3D Parton Distributions: Path to the LHC

29/11 - 2/12/2016, INFN - Laboratori Nazionali di Frascati

Marco Radici INFN - Pavia

Fragmentation Functions : status and perspectives

3D Parton Distributions: Path to the LHC

29/11-2/12/2016, INFN - Laboratori Nazionali di Frascati

Only phenomenology. For models \rightarrow talks Artru, Matevosyan

Marco Radici INFN - Pavia

Fragmentation Functions : status and perspectives

TMD FF map

next talk by Liang

 TMD FF up to $S_{h}=1$ including twist 3leading twist
$S_{h} \leq 1 / 2$

		Quark polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
\bigcirc	U	D_{1} Unpolarized		$H_{1}^{\perp} \text { ® }-8$ Collins
$\frac{\grave{i}}{0}$	L		$G_{1 L}$ ()-	$H_{1 \mathrm{~L}}^{\perp}$ ๑- -
$\begin{aligned} & \text { 은 } \\ & \frac{\text { 눌 }}{\text { T}} \end{aligned}$	T	$D_{1 \mathrm{~T}}^{\perp}$	$G_{1 \mathrm{~T}} \propto$ - ${ }^{\text {e }}$	$\begin{aligned} & H_{1} \text { (8) - } \\ & \left.H_{1 \mathrm{~B}}^{\perp} \text { (} \mathrm{e}\right)-\mathrm{d} \end{aligned}$

collinear 1h FF: fresh news

		Quark polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
	U	D_{1} Unpolarized		$H_{1}^{\perp} \text { 8 - 8 }$ Collins
	L		$G_{1 L} \propto-\infty$	$H_{1 \mathrm{~L}}^{\perp}$ ค)-
	T	$D_{1 \mathrm{~T}}^{\perp}-$	$G_{1 \mathrm{~T}}$ - -	

$$
\mathrm{D}_{1}(\mathrm{z}) \bullet \longrightarrow \circlearrowleft_{h}
$$

1. DSS (2007) \rightarrow major update DSS 2015 (only for $q \rightarrow h=\pi$)

- more/better data for $\mathrm{e}^{+} \mathrm{e}^{-}$(Belle, BaBar)

- SIDIS (Hermes, Compass)
- RHIC (STAR)
- LHC (Alice)
- new error analysis
- global X^{2} /dof $\sim 2.2 \rightarrow 1.2$

collinear 1h FF : DSS 2015

caveat

- major improvement only for total up \& down channels: rel. uncertainty $\leqslant 10 \%$ for $0.2<z<0.8$
- for other channels, improvement upon DSS 2007 only for $0.2<z<0.5$
- Compass data for SIDIS multiplicities for deuteron target only
- Kaon fragmentation data not included

collinear 1h FF: JAMFF

		Quark polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
	U	D_{1} Unpolarized		$\begin{gathered} H_{1}^{\perp}-8 \\ \text { Collins } \end{gathered}$
	L		$G_{1 L} \propto-\infty$	$H_{1 \mathrm{~L}}^{\perp}$ ¢ -
	T		$G_{1 \mathrm{~T}}$ - -	$\begin{aligned} & H_{1}^{(8)}-8 \\ & H_{1 \mathrm{c}}^{\perp} \text { e }-\mathrm{d} \end{aligned}$

$$
\mathrm{D}_{1}(\mathrm{z}) \bullet \longrightarrow \circlearrowleft_{h}
$$

2. new fit from JAM collaboration: JAMFF (for $q \rightarrow h=\pi, K$)

- only S.I. $\mathrm{e}^{+} \mathrm{e}^{-}$data
- 18 parameters for $\pi, 24$ for K
- Iterative Monte Carlo methodology
- global X $^{2} /$ dof ~ 1.3 (T) , 1.01 (K)

collinear 1h FF: JAMFF

$$
\begin{gathered}
q^{+}=q+\bar{q} \\
\mathrm{Q}^{2}=1 \mathrm{GeV}^{2}
\end{gathered}
$$

— JAM Sato et al., arXiv:1609.00899
----- HKNS Hirai et al., P.R.D75 (07) 094009
...... DSS 2007 De Florian et al., P.R.D75 (07) 114010

collinear 1h FF: fresh news

		Quark polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
	U	D_{1} Unpolarized		$\begin{gathered} H_{1}^{\perp}-8 \\ \text { Collins } \end{gathered}$
	L		$G_{1 L} \infty-\infty$	$H_{1 \mathrm{~L}}^{\perp}$ ¢ ${ }^{\text {d }}$
	T	$D_{1 \mathrm{~T}}^{\perp} \stackrel{\circ}{\circ}-$	$G_{1 \mathrm{~T}}$ - -	$\begin{aligned} & H_{1} \text { 8 }-\frac{\mathrm{c}}{8} \\ & H_{1 \mathrm{~T}}^{\perp} \text { e) }-\mathrm{o} \end{aligned}$

$$
\mathrm{D}_{1}(\mathbf{z}) \bullet \longrightarrow \circlearrowleft_{h}
$$

New extractions from NNLO analysis

$$
\text { (} q \rightarrow h=\pi \text { only) }
$$

3. Anderle, Ringer, Stratmann - only S.I. e+ e^{-}data
P.R.D92(15) 114017

- old SLAC \& LEP + Belle + BaBar data (288)
- 16 parameters
- global $\mathrm{X}^{2} /$ dof : LO=0.89 \rightarrow NNLO=0.64

