistical
precision, the event rate for the production
of ⇡± in semi-inclusive DIS was used, see, for
example, Fig. 2.15.

This new set of pseudo-data was then
analysed like the real data in Ref. [77].
Fig. 2.16 shows the result for the extraction
of the Sivers function for the valence and sea
up quarks. Similar results are obtained for
the down quarks as well. The central value
of f?u

1T

, represented by the red line, follows

by construction the underlying model. The
2-sigma uncertainty of this extraction, valid
for the specifically chosen functional form, is
indicated by the purple band. This precision,
obtainable with an integrated luminosity of
10 fb�1, is compared with the uncertainty
of the extraction from existing data, repre-
sented by the light grey band. It should be
emphasized that our current knowledge is re-
stricted to only a qualitative picture of the
Sivers function and the above analysis did
not take into account the model dependence
and the associated theoretical uncertainties.
With the anticipated large amount of data
(see Fig. 2.15 for a modest integrated lumi-
nosity 10 fb�1), we can clearly see that the
EIC will be a powerful facility enabling ac-
cess to TMDs with unprecedented precision,
and particularly in the currently unexplored
sea quark region. This precision is not only
crucial for the fundamental QCD test of the
sign change between the Sivers asymmetries
in the DIS and Drell-Yan processes, but also
important to investigate the QCD dynamics
in the hard processes in SIDIS, such as the
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large coverage in (x,Q2)

Access TMDs through Hard Processes 
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Another problem:   SIDIS anticorrelations

Pavia 2013
Bacchetta et al., 
JHEP 1311 (13) 194

Schweitzer, Teckentrup, Metz,
P.R.D81 (10) 094019

Torino 2014

Compass   
       “   (high z)

Anselmino et al., 
JHEP 1404 (14) 005

Hermes 
     “   (high z) EIKV 2014

Echevarria et al., 
P.R.D89 (14) 074013
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D1 (z,PhT)   from   e+e−

2. we need large e+e− scales ≫ SIDIS scales 
to study how <PhT

2> changes with Q2 
and s

1. only way to break anticorrelation in SIDIS



sensitivity to C1 in 
μb = C1 / bT :

  C1/2 < C1 < 2 C1

 e+e−  unintegrated  multiplicity

e+ e− → h1 h2 X 5

FIG. 2: Definition of the azimuthal angles φ1 and φ2 of the
two hadrons, between the scattering plane and their transverse
momenta Phi⊥ around the thrust axis n̂. The angle θ is defined
as the angle between the lepton axis and the thrust axis.

momentum of the quark-antiquark pair is known. The
quark directions are, however, not accessible to a direct
measurement and are thus approximated by the thrust
axis. The thrust axis n̂ maximizes the event shape vari-
able thrust:

T
max
=

∑

h |PCMS
h

· n̂|
∑

h |PCMS
h |

, (3)

where the sum extends over all detected particles. The
thrust value varies between 0.5 for spherical events and
1 for tracks aligned with the thrust axis of an event. The
thrust axis is a good approximation to the original quark-
antiquark axis as described in Section III A. The first
method of accessing the Collins asymmetry, M12 is based
on measuring a cos(φ1 + φ2) modulation of hadron pairs
(N(φ1 + φ2)) on top of the flat distribution due to the
unpolarized part of the fragmentation function. The un-
polarized part is given by the average bin content ⟨N12⟩.
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fragmentation function; the charge-conjugate term has
been omitted. The fragmentation functions do not ap-
pear in the cross section directly but as the zeroth ([0])
or first ([1]) moments in the absolute value of the corre-
sponding transverse momenta [26]:
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In this equation the transverse hadron momentum
has been rewritten in terms of the intrinsic transverse
momentum of the process: Ph⊥ = zkT . The mass M is
usually set to be the mass of the detected hadron, in the
analysis presented here M will be the pion mass.

