Mainz Test Beam analysis "peer review"

Test beam anomalies investigated

Linearity:

 Low- and high-energy runs seem to have different calibration factors, and show a discontinuity in the charge-energy linearity

Resolution:

- discrepancies between the stochastic term in σ(E)/E vs E and the expected photostatistics
- overall resolution higher than expected

Check on the pedestals

Present analysis searches the maximum of the waveform in a predefined time range after the trigger, for each channel;

this value is used as input for the energy reconstruction:

- the pedestal is subtracted to the maximum value on an event-byevent basis
- resulting amplitude value for the on-beam (=central) crystal is equalized to the others, using the factors extracted by dedicated calibration runs;
- this value is then summed to the others (ped-subtracted and equalized as well), when these are above a threshold;
- the resulting cluster energy enters the reconstructed energy spectrum for the corresponding trigger energy.

Check on the pedestals II

- A correlated shift of the signal baseline, depending on the trigger energy, could cause a systematic error on the evaluation of the reconstructed energies. This would be masked by the event-byevent subtraction of the pedestal.
- In order to check if this correlated shift is present, pedestal distributions have been plotted for each trigger energy, using the same evaluation as for the event-by-event subtraction (i.e. the fixed time window after the trigger)

Check on the pedestals III

 The pedestal distributions did not show systematic deviations with respect to the trigger energy

Single crystal vs cluster

- The cluster size has an increasing number of crystals for increasing energy (expected)
- The energy share between the central cluster and the surrounding ones is instead larger for smaller energies, and this arose some doubts concerning possible low-energy photon background
- Started analyzing the energy resolution using only the central crystal: larger leakage contribution expected but other contribution could give useful hints

Energy definitions in the resolution plot

Performing the single crystal analysis, I found that, in the definition of $\sigma(E)/E$ vs E , different values of E are used:

- on the x axis, the "true" photon energy is used
- for $\sigma(E)/E$, the reconstructed value of E is instead used

Made some tests with coherent variables:

- using reconstructed E also for the reference x value
- using the "true" E in the σ(E)/E
- fit values and fit macro same as Alessandro

Reconstructed energy as reference energy

Original definition $\sigma(E)/E_{reco}$ vs E_{true}

 $\sigma(E)/E_{reco}$ vs E_{reco}

True energy as relative energy

Original definition $\sigma(E)/E_{reco}$ vs E_{true}

 $\sigma(E)/E_{true}$ vs E_{true}

Fit values to be checked, also checking other crystals

Next

- review the resolution to get updated fit values to be compared with the different evaualtions
- try to use as "resolution" the width of E_{reco} E_{true} distribution. This would disentangle from possible loopholes between calibration and energy definitions in the resolution plot
- complete the single crystal analysis