4. NNPDF Collaboration: NNFF1.0
E. Nocera, talk at QCD-N16 (Bilbao)

- more or less same data set
- neural network methodology
- global X 2 /dof : LO=1.14 \rightarrow NNLO=0.91

collinear 1h FF: fresh news

collinear 1h FF: fresh news

unpolarized TMD FF

		Quark polarization		
		$\begin{aligned} & \text { Unpolarized } \\ & \text { (U) } \end{aligned}$	Longitudinally Polarized (L)	Transversely Polarized (T)
	u	D_{1} Unpolarized		$\begin{gathered} H_{1}^{\perp}-8 \\ \text { Collins } \\ \hline \end{gathered}$
	L		$G_{1 L} \propto-\infty$	$H_{1 \mathrm{~L}}^{\perp}$ や - ๑)
	T	$D_{1 \mathrm{~T}}^{\perp}{ }^{\circ}$ -	$G_{1 \mathrm{~T}}$ (- -	

$\mathrm{D}_{1}\left(\mathrm{z}, \mathbf{P}_{\mathrm{hT}}\right)$

What do we know about the P_{ht} dependence?

unpolarized TMD FF

		Quark polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
	U			$H_{1}^{\perp} \text { 8 - } 8$ Collins
	L		$G_{1 L} \propto \rightarrow-\infty$	$H_{1 \mathrm{~L}}^{\perp}$
	T		$G_{1 \mathrm{~T}}$ (-	$\begin{aligned} & H_{1} \mathrm{~B}-\mathrm{8} \\ & \left.H_{1 \mathrm{~T}}^{\perp} \mathrm{e}\right)-\mathrm{e} \end{aligned}$

$$
\mathrm{D}_{1}\left(\mathrm{z}, \mathbf{P}_{\mathrm{hT}}\right)
$$

What do we know about the P_{ht} dependence?

1. Does the \mathbf{P}_{ht} dependence change with flavor?
2. Does the $\mathbf{P}_{h \mathrm{~T}}$ dependence change with \mathbf{z} ?
3. Does the $\mathbf{P}_{\mathrm{h} T}$ dependence change with energy $\sqrt{\mathrm{s}}$?
4. Does the \mathbf{P}_{ht} dependence change with scale Q^{2} ?

D_{1} from unintegrated SIDIS multiplicities

$$
\begin{gathered}
M_{N}^{h}=\frac{d \sigma_{N}^{h} / d x d z d \boldsymbol{P}_{h T}^{2} d Q^{2}}{d \sigma_{\mathrm{DIS}} / d x d Q^{2}} \approx \frac{\sum_{q} e_{q}^{2}\left[f_{1}^{q} \otimes D_{1}^{q}\right]\left(x, z, \boldsymbol{P}_{h T}^{2} ; Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x ; Q^{2}\right)} \\
\boldsymbol{P}_{h T}^{2} / z \ll Q^{2}
\end{gathered}
$$

Present

- target: proton, deuteron
- final state: $\Pi^{+}, \Pi^{-}, K^{+}, K^{-}$
- 2688 points
talk Schnell
Airapetian et al.,

P.R. D87 (13) 074029
about 20000 data points (!)
- target: deuteron
- final state:

$$
\begin{array}{ll}
- & h^{+}, h^{-}(\text {run 2004 }) \\
- & \Pi^{+}, \Pi^{-}, \mathrm{K}^{+}, \mathrm{K}^{-}(\text {run 2006 })
\end{array}
$$

Adolph et al., E.P.J. C73 (13) 2531 Erratum: E.P.J. C75 (15) 94

N. Makke, talk at SPIN2016

D_{1} from unintegrated SIDIS multiplicities

available fits

	Framework	Hermes	Compass	\# points
Pavia 2013 Bacchetta et al., JHEP 1311 (13) 194	Gaussian $\left\langle\mathbf{p}^{2}\right\rangle_{\mathrm{q}}(\mathrm{z})$ 7 parameters no evolution	\checkmark	x	1538
Torino 2014 Anselmino et al. JHEP 1404 (14) 005	Gaussian $\left\langle\mathbf{p}^{2}\right\rangle$ (I parameter) only collinear DGLAP evolution $N_{y}=A+B y\left(y=Q^{2} / x s\right) \quad \text { (C) }$	separately	separately	$\begin{aligned} & 576(H) \\ & 6284(\mathbf{C}) \end{aligned}$
	\downarrow Framework of TMD evolution \downarrow			
EIKV 2014 Echevarria et al., P.R.D89 (14) 074013	TMD framework, NLL level not a real fit	1 bin	($\mathrm{X}, \mathrm{Q}^{2}$)	(?)
Pavia 2016 in preparation	TMD framework, NLL level first global fit (includes Drell-Yan and Z^{0})	\checkmark	\checkmark	8156

What do we know about $\mathrm{D}_{1}\left(\mathrm{z}, \mathrm{P}_{\mathrm{hT}}\right)$?

I. does $P_{h t}$ dependence change with flavor?

What do we know about $\mathrm{D}_{1}\left(\mathrm{z}, \mathrm{PhT}_{\mathrm{h}}\right)$?

I. does $P_{h T}$ dependence change with flavor?
A. Signori, talk at QCD-N16 (Bilbao)

Pavia 2013
(Hermes)
K fav $>\pi$ fav

$X^{2} / \mathrm{dof}=1.63$

Torino 2014
(Hermes)
flavor indep. $\rightarrow X^{2} /$ dof $=1.69$
unfav $>$ fav $\rightarrow X^{2} /$ dof $=1.60$

Pavia 2016

(global)
flavor indep. global X $^{2} /$ dof ~ 1.55
(flavor dep. in progress)

Answer: maybe...