A second way of calculating the azimuthal asymme-
tries, method M0, integrates over all thrust axis direc-
tions leaving only one azimuthal angle. This angle is de-
fined as the angle between the planes spanned by one
hadron momentum and the lepton momenta, and the
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where the sum extends over all detected particles. The
thrust value varies between 0.5 for spherical events and
1 for tracks aligned with the thrust axis of an event. The
thrust axis is a good approximation to the original quark-
antiquark axis as described in Section III A. The first
method of accessing the Collins asymmetry, M12 is based
on measuring a cos(φ1 + φ2) modulation of hadron pairs
(N(φ1 + φ2)) on top of the flat distribution due to the
unpolarized part of the fragmentation function. The un-
polarized part is given by the average bin content ⟨N12⟩.
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fragmentation function; the charge-conjugate term has
been omitted. The fragmentation functions do not ap-
pear in the cross section directly but as the zeroth ([0])
or first ([1]) moments in the absolute value of the corre-
sponding transverse momenta [26]:

F [n](z) =

∫
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F (z,k2
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In this equation the transverse hadron momentum
has been rewritten in terms of the intrinsic transverse
momentum of the process: Ph⊥ = zkT . The mass M is
usually set to be the mass of the detected hadron, in the
analysis presented here M will be the pion mass.

A second way of calculating the azimuthal asymme-
tries, method M0, integrates over all thrust axis direc-
tions leaving only one azimuthal angle. This angle is de-
fined as the angle between the planes spanned by one
hadron momentum and the lepton momenta, and the
transverse momentum of the second hadron with respect
to the first hadron momentum. This angle in the opposite
jet hemisphere is displayed in Fig. 3, and is calculated as
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contains a cos(2φ0) modulation. The differential cross
section depends on fractional energies z1, z2 of the two
hadrons, on the angle φ0 and the transverse momentum
QT = |qT | of the virtual photon from the e+e− annihila-
tion process in the two hadron center-of-mass system. At
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momentum of the quark-antiquark pair is known. The
quark directions are, however, not accessible to a direct
measurement and are thus approximated by the thrust
axis. The thrust axis n̂ maximizes the event shape vari-
able thrust:
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where the sum extends over all detected particles. The
thrust value varies between 0.5 for spherical events and
1 for tracks aligned with the thrust axis of an event. The
thrust axis is a good approximation to the original quark-
antiquark axis as described in Section III A. The first
method of accessing the Collins asymmetry, M12 is based
on measuring a cos(φ1 + φ2) modulation of hadron pairs
(N(φ1 + φ2)) on top of the flat distribution due to the
unpolarized part of the fragmentation function. The un-
polarized part is given by the average bin content ⟨N12⟩.
The normalized distribution is then defined as

R12 :=
N(φ1 + φ2)

⟨N12⟩
. (4)

The corresponding cross section is differential in both az-
imuthal angles φ1,φ2 and fractional energies z1,z2 and
thus reads [25]:
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tation is denoted by a bar over the corresponding quark
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fragmentation function; the charge-conjugate term has
been omitted. The fragmentation functions do not ap-
pear in the cross section directly but as the zeroth ([0])
or first ([1]) moments in the absolute value of the corre-
sponding transverse momenta [26]:

F [n](z) =

∫
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F (z,k2
T ) . (6)

In this equation the transverse hadron momentum
has been rewritten in terms of the intrinsic transverse
momentum of the process: Ph⊥ = zkT . The mass M is
usually set to be the mass of the detected hadron, in the
analysis presented here M will be the pion mass.