What do we know about $\mathrm{D}_{1}\left(\mathrm{z}, \mathrm{P}_{\mathrm{hT}}\right)$?

2. does $\mathrm{Pht}_{\text {d }}$ dependence change with z ?

What do we know about $\mathrm{D}_{1}\left(\mathrm{z}, \mathrm{P}_{\mathrm{hT}}\right)$?

2. does $P_{h T}$ dependence change with z ?

Adolph et al., E.P.J. C73 (13) 2531
C. Marchand, talk at DIS2011

Answer: it is likely..
$\begin{array}{lll}\text { detected } & \text { fragm. } & \text { initial } \\ \text { hadron } & \text { parton } & \text { parton }\end{array}$

$$
\left\langle\boldsymbol{P}_{h T}^{2}\right\rangle=z^{\alpha}(1-z)^{\beta}\left\langle\boldsymbol{P}_{\perp}^{2}\right\rangle+z^{2}\left\langle\boldsymbol{k}_{\perp}^{2}\right\rangle \quad \boldsymbol{\alpha}=0.5, \boldsymbol{\beta}=1.5
$$

$$
\left\langle\boldsymbol{P}_{h T}^{2}\right\rangle=\left\langle\boldsymbol{P}_{\perp}^{2}\right\rangle+z^{2}\left\langle\boldsymbol{k}_{\perp}^{2}\right\rangle
$$

Gaussian
A. Signori, talk at QCD-N16 (Bilbao)

| $z=0.24$ | HERMES mult, proton, π^{+} |
| :--- | :--- | :--- |
| $\mathbf{z}=0.28$ | |

Pavia 2016

$$
\left\langle\boldsymbol{P}_{h T}^{2}\right\rangle(z)=\left\langle\widehat{\boldsymbol{P}_{h T}^{2}}\right\rangle \frac{\left(z^{\beta}+\delta\right)(1-z)^{\gamma}}{\left(\hat{z}^{\beta}+\delta\right)(1-\hat{z})^{\gamma}}
$$

$$
\beta=2.68 \pm 0.08
$$

$$
\hat{z}=0.5
$$

$$
\delta=3.36 \pm 0.12
$$

$$
0.1
$$

$$
\gamma=0.04 \pm 0.004
$$

What do we know about $\mathrm{D}_{1}\left(\mathrm{z}, \mathrm{P}_{\mathrm{hT}}\right)$?

3. does $\mathrm{Pht}_{\mathrm{ht}}$ dependence change with energy $\sqrt{\mathrm{s}}$?

Answer: it is likely,
but need processes at much higher $s \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

What do we know about $\mathrm{D}_{1}\left(\mathrm{z}, \mathrm{P}_{\mathrm{hT}}\right)$?

4. does Ph_{h} dependence change with scale Q^{2} ?

What do we know about $\mathrm{D}_{1}\left(\mathrm{z}, \mathrm{P}_{\mathrm{hT}}\right)$?

4. does $\mathrm{Ph}_{\mathrm{ht}}$ dependence change with scale Q^{2} ?

Answer: at SIDIS scales, very moderately

The matching problem in SIDIS

SIDIS unpolarized $\left.\frac{d \sigma_{N}^{h}}{\text { cross section }} \frac{d x d z d \boldsymbol{P}_{h T}^{2} d Q^{2}}{\approx \sum_{q} e_{q}^{2}\left[f_{1}^{q} \otimes D_{1}^{q}\right] \mathcal{H}_{q}\left(Q^{2}\right)+Y\left(Q^{2}, \boldsymbol{q}_{T}^{2}\right)+\mathcal{O}\left(M^{2} / Q^{2}\right)}\right\}$.

$$
\boldsymbol{q}_{T}^{2}=\boldsymbol{P}_{h T}^{2} / z
$$

[^0]need to match collinear (fixed-order) description such that
$$
\int_{0}^{\infty} d \boldsymbol{P}_{h T}^{2} \frac{d \sigma_{N}^{h}}{d x d z d \boldsymbol{P}_{h T}^{2} d Q^{2}}=\frac{d \sigma_{N}^{h}}{d x d z d Q^{2}}
$$
talk Gamberg

The matching problem in SIDIS

SIDIS unpolarized
cross section $\frac{d \sigma_{N}^{h}}{d x d z d \boldsymbol{P}_{h T}^{2} d Q^{2}} \approx \sum_{q} e_{q}^{2}\left[f_{1}^{q} \otimes D_{1}^{q}\right] \mathcal{H}_{q}\left(Q^{2}\right)+Y\left(Q^{2}, \boldsymbol{q}_{T}^{2}\right)+\mathcal{O}\left(M^{2} / Q^{2}\right)$

$$
\boldsymbol{q}_{T}^{2}=\boldsymbol{P}_{h T}^{2} / z
$$

TMD description (good)
need to match collinear (fixed-order) description such that

$$
\int_{0}^{\infty} d \boldsymbol{P}_{h T}^{2} \frac{d \sigma_{N}^{h}}{d x d z d \boldsymbol{P}_{h T}^{2} d Q^{2}}=\frac{d \sigma_{N}^{h}}{d x d z d Q^{2}}
$$

talk Gamberg

The matching problem in SIDIS

factorization th.'s for (current) fragmentation and (target) fracture functions assume that current and target regions are well separated in rapidity $y_{h}=\frac{1}{2} \log \frac{P_{h}^{+}}{P_{h}^{-}}$

at | it's true for few $P_{h T}$ |
| :--- | at elabl2 still Y term is relevant at EIC it's ok

The matching problem in SIDIS

factorization th.'s for (current) fragmentation and (target) fracture functions assume that current and target regions are well separated in rapidity $y_{h}=\frac{1}{2} \log \frac{P_{h}^{+}}{P_{h}^{-}}$
at fors it's true for few Ph_{h} at elabl2 still Y term is relevant at EIC it's ok

J. Collins, arXiv:1610.09994
O. Gonzalez, talk at POETIC16

$$
<z>=0.23
$$

$$
\text { COMPASS } M_{D}^{h^{+}}
$$

$$
<z>=0.28
$$

$$
\begin{aligned}
& <z>=0.28 \\
& <z>=0.33
\end{aligned}
$$

$$
<z>=0.38
$$

$$
<z>=0.45
$$

Example: $\mathrm{X}^{2}=1.17^{10^{10}}$ with no Y term!
grey points are outside cut
$<z>=0.55$
$<z>=0.65$
$<z>=0.75$

D_{1} from unintegrated SIDIS multiplicities

Future

$$
\begin{gathered}
M_{N}^{h}=\frac{d \sigma_{N}^{h} / d x d z d \boldsymbol{P}_{h T}^{2} d Q^{2}}{d \sigma_{\mathrm{DIS}} / d x d Q^{2}} \approx \frac{\sum_{q} e_{q}^{2}\left[f_{1}^{q} \otimes D_{1}^{q}\right]\left(x, z, \boldsymbol{P}_{h T}^{2} ; Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x ; Q^{2}\right)} \\
\boldsymbol{P}_{h T}^{2} / z \ll Q^{2}
\end{gathered}
$$

Hall C : E12-09-017 $\quad \mathrm{H}_{2} / \mathrm{D}_{2}\left(\mathrm{e}, \mathrm{e}^{\prime} \boldsymbol{\pi}\right)$ will test factorization hypothesis
SHMS
clos

$$
\begin{array}{ll}
\text { - E12-06-112 } & \mathrm{H}_{2}\left(\mathrm{e}, \mathrm{e}^{\prime} \pi\right) \\
\text { - E12-09-007 } & \mathrm{D}_{2}\left(\mathrm{e}, \mathrm{e}^{\prime} \pi / \mathrm{K}\right) \\
& \text { talk Rossi }
\end{array}
$$

D_{1} from unintegrated SIDIS multiplicities

Future

$$
\begin{gathered}
M_{N}^{h}=\frac{d \sigma_{N}^{h} / d x d z d \boldsymbol{P}_{h T}^{2} d Q^{2}}{d \sigma_{\mathrm{DIS}} / d x d Q^{2}} \approx \frac{\sum_{q} e_{q}^{2}\left[f_{1}^{q} \otimes D_{1}^{q}\right]\left(x, z, \boldsymbol{P}_{h T}^{2} ; Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x ; Q^{2}\right)} \\
\boldsymbol{P}_{h T}^{2} / z \ll Q^{2}
\end{gathered}
$$

Hall C : E12-09-017 $\quad \mathrm{H}_{2} / \mathrm{D}_{2}\left(\mathrm{e}, \mathrm{e}^{\prime} \boldsymbol{\pi}\right)$ will test factorization hypothesis
SHMS

Another problem: SIDIS anticorrelations

Pavia 2013
Bacchetta et al.,
JHEP 1311 (13) 194

Schweitzer, Teckentrup, Metz, P.R.D81 (10) 094019

Torino $2014 \begin{aligned} & \text { Anselmino ot al., } \\ & \text { JHEP } 1404 \text { (14) } \\ & 005\end{aligned}$
Hermes
\square " (high z)
Compass
" (high z)

EIKV 2014
Echevarria et al.,
P.R.D89 (14) 074013

1. only way to break anticorrelation in SIDIS

2. we need large $\mathrm{e}^{+} \mathrm{e}^{-}$scales > SIDIS scales to study how $\left\langle\mathbf{P}_{\mathrm{hT}^{2}}\right\rangle$ changes with Q^{2} and s

$\mathbf{e}^{+} \mathbf{e}^{-}$unintegrated multiplicity

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{h}_{1} \mathrm{~h}_{2} \mathrm{X}
$$

$$
\begin{aligned}
M=\frac{d \sigma^{h_{1} h_{2}} / d z_{1} d z_{2} d \boldsymbol{P}_{h_{1} T}^{2} d y}{d \sigma_{\mathrm{incl}} / d z_{2} d y} & \approx \frac{\sum_{q} e_{q}^{2}\left[D_{1}^{q} \otimes D_{1}^{\bar{q}}\right]\left(z_{1}, z_{2}, \boldsymbol{P}_{h_{1} T}^{2} ; Q^{2}\right)}{\sum_{q} e_{q}^{2} D_{1}^{q}\left(z_{2} ; Q^{2}\right)} \\
\frac{\boldsymbol{P}_{h_{1} T}^{2}}{z_{1}} & \ll Q^{2}
\end{aligned}
$$

$$
\begin{aligned}
D_{1}^{q}\left(z, \boldsymbol{b}_{T} ; Q^{2}\right)= & R\left(Q^{2}, \mu_{b}^{2}\left(b_{T}, b_{\max }\right)\right) \\
& e^{-\frac{1}{2} g_{2} b_{T}^{2} \log \frac{Q}{Q_{0}}} D_{1}^{q}\left(z, \boldsymbol{b}_{T} ; \mu_{b}\right)
\end{aligned}
$$

parameters of nonperturbative evolution

Bacchetta et al., JHEP 1511 (15) 076
sensitivity to C_{1} in
a 7\% error at Belle scale can constrain
$\mu_{b}=C_{1} / b_{t}:$
nonperturbative parameters $\left\{b_{m a x}, g_{2}\right\}$