A second way of calculating the azimuthal asymme-
tries, method M0, integrates over all thrust axis direc-
tions leaving only one azimuthal angle. This angle is de-
fined as the angle between the planes spanned by one
hadron momentum and the lepton momenta, and the
transverse momentum of the second hadron with respect
to the first hadron momentum. This angle in the opposite
jet hemisphere is displayed in Fig. 3, and is calculated as
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defined as
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N(2φ0)

⟨N0⟩
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contains a cos(2φ0) modulation. The differential cross
section depends on fractional energies z1, z2 of the two
hadrons, on the angle φ0 and the transverse momentum
QT = |qT | of the virtual photon from the e+e− annihila-
tion process in the two hadron center-of-mass system. At
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momentum of the quark-antiquark pair is known. The
quark directions are, however, not accessible to a direct
measurement and are thus approximated by the thrust
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where the sum extends over all detected particles. The
thrust value varies between 0.5 for spherical events and
1 for tracks aligned with the thrust axis of an event. The
thrust axis is a good approximation to the original quark-
antiquark axis as described in Section III A. The first
method of accessing the Collins asymmetry, M12 is based
on measuring a cos(φ1 + φ2) modulation of hadron pairs
(N(φ1 + φ2)) on top of the flat distribution due to the
unpolarized part of the fragmentation function. The un-
polarized part is given by the average bin content ⟨N12⟩.
The normalized distribution is then defined as
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. (4)
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fragmentation function; the charge-conjugate term has
been omitted. The fragmentation functions do not ap-
pear in the cross section directly but as the zeroth ([0])
or first ([1]) moments in the absolute value of the corre-
sponding transverse momenta [26]:

F [n](z) =

∫

d|kT |2
[

|kT |
M

]n

F (z,k2
T ) . (6)

In this equation the transverse hadron momentum
has been rewritten in terms of the intrinsic transverse
momentum of the process: Ph⊥ = zkT . The mass M is
usually set to be the mass of the detected hadron, in the
analysis presented here M will be the pion mass.

A second way of calculating the azimuthal asymme-
tries, method M0, integrates over all thrust axis direc-
tions leaving only one azimuthal angle. This angle is de-
fined as the angle between the planes spanned by one
hadron momentum and the lepton momenta, and the
transverse momentum of the second hadron with respect
to the first hadron momentum. This angle in the opposite
jet hemisphere is displayed in Fig. 3, and is calculated as
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The corresponding normalized distribution R0, which is
defined as

R0 :=
N(2φ0)

⟨N0⟩
, (8)

contains a cos(2φ0) modulation. The differential cross
section depends on fractional energies z1, z2 of the two
hadrons, on the angle φ0 and the transverse momentum
QT = |qT | of the virtual photon from the e+e− annihila-
tion process in the two hadron center-of-mass system. At
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two hadrons, between the scattering plane and their transverse
momenta Phi⊥ around the thrust axis n̂. The angle θ is defined
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momentum of the quark-antiquark pair is known. The
quark directions are, however, not accessible to a direct
measurement and are thus approximated by the thrust
axis. The thrust axis n̂ maximizes the event shape vari-
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where the sum extends over all detected particles. The
thrust value varies between 0.5 for spherical events and
1 for tracks aligned with the thrust axis of an event. The
thrust axis is a good approximation to the original quark-
antiquark axis as described in Section III A. The first
method of accessing the Collins asymmetry, M12 is based
on measuring a cos(φ1 + φ2) modulation of hadron pairs
(N(φ1 + φ2)) on top of the flat distribution due to the
unpolarized part of the fragmentation function. The un-
polarized part is given by the average bin content ⟨N12⟩.
The normalized distribution is then defined as

R12 :=
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. (4)
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thus reads [25]:
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fragmentation function; the charge-conjugate term has
been omitted. The fragmentation functions do not ap-
pear in the cross section directly but as the zeroth ([0])
or first ([1]) moments in the absolute value of the corre-
sponding transverse momenta [26]:

F [n](z) =

∫
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F (z,k2
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In this equation the transverse hadron momentum
has been rewritten in terms of the intrinsic transverse
momentum of the process: Ph⊥ = zkT . The mass M is
usually set to be the mass of the detected hadron, in the
analysis presented here M will be the pion mass.