$\mathbf{e}^{+} \mathbf{e}^{-}$cross section

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{hX}
$$

upcoming Belle data for unintegrated $\mathrm{e}^{+} \mathrm{e}^{-}$cross section

Access to $\mathrm{D}_{1 \mathrm{~T}^{\perp}}$

		Quark polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
	U	D_{1} Unpolarized		$H_{1}^{\perp} \text { 8 - 8 }$ Collins
	L		$G_{1 L} \propto-\infty$	$H_{1 \mathrm{~L}}^{\perp}$ ()-
	T		$G_{1 \mathrm{~T}}$ - -	$\begin{aligned} & H_{1}^{(8)}-8 \\ & H_{1 \mathrm{c}}^{\perp} \text { e }-\mathrm{d} \end{aligned}$

$$
\mathrm{D}_{1 \mathrm{~T}^{\perp}}\left(\mathrm{z}, \mathbf{P}_{\mathrm{hT}}\right)
$$

encodes "spontaneous" polarization of h
new data from Belle on

$$
\begin{gathered}
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda \bar{\Lambda}+X \\
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \bar{N}^{\prime}+\pi / K+X
\end{gathered}
$$

with full $\left(\mathbf{Z}_{\wedge}, P_{\wedge T}\right)$ dependence
thrust

$$
\frac{1}{N} \frac{d N}{d \cos \theta}=1+\alpha P \cos \theta
$$

^ polarization data

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda+\mathrm{X}
$$

thrust
"thrust-axis" frame
Y. Guan, talk at SPIN2016

\wedge polarization data

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda+\mathrm{X}
$$

thrust

"thrust-axis" frame

Y. Guan, talk at SPIN2016

thrust

"thrust-axis" frame

> at large $\mathrm{z} \mathrm{\wedge}$ polarization changes sign

Collins function

		Quark polarization		
		$\begin{aligned} & \text { Unpolarized } \\ & \text { (U) } \end{aligned}$	Longitudinally Polarized (L)	Transversely Polarized (T)
	u	D_{1} Unpolarized		$\begin{gathered} H_{1}^{\perp}-8 \\ \text { Collins } \end{gathered}$
	L		$G_{1 L} \propto-\infty$	$H_{1 \mathrm{~L}}^{\perp}$ ค- -
	T	$D_{1 \mathrm{~T}}^{\perp}{ }^{\text {® }}$ -	$G_{1 \mathrm{~T}}$ (- -	$\begin{aligned} & H_{1} \text { () - } \\ & H_{1 \mathrm{c}}^{\perp} \text { (} \end{aligned}$

$\mathrm{H}_{1} \perp\left(\mathrm{z}, \mathbf{P}_{\mathrm{hT}}\right)$

What do we know about the P_{ht} dependence?

$\mathbf{e}^{+} \mathbf{e}^{-}$Collins effect

"thrust axis" frame : A ${ }_{12}$

not obvious QCD generalization of TMD factorization formula because of thrust axis definition
"fixed hadron" frame : A_{0}

$$
R_{\exp } \equiv \frac{d \sigma}{d \sigma_{0}}
$$

$$
\ldots \otimes \ldots \rightarrow \int d \boldsymbol{p}_{1 T} d \boldsymbol{p}_{2 T} \delta\left(\boldsymbol{p}_{1 T}+\boldsymbol{p}_{2 T}+\frac{\boldsymbol{P}_{1 \perp}}{z_{1}}\right) \ldots
$$

$\frac{\text { Unlike-sign }}{\text { Like-sign }} \quad \frac{R_{\text {exp }}^{U}}{R_{\exp }^{L}} \approx 1+A_{0}^{e^{+}} e^{-}\left(\frac{\pi^{+} \pi^{-}+\pi^{-} \pi^{+}}{\pi^{+} \pi^{-}+\pi^{-} \pi^{+}}\right)-A_{0}^{e^{+} e^{-}}\left(\frac{\pi^{+} \pi^{+}+\pi^{-} \pi^{-}}{\pi^{+} \pi^{+}+\pi^{-} \pi^{-}}\right)$
Unlike-sign
Charged

$$
\frac{R_{\text {exp }}^{U}}{R_{\text {exp }}^{C}} \approx 1+A_{0}^{e^{+} e^{-}}\left(\frac{\pi^{+} \pi^{-}+\pi^{-} \pi^{+}}{\pi^{+} \pi^{-}+\pi^{-} \pi^{+}}\right)-A_{0}^{e^{+} e^{-}}\left(\frac{\text { all }}{} \frac{\pi \pi}{\text { all }} \pi \pi\right)
$$

to kill false asymmetries

Data for $\mathbf{e}^{+} \mathbf{e}^{-}$Collins effect

$\mathrm{s}=\mathrm{Q}^{2}=112 \mathrm{GeV}^{2}$

Abe et al., P.R.L. 96 (06) 232002
Seidl et al., P.R. D78 (08) 032011
D86(12) $039905(E)$
$A_{12} U / L / C\left(z_{1}, z_{2}\right)$
$\mathrm{A}_{0} \mathrm{U} / \mathrm{L} / \mathrm{C}\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)$
$A_{12} \mathrm{U} / \mathrm{L} / \mathrm{C}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{P}_{1 \mathrm{~T}}, \mathrm{P}_{2 \mathrm{~T}}\right)$
$A_{0} U / L / C\left(z_{1}, z_{2}, P_{1 T}\right)$
$\mathrm{A}_{12} \mathrm{U} / \mathrm{L} / \mathrm{C}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)$
$A_{0} U / L / C\left(Z_{1}, Z_{2}\right)$
KK and Кп pairs
$A_{0} U / L / C\left(Z_{1}, Z_{2}, P_{1 T}\right)$
Ablikim et al., P.R.L. 116 (16) 042001
$s=Q^{2}=13 \mathrm{GeV}^{2}$