A second way of calculating the azimuthal asymme-
tries, method M0, integrates over all thrust axis direc-
tions leaving only one azimuthal angle. This angle is de-
fined as the angle between the planes spanned by one
hadron momentum and the lepton momenta, and the
transverse momentum of the second hadron with respect
to the first hadron momentum. This angle in the opposite
jet hemisphere is displayed in Fig. 3, and is calculated as
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defined as

R0 :=
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, (8)

contains a cos(2φ0) modulation. The differential cross
section depends on fractional energies z1, z2 of the two
hadrons, on the angle φ0 and the transverse momentum
QT = |qT | of the virtual photon from the e+e− annihila-
tion process in the two hadron center-of-mass system. At
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two hadrons, between the scattering plane and their transverse
momenta Phi⊥ around the thrust axis n̂. The angle θ is defined
as the angle between the lepton axis and the thrust axis.

momentum of the quark-antiquark pair is known. The
quark directions are, however, not accessible to a direct
measurement and are thus approximated by the thrust
axis. The thrust axis n̂ maximizes the event shape vari-
able thrust:
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where the sum extends over all detected particles. The
thrust value varies between 0.5 for spherical events and
1 for tracks aligned with the thrust axis of an event. The
thrust axis is a good approximation to the original quark-
antiquark axis as described in Section III A. The first
method of accessing the Collins asymmetry, M12 is based
on measuring a cos(φ1 + φ2) modulation of hadron pairs
(N(φ1 + φ2)) on top of the flat distribution due to the
unpolarized part of the fragmentation function. The un-
polarized part is given by the average bin content ⟨N12⟩.
The normalized distribution is then defined as

R12 :=
N(φ1 + φ2)

⟨N12⟩
. (4)

The corresponding cross section is differential in both az-
imuthal angles φ1,φ2 and fractional energies z1,z2 and
thus reads [25]:
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fragmentation function; the charge-conjugate term has
been omitted. The fragmentation functions do not ap-
pear in the cross section directly but as the zeroth ([0])
or first ([1]) moments in the absolute value of the corre-
sponding transverse momenta [26]:

F [n](z) =

∫
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In this equation the transverse hadron momentum
has been rewritten in terms of the intrinsic transverse
momentum of the process: Ph⊥ = zkT . The mass M is
usually set to be the mass of the detected hadron, in the
analysis presented here M will be the pion mass.

A second way of calculating the azimuthal asymme-
tries, method M0, integrates over all thrust axis direc-
tions leaving only one azimuthal angle. This angle is de-
fined as the angle between the planes spanned by one
hadron momentum and the lepton momenta, and the
transverse momentum of the second hadron with respect
to the first hadron momentum. This angle in the opposite
jet hemisphere is displayed in Fig. 3, and is calculated as
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defined as
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contains a cos(2φ0) modulation. The differential cross
section depends on fractional energies z1, z2 of the two
hadrons, on the angle φ0 and the transverse momentum
QT = |qT | of the virtual photon from the e+e− annihila-
tion process in the two hadron center-of-mass system. At
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FIG. 2: Definition of the azimuthal angles φ1 and φ2 of the
two hadrons, between the scattering plane and their transverse
momenta Phi⊥ around the thrust axis n̂. The angle θ is defined
as the angle between the lepton axis and the thrust axis.

momentum of the quark-antiquark pair is known. The
quark directions are, however, not accessible to a direct
measurement and are thus approximated by the thrust
axis. The thrust axis n̂ maximizes the event shape vari-
able thrust:
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max
=
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· n̂|
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h |

, (3)

where the sum extends over all detected particles. The
thrust value varies between 0.5 for spherical events and
1 for tracks aligned with the thrust axis of an event. The
thrust axis is a good approximation to the original quark-
antiquark axis as described in Section III A. The first
method of accessing the Collins asymmetry, M12 is based
on measuring a cos(φ1 + φ2) modulation of hadron pairs
(N(φ1 + φ2)) on top of the flat distribution due to the
unpolarized part of the fragmentation function. The un-
polarized part is given by the average bin content ⟨N12⟩.
The normalized distribution is then defined as

R12 :=
N(φ1 + φ2)

⟨N12⟩
. (4)