Data for $\mathbf{e}^{+} \mathbf{e}^{-}$Collins effect

$s=Q^{2}=112 \mathrm{GeV}^{2}$

Abe et al., P.R.L. 96 (06) 232002
Seidl et al., P.R. D78 (08) 032011
D86(12) $039905(E)$
$A_{12} U / L / C\left(z_{1}, z_{2}\right)$
$\mathrm{A}_{0}{ }^{\mathrm{U}} \mathrm{L} / \mathrm{C}\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)$
$A_{12} U / L / C\left(z_{1}, z_{2}, P_{1 T}, P_{2 T}\right)$
Lees et al., P.R. D90 (14) 052003

Lees et al., P.R. D92 (15) 111101
$A_{12} U / L / C\left(z_{1}, z_{2}\right)$
$A_{0}{ }^{U / L / C}\left(z_{1}, z_{2}\right)$
KK and Kп pairs
$A_{0} U / L / C\left(z_{1}, z_{2}, P_{1 T}\right)$
phase transition :
direct access to transverse dynamics of fragmenting parton and to its QCD evolution

$\mathbf{e}^{+} \mathbf{e}^{-}$Collins effect

available fits of $H_{\perp} \perp$

both perform global fits (SIDIS $+\mathrm{e}^{+} \mathrm{e}^{-}$) with $\mathrm{x}^{2 / d o f ~ i n ~[0.85-1.2] ~}$

	Framework	Belle	$\begin{gathered} \mathrm{BaBar} \\ \mathrm{~A}_{0}\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}, P_{1 T}\right) \end{gathered}$	$\begin{gathered} \# \\ \text { points } \end{gathered}$	BaBar Al2 U/L/C	$\begin{gathered} \mathrm{BESIII} \\ \mathrm{AD}_{0}\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}, \mathrm{P}_{1 \mathrm{~T}}\right) \end{gathered}$
Torino 2015 Anselmino ot al. P.R.D92 (15) 11402	Gaussian, fixed width various params. for fav (z) unfav $(z)=N_{\text {unf }} D_{\text {। }}(z)$ only chiral-odd collinear DGLAP evolution 5 parameters	\checkmark	\checkmark	122	predicted	predicted
KPSY 2015 Kang et al. P.R.D93 (16) 014009	TMD evolution in CSS scheme at NLO + NLL level * $\hat{H}^{(3)}(\mathrm{z}) \propto \mathrm{D}_{\mathrm{I}}(\mathrm{z})$ fav (z) \neq unfav (z) only homogeneous evo eqs. 7 parameters	\checkmark	\checkmark	122	x	predicted

Moments of Collins function : z dep.

$$
\begin{aligned}
& \text { favored } \\
& \Delta^{N} D_{h / q}(z)=4 H_{1}^{\perp(1 / 2) q \rightarrow h}(z) \\
& H_{1}^{\perp(n)}(z)=\int d \boldsymbol{P}_{\perp} \frac{1}{2}\left(\frac{\boldsymbol{P}_{\perp}^{2}}{z^{2} m_{h}^{2}}\right)^{n} H_{1}^{\perp}\left(z, \boldsymbol{P}_{\perp}^{2}\right) \\
& \text { unfavored } \\
& \text { Torino } 2013 \\
& \text { KPSY } 2015 \\
& \text { - similar results } \\
& \text { - both very good } X^{2} / d o f \\
& \rightarrow R^{U} / R^{L} \text { or } R^{U / R} R^{C} \\
& \text { not very sensitive to } \\
& \text { TMD evolution } \\
& \text { Kang et al., } \\
& \text { P.R. D93 (16) } 014009
\end{aligned}
$$

Predicting the $B \in S I I I$ asymmetry

$\mathrm{A}_{0} \mathrm{UL}$
$A_{0}^{e^{+} e^{-}}\left(\frac{\pi^{+} \pi^{-}+\pi^{-} \pi^{+}}{\pi^{+} \pi^{-}+\pi^{-} \pi^{+}}\right)-A_{0}^{e^{+} e^{-}}\left(\frac{\pi^{+} \pi^{+}+\pi^{-} \pi^{-}}{\pi^{+} \pi^{+}+\pi^{-} \pi^{-}}\right)$

$\mathrm{A}_{0} \mathrm{UC}$
$A_{0}^{e^{+} e^{-}}\left(\frac{\pi^{+} \pi^{-}+\pi^{-} \pi^{+}}{\pi^{+} \pi^{-}+\pi^{-} \pi^{+}}\right)-A_{0}^{e^{+} e^{-}}\left(\frac{\text { all } \pi \pi}{\text { all } \pi \pi}\right)$