The corresponding cross section is differential in both az-
imuthal angles φ1,φ2 and fractional energies z1,z2 and
thus reads [25]:
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where the summation runs over all quark flavors acces-
sible at the center-of-mass energy. Antiquark fragmen-
tation is denoted by a bar over the corresponding quark
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fragmentation function; the charge-conjugate term has
been omitted. The fragmentation functions do not ap-
pear in the cross section directly but as the zeroth ([0])
or first ([1]) moments in the absolute value of the corre-
sponding transverse momenta [26]:
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In this equation the transverse hadron momentum
has been rewritten in terms of the intrinsic transverse
momentum of the process: Ph⊥ = zkT . The mass M is
usually set to be the mass of the detected hadron, in the
analysis presented here M will be the pion mass.

A second way of calculating the azimuthal asymme-
tries, method M0, integrates over all thrust axis direc-
tions leaving only one azimuthal angle. This angle is de-
fined as the angle between the planes spanned by one
hadron momentum and the lepton momenta, and the
transverse momentum of the second hadron with respect
to the first hadron momentum. This angle in the opposite
jet hemisphere is displayed in Fig. 3, and is calculated as
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The corresponding normalized distribution R0, which is
defined as

R0 :=
N(2φ0)

⟨N0⟩
, (8)

contains a cos(2φ0) modulation. The differential cross
section depends on fractional energies z1, z2 of the two
hadrons, on the angle φ0 and the transverse momentum
QT = |qT | of the virtual photon from the e+e− annihila-
tion process in the two hadron center-of-mass system. At
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FIG. 27. (a) Comparison of extracted transversity (solid lines and shaded region) Q2 = 2.4 GeV2 with Torino-Cagliari-JLab
2013 extraction [17] (dashed lines and shaded region).
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FIG. 28. Comparison of extracted Collins fragmentation functions (solid lines) at Q2 = 2.4 GeV2 with Torino-Cagliari-JLab
2013 extraction [17] (dashed lines and shaded region).

much better determined by the existing data, as one can see from Fig. 28 that the functions at Q2 = 2.4 GeV2 are
compatible within error bands. The unfavored fragmentation functions are different, however those functions are not
very well determined by existing experimental data.
We also compare the tensor change from our and other extractions in Fig. 29. The contribution to tensor charge

of Ref. [18] is found by extraction using the so-called dihadron fragmentation function that couples to collinear
transversity distribution. The corresponding functions have DGLAP type evolution known at LO and were used in
Ref. [18]. The results plotted in Fig. 29 corresponds to our estimates of the contribution to u-quark and d-quark in
the region of x [0.065, 0.35] at Q2 = 10 GeV2 at 68% C.L. (label 1) and the contribution to u-quark and d-quark in
the same region of x and the same Q2 using the so-called flexible scenario, αs(M2

Z) = 0.125, of Ref. [18]. One can
see that our extraction has an excellent precision for both u-quark and d-quark. The fact that the central values and
errors of extracted tensor charges are in a good agreement in both methods, ours and Ref. [18], is very positive and
allows for future investigations of transversity including all available data in a global fit.
Our results compare well with extractions from Ref. [17]. Even though correct TMD evolution was not used in

Ref. [17] the effects of DGLAP evolution of collinear distributions were taken into account and the resulting fit is of
good quality, χ2/d.o.f. = 0.8 for the so-called standard parametrization of Collins fragmentation functions. In fact
the probability that the model of Ref. [17] correctly describes the data is P (0.8 ∗ 249, 249) = 99%. The tensor charge
was estimated at 95% C.L. using two different parametrizations for Collins fragmentation functions, the so-called
standard parametrization that utilized similar to our parametrization and the polynomial parametrization. In Fig. 30
we compare our results with calculations from Ref. [17] at 95% C.L. at Q2 = 0.8 GeV2 and calculations at 68 % at
Q2 = 1 GeV2 of Ref. [18]. Even though we compare tensor charge at different values of Q2 its evolution is quite slow,
so the good agreement of all three methods is a good sign. We conclude that tensor charge perhaps is very stable with
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FIG. 6: Our best fit results for the valence u and d quark transversity distributions at Q

2 = 2.4 GeV2 (left panel) and for
the lowest p? moment of the favoured and disfavoured Collins functions at Q

2 = 2.4 GeV2 (central panel) and at Q

2 = 112
GeV2 (right panel). The solid lines correspond to the parameters given in Table I, while the shaded areas correspond to the
statistical uncertainty on these parameters, as explained in the text.
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FIG. 7: Comparison of our reference best fit results (red, solid lines) for the valence u and d quark transversity distributions
(left panel) and for the lowest p? moment of the favoured and disfavoured Collins functions (right panel), at Q

2 = 2.4 GeV2,
with those from our previous analysis [11] (blue, dashed lines).

kernel, similarly to what is done for the transversity function, as suggested in Refs. [42, 43]. The results we obtain
show a slight deterioration of the fit quality, with a global �2

d.o.f. increasing from 0.84 to 1.20. Although this is still
an acceptable result, one may wonder whether this is a genuine e↵ect of the chosen evolution model or, rather, a
byproduct of the functional form adopted for the Collins function parameterisation.

We have therefore exploited a di↵erent parameterisation based on a polynomial form. In principle, the polynomial
could be of any order. We have started by using an order zero polynomial, then increased it to order one and,
subsequently, to order two. In doing so, we have seen that the quality of the fit improves remarkably when going from
order zero to order one (i.e. from 2 to 4 free parameters) but it stops improving when further increasing to higher
orders. We therefore choose a first order polynomial form, which has the added advantage of depending on the same
number of free parameters as the standard parameterisation of Eqs. (11) and (12).

We consider generic combinations of fixed order Bernstein polynomials (see, for example, Ref. [44]) as they o↵er a
relatively straightforward way to keep track of the appropriate normalisation:

NC
i (z) = aiP01

(z) + biP11

(z) i = fav, dis (41)

where P
01

(z) = (1� z) and P
11

(z) = z are Bernstein polynomials of order one. Notice that by constraining the four
free parameters in such a way that �1  ai  +1 and �1  bi  +1, the Collins function automatically fulfils its
positivity bounds, as in the standard parameterisation. The Collins function will be globally modelled as shown in
Eqs. (6) and (8), with NC

fav

(z) and NC
dis

(z) as given in Eq. (41).
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Ĥ(3)(z) = �2zMh H

? (1)
1 (z)
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include TMD evolution, seems to be quite satisfactory. On the other hand, the TMD evolution approach of Ref. [26]
gives very good results. Despite the sizeable di↵erence in Q2 among the di↵erent sets of e+e� data, the measured
asymmetries do not show any sensitivity to evolution e↵ects in Q2. Further comments will be given in the conclusions.

One should also add that, at the moderate energies of BESIII experiment, with the di�culties to isolate opposite
jet hadrons, some corrections to the TMD factorised approach might still be relevant, like the appropriate insertion
of kinematical cuts, of higher twist contributions and of threshold e↵ects.
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FIG. 12: The solid, black circles represent the A

UC
0

(left panel) and A

UL
0

(right panel) asymmetries measured by the BESIII
collaboration at Q2 = 13 GeV2, in bins of (z

1

, z

2

) [29], while the solid blue circles (with their relative bands) correspond to the
predictions obtained by using our reference fit results for the Collins functions.
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theoretical curves correspond to the uncertainty on the parameters, as explained in the text.
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include TMD evolution, seems to be quite satisfactory. On the other hand, the TMD evolution approach of Ref. [26]
gives very good results. Despite the sizeable di↵erence in Q2 among the di↵erent sets of e+e� data, the measured
asymmetries do not show any sensitivity to evolution e↵ects in Q2. Further comments will be given in the conclusions.