Anselmino et al., P.R. D92 (15) 114023

predictions $=$

$$
\mathrm{A}_{0} \cup C \text { KPSY } 2015
$$

Di-hadron Fragmentation Functions (DiFF)

Bianconi et al.,
P.R. D62 (00) 034008

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{h}}{ }^{\mu}=\mathrm{P}_{1} \mu+\mathrm{P}_{2} \mu \\
& \mathrm{R}^{\mu}=\left(\mathrm{P}_{1} \mu-\mathrm{P}_{2}^{\mu}\right) / 2 \\
& R_{T}^{2}=\frac{z_{1} z_{2}}{z^{2}} M_{h}^{2}-\frac{z_{2}}{z} M_{1}^{2}-\frac{z_{1}}{z} M_{2}^{2}
\end{aligned}
$$

leading twist, $\mathrm{R}^{2} \ll \mathrm{Q}^{2}$

Bacchetta \& Radici, P.R.D67 (03) 094002

		Quark polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
	U	D_{1}	$\mathbf{G}_{1} \perp \mathbf{S}_{\mathrm{L}} \cdot \mathbf{P}_{\mathrm{hT}} \times \mathbf{R}_{\mathbf{T}}$	$\begin{gathered} H_{1}^{*} \hat{\mathbf{z}} \cdot \mathbf{S}_{\mathbf{T}} \times \mathbf{R}_{\mathbf{T}} \\ \mathrm{H}_{1} \perp \hat{\mathbf{z}} \cdot \mathbf{S}_{\mathbf{T}} \times \mathbf{P}_{\mathbf{h T}} \\ \left(\mathbf{t}^{\hat{\mathbf{z}}} \bigcirc\right)-(\mathbf{i}) \end{gathered}$

Di-hadron Fragmentation Functions (DiFF)

Bianconi et al.,
P.R. D62 (00) 034008

$$
\begin{aligned}
& \mathrm{Ph}^{\mu}=\mathrm{P}_{1}{ }^{\mu}+\mathrm{P}_{2}{ }^{\mu} \\
& \mathrm{R}^{\mu}=\left(\mathrm{P}_{1}{ }^{\mu}-\mathrm{P}_{2}^{\mu}{ }^{\mu}\right) / 2
\end{aligned}
$$

$\int d \mathbf{P}_{h T}$ collinear framework
leading twist, $\mathrm{R}_{\mathrm{T}}{ }^{2} \ll \mathrm{Q}^{2}$

Access to transversity via DiFF

Collins, Heppelman, Ladinsky, N.P. B420 (94)

correlation between

quark polarization and $\boldsymbol{R}_{\mathrm{T}}=\left(\mathrm{Z}_{2} \boldsymbol{P}_{1 \mathrm{~T}}-\mathrm{Z}_{1} \boldsymbol{P}_{2 \mathrm{~T}}\right) / \mathrm{z}$ or, equivalently, azimuthal orientation of $\left(h_{1}, h_{2}\right)$ plane

$$
\text { (only if } h_{1} \neq h_{2} \text {) }
$$

effect encoded in $h_{1}(x) H_{1}^{\varangle}\left(z, M_{h}^{2}\right)$

$$
\begin{aligned}
& \mathrm{z}=\mathrm{Z}_{1}+\mathrm{Z}_{2} \\
& P_{h^{2}}=M_{\mathrm{h}}{ }^{2}<\boldsymbol{R}_{\mathrm{T}}{ }^{2}
\end{aligned}
$$ alternative to Collins effect

extraction of DiFF from $\mathbf{e}^{+} \mathbf{e}^{-}$

back-to-back hadron pairs $\rightarrow \cos \left(\Phi_{\mathrm{R}}+\bar{\Phi}_{\mathrm{R}}\right)$ modulation
Artru \& Collins, Z.Ph. C69 (96) 277
Boer, Jakob, Radici,
P.R.D67(03) 094003
$A^{\cos \left(\phi_{R}+\bar{\phi}_{R}\right)}=\frac{\sin ^{2} \theta_{2}}{1+\cos ^{2} \theta_{2}} \frac{\left|\boldsymbol{R}_{T}\right|}{M_{h}} \frac{\left|\overline{\boldsymbol{R}}_{T}\right|}{\bar{M}_{h}} \frac{\sum_{q} e_{q}^{2} H_{1}^{\varangle q}\left(z, M_{h}^{2}\right) \bar{H}_{1}^{\varangle \bar{q}\left(\bar{z}, M_{h}^{2}\right)}}{\sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}^{2}\right) \bar{D}_{1}^{\bar{q}}\left(\bar{z}, \bar{M}_{h}^{2}\right)} \quad$ same as \quad in SlDIS

extraction of DiFF from $\mathbf{e}^{+} \mathbf{e}^{-}$

back-to-back hadron pairs $\rightarrow \cos \left(\Phi_{\mathrm{R}}+\bar{\Phi}_{\mathrm{R}}\right)$ modulation
Artru \& Collins, Z.Ph. C69 (96) 277
Boer, Jakob, Radici,
P.R.D67 (03) 094003
$A^{\cos \left(\phi_{R}+\bar{\phi}_{R}\right)}=\frac{\sin ^{2} \theta_{2}}{1+\cos ^{2} \theta_{2}} \frac{\left|\boldsymbol{R}_{T}\right|}{M_{h}} \frac{\left|\overline{\boldsymbol{R}}_{T}\right|}{\bar{M}_{h}} \frac{\sum_{q} e_{q}^{2} H_{1}^{\varangle q}\left(z, M_{h}^{2}\right) \bar{H}_{1}^{\varangle \bar{q}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}{\sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}^{2}\right) \bar{D}_{1}^{\bar{q}}\left(\bar{z}, \bar{M}_{h}^{2}\right)} \quad$ in Same as for D_{1}

Belle data for $A^{\cos \left(\Phi_{R}+\Phi_{R}\right)}$

Vossen et al., P.R.L. 107 (11) 072004
first extraction of DiFF, but using PYTHIA Courtoy et al., P.R.D85 (12) 114023

Radici et al., JHEP 1505 (15) 123
upcoming Belle data for unpolarized cross section

$\mathbf{e}^{+} \mathbf{e}^{-}$cross section for ($\Pi \pi$) in same hemisphere

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow\left(\mathrm{h}_{1} \mathrm{~h}_{2}\right) \mathrm{X}
$$

thrust

"thrust-axis" frame

R. Seidl, talk at SPIN2016
upcoming Belle data for $\left(z, M_{h}\right)$ binning of unpolarized di-hadron $e^{+} e^{-}$cross section

The power of DiFF

collinear framework \rightarrow factorization theorems

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow\left(\pi^{+} \Pi^{-}\right)\left(\pi^{+} \Pi^{-}\right) \mathrm{X}$

$$
A_{e^{+} e^{-}} \sim \frac{H_{1}^{\varangle} \overline{H_{1}^{\varangle}}}{D_{1} \overline{D_{1}}}
$$

prediction
Boer, Jakob, Radici, P.R. D67 (03) 094003
extraction
Courtoy et al., P.R. D85 (12) 114023

SIDIS: ep $\mathrm{p}^{\uparrow} \rightarrow \mathrm{e}^{\prime}\left(\mathrm{m}^{+} \mathrm{T}^{-}\right) \mathrm{X}$

$$
A_{\mathrm{SIDIS}} \sim \frac{h_{1} H_{1}^{\varangle}}{f_{1} D_{1}}
$$

prediction

Radici, Jakob, Bianconi, P.R.D65 (02) 074031
Bacchetta \& Radici, P.R. D67 (03) 094002

extraction

Bacchetta, Courtoy, Radici, P.R.L. 107 (11) 012001
Bacchetta, Courtoy, Radici, JHEP 1303 (13) 119
Radici et al., JHEP 1505 (15) 123

universality of DiFF and usual DGLAP evolution

Ceccopieri, Radici, Bacchetta, P.L.B650 (07) 81

prediction

Bacchetta and Radici, P.R. D70 (04) 094032 test universality
Radici et al., P.R.D94 (16) 034012

The power of DiFF

collinear framework \rightarrow factorization theorems

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow\left(\pi^{+} \Pi^{-}\right)\left(\pi^{+} \Pi^{-}\right) \mathrm{X}$

$$
A_{e^{+}+e^{-}} \sim \frac{H_{1}^{\varangle} \overline{H_{1}^{\varangle}}}{D_{1} \overline{D_{1}}}
$$

prediction
Boer, Jakob, Radici, P.R. D67 (03) 094003
extraction
Courtoy et al., P.R. D85 (12) 114023

SIDIS: e $\mathrm{p}^{\uparrow} \rightarrow \mathrm{e}^{\prime}\left(\mathrm{T}^{+} \mathrm{T}^{-}\right) \mathrm{X}$

$$
A_{\text {SIDIS }} \sim \frac{h_{1} H_{1}^{\varangle}}{f_{1} D_{1}}
$$

prediction

Radici, Jakob, Bianconi, P.R.D65 (02) 074031
Bacchetta \& Radici, P.R. D67 (03) 094002

extraction

Bacchetta, Courtoy, Radici, P.R.L. 107 (11) 012001 Bacchetta, Courtoy, Radici, JHEP 1303 (13) 119
Radici et al., JHEP 1505 (15) 123

universality of DiFF and usual DGLAP evolution

Ceccopieri, Radici, Bacchetta, P.L.B650 (07) 81
$\mathrm{S}_{\mathrm{S}} \mathrm{A}$ ar

$$
\begin{aligned}
& \mathrm{pp} \mathrm{p}^{\uparrow} \rightarrow\left(\pi^{+} \pi \pi^{-}\right) \mathrm{X} \\
& A_{p p} \sim \frac{f_{1} \otimes h_{1} \otimes H_{1}^{\varangle}}{f_{1} \otimes f_{1} \otimes D_{1}}
\end{aligned}
$$

prediction

Bacchetta and Radici, P.R. D70 (04) 094032
test universality
Radici et al., P.R.D94 (16) 034012
subleading twist: access to e(x)
Jefferson Lab
$A_{L U} \sim \frac{e H_{1}^{\varangle}\left(+f_{1} \tilde{G}^{\varangle}\right)}{f_{1} D_{1}} \quad$ is twist-3

prediction

Bacchetta and Radici, P.R. D69 (04) 074026
talk Courtoy

a phase transition in 3D studies

1D
[standard parton distribution functions - PDFs]

3D

[transverse momentum
distributions - TMDs]

Parton model

Phase 1

Global fits

a phase transition in 3D studies

1D
[standard parton distribution functions - PDFs]

3D
[transverse momentum
distributions - TMDs]

Global fits

Parton model

Phase 1

QCD
analysis

+ data
with TMD FF (and DiFF) we are a little step behind but with the upcoming data for unintegrated $\mathrm{e}^{+} e^{-}$cross sections we are well underway to fill the gap...

[^0]: TMD description (good)
 TMD extrapolation (bad)