One should also add that, at the moderate energies of BESIII experiment, with the di�culties to isolate opposite
jet hadrons, some corrections to the TMD factorised approach might still be relevant, like the appropriate insertion
of kinematical cuts, of higher twist contributions and of threshold e↵ects.
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(right panel) asymmetries measured by the BESIII
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) [29], while the solid blue circles (with their relative bands) correspond to the
predictions obtained by using our reference fit results for the Collins functions.
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tio RU/RL(C) follows the expression

RU

RL(C)
= A cos(2φ0) +B, (3)

where A and B are free parameters. B should be consis-
tent with unity, and A mainly contains the Collins effect.
The AUL, AUC are used to denote the asymmetries for
UL and UC ratios, respectively.
The analysis is performed in (z1, z2) bins with bound-

aries at zi= 0.2, 0.3, 0.5 and 0.9 (i = 1, 2), where comple-
mentary off-diagonal bins (z1, z2) and (z2, z1) are com-
bined. In each (z1, z2) bin, normalized rates RU,L,C and
double ratios RU/RL,C are evaluated in 15 bins of con-
stant width in the 2φ0 angles. In Fig. 2, the distributions
of the double ratio RU/RL are shown for two highest (z1,
z2) bins with the fit results using Eq. 3. In Fig. 3, the
asymmetry values (A) obtained from the fit are shown as
a function of six symmetric (z1, z2) bins. Studying the
dependence on pt is valuable for investigating the trans-
verse momentum dependent evolution of the Collins func-
tion. The expected behavior of the Collins asymmetries
as a function of sin2θ2/(1 + cos2θ2) is linear (see Eq. 2).
Therefore, the Collins asymmetries are investigated also
in bins of pt and sin2θ2/(1 + cos2θ2), as shown in Fig. 4
and Fig. 5. The numerical results in each (z1,z2) and pt
bins are listed in Table I. Since one pion is allowed to be
assigned to different pion pairs, the statistical uncertain-
ties are expected to be underestimated. This is checked
by repeating the whole procedure but allowing each pi-
on to be only involved in one pion pair. We find that
the statistical uncertainty in each bin becomes slightly
larger, and we therefore scale the statistical errors by a
factor of 1.1 for all bins.
Several potential sources of systematic uncertainties

are investigated. An important test of the analysis
method is the extraction of double ratios from MC sam-
ples, in which the Collins asymmetries are not included
but radiative gluon and detector acceptance effects are
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include TMD evolution, seems to be quite satisfactory. On the other hand, the TMD evolution approach of Ref. [26]
gives very good results. Despite the sizeable di↵erence in Q2 among the di↵erent sets of e+e� data, the measured
asymmetries do not show any sensitivity to evolution e↵ects in Q2. Further comments will be given in the conclusions.

One should also add that, at the moderate energies of BESIII experiment, with the di�culties to isolate opposite
jet hadrons, some corrections to the TMD factorised approach might still be relevant, like the appropriate insertion
of kinematical cuts, of higher twist contributions and of threshold e↵ects.
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(right panel) asymmetries measured by the BESIII
collaboration at Q2 = 13 GeV2, in bins of (z

1

, z

2

) [29], while the solid blue circles (with their relative bands) correspond to the
predictions obtained by using our reference fit results for the Collins functions.
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asymmetries do not show any sensitivity to evolution e↵ects in Q2. Further comments will be given in the conclusions.
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) [29], while the solid blue circles (with their relative bands) correspond to the
predictions obtained by using our reference fit results for the Collins functions.
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 e+e− cross section for (ππ) in same hemisphere

e+ e− → (h1h2) X 5

FIG. 2: Definition of the azimuthal angles φ1 and φ2 of the
two hadrons, between the scattering plane and their transverse
momenta Phi⊥ around the thrust axis n̂. The angle θ is defined
as the angle between the lepton axis and the thrust axis.

momentum of the quark-antiquark pair is known. The
quark directions are, however, not accessible to a direct
measurement and are thus approximated by the thrust
axis. The thrust axis n̂ maximizes the event shape vari-
able thrust:

T
max
=

∑

h |PCMS
h

· n̂|
∑

h |PCMS
h |

, (3)

where the sum extends over all detected particles. The
thrust value varies between 0.5 for spherical events and
1 for tracks aligned with the thrust axis of an event. The
thrust axis is a good approximation to the original quark-
antiquark axis as described in Section III A. The first
method of accessing the Collins asymmetry, M12 is based
on measuring a cos(φ1 + φ2) modulation of hadron pairs
(N(φ1 + φ2)) on top of the flat distribution due to the
unpolarized part of the fragmentation function. The un-
polarized part is given by the average bin content ⟨N12⟩.
The normalized distribution is then defined as

R12 :=
N(φ1 + φ2)

⟨N12⟩
. (4)

The corresponding cross section is differential in both az-
imuthal angles φ1,φ2 and fractional energies z1,z2 and
thus reads [25]:

dσ(e+e− → h1h2X)

dΩdz1dz2dφ1dφ2
=

∑

q,q̄
3α2

Q2

e2
q

4 z2
1z

2
2

{

(1 + cos2 θ)Dq,[0]
1 (z1)D

q,[0]
1 (z2)

+ sin2 θ cos(φ1 + φ2)H
⊥,[1],q
1 (z1)H

⊥,[1],q
1 (z2)

}

, (5)

where the summation runs over all quark flavors acces-
sible at the center-of-mass energy. Antiquark fragmen-
tation is denoted by a bar over the corresponding quark

FIG. 3: Definition of the azimuthal angle φ0 formed between
the planes defined by the lepton momenta and that of one
hadron and the second hadron’s transverse momentum P ′

h1⊥

relative to the first hadron.

fragmentation function; the charge-conjugate term has
been omitted. The fragmentation functions do not ap-
pear in the cross section directly but as the zeroth ([0])
or first ([1]) moments in the absolute value of the corre-
sponding transverse momenta [26]:

F [n](z) =

∫

d|kT |2
[

|kT |
M

]n

F (z,k2
T ) . (6)

In this equation the transverse hadron momentum
has been rewritten in terms of the intrinsic transverse
momentum of the process: Ph⊥ = zkT . The mass M is
usually set to be the mass of the detected hadron, in the
analysis presented here M will be the pion mass.

A second way of calculating the azimuthal asymme-
tries, method M0, integrates over all thrust axis direc-
tions leaving only one azimuthal angle. This angle is de-
fined as the angle between the planes spanned by one
hadron momentum and the lepton momenta, and the
transverse momentum of the second hadron with respect
to the first hadron momentum. This angle in the opposite
jet hemisphere is displayed in Fig. 3, and is calculated as

φ0 = sgn [Ph2 · {(ẑ × Ph2) × (Ph2 × Ph1)}]

× arccos

(

ẑ × Ph2

|ẑ × Ph2|
·

Ph2 × Ph1

|Ph2 × Ph1|

)

. (7)

The corresponding normalized distribution R0, which is
defined as

R0 :=
N(2φ0)

⟨N0⟩
, (8)

contains a cos(2φ0) modulation. The differential cross
section depends on fractional energies z1, z2 of the two
hadrons, on the angle φ0 and the transverse momentum
QT = |qT | of the virtual photon from the e+e− annihila-
tion process in the two hadron center-of-mass system. At

thrust
h1

“thrust-axis” frame

upcoming Belle data for (z, Mh) binning of 
unpolarized di-hadron  e+e− cross section 

R. Seidl,  talk at SPIN2016

Di-hadron mass dependence 
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MC simulation 

Similar analysis in same hemisphere and mass – combined z 
binning. Important input for IFF based transversity global analysis 
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(transverse momentum 
distributions - TMDs)

(where we  
are now)

with TMD FF (and DiFF) we are a little step behind
but with the upcoming data for 

unintegrated e+e−  cross sections 
we are well underway to fill the gap…

Phase 1

Phase 2


