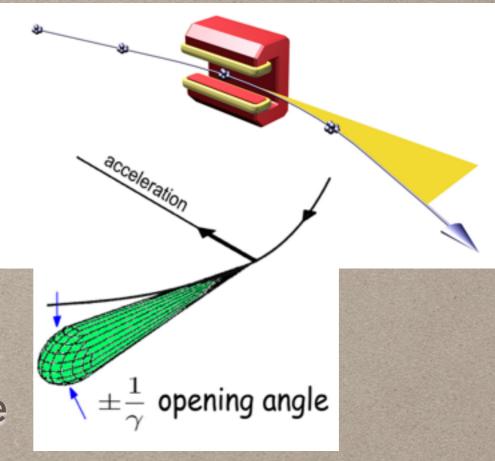
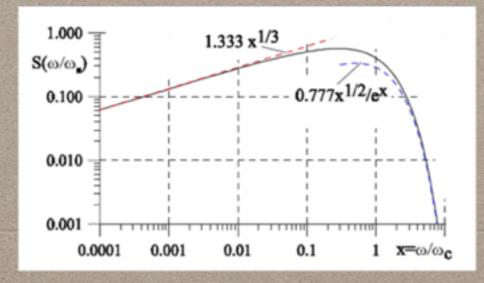

SYNCHROTRON RADIATION CONTRIBUTION IN THE INTERACTION REGION IN FCC-HH FRANCESCO COLLAMATI 24-05-2016

1


 When charged particles are accelerated they emit SYNCHROTRON RADIATION

- When charged particles are accelerated they emit SYNCHROTRON RADIATION
- This radiation is distributed in a cone tangential to the moving direction of the emitting particle



- When charged particles are accelerated they emit SYNCHROTRON RADIATION
- This radiation is distributed in a cone tangential to the moving direction of the emitting particle

 The emitted radiation is composed by several harmonics of the revolution frequency:

2

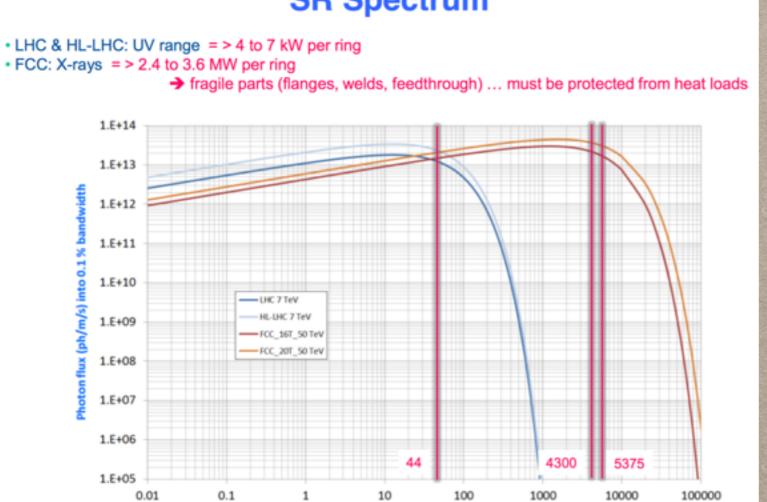
critical frequency (& energy): the frequency above which half of the power is emitted

$$v_c = \frac{3}{2}c\frac{\gamma^3}{\rho}$$

- The power radiated per beam depends strongly on particle's Lorentz Gamma factor, and hence on particle mass: $P\propto\gamma^4 o P\propto m^{-4}$

- The power radiated per beam depends strongly on particle's Lorentz Gamma factor, and hence on particle mass: $P\propto\gamma^4 o P\propto m^{-4}$
 - While SR is a major concern for electron beams, for protons beams it is usually negligible:

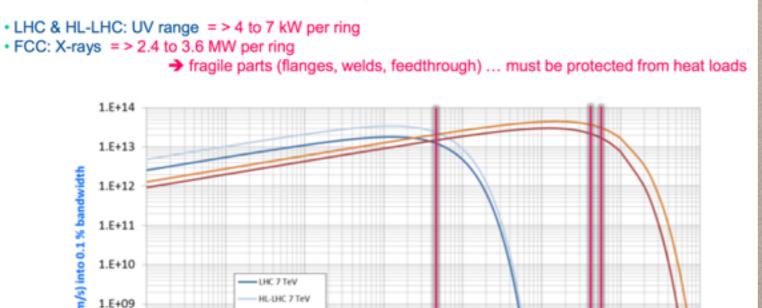
$$P_p \sim 10^{-13} \times P_e$$
$$\omega_{c_p} \sim 10^{-9} \times \omega_{c_e}$$


- The power radiated per beam depends strongly on particle's Lorentz Gamma factor, and hence on particle mass: $P\propto\gamma^4 o P\propto m^{-4}$
 - While SR is a major concern for electron beams, for protons beams it is usually negligible:

$$P_p \sim 10^{-13} \times P_e$$
$$\omega_{c_p} \sim 10^{-9} \times \omega_{c_e}$$

- However, in Very High Energy p-p colliders the effect starts to be visible, and should be carefully evaluated
 - I.e. LHC, FCC-hh...

 Energy distribution of synchrotron radiation photons for LHC and FCC-hh:


SR Spectrum

Photon energy (eV)

 Energy distribution of synchrotron radiation photons for LHC and FCC-hh:

SR Spectrum

44

Photon energy (eV)

100

10

FCC_16T_50 TeV FCC_20T_50 TeV

1

1.E+08

1.E+07

1.E+06

1.E+05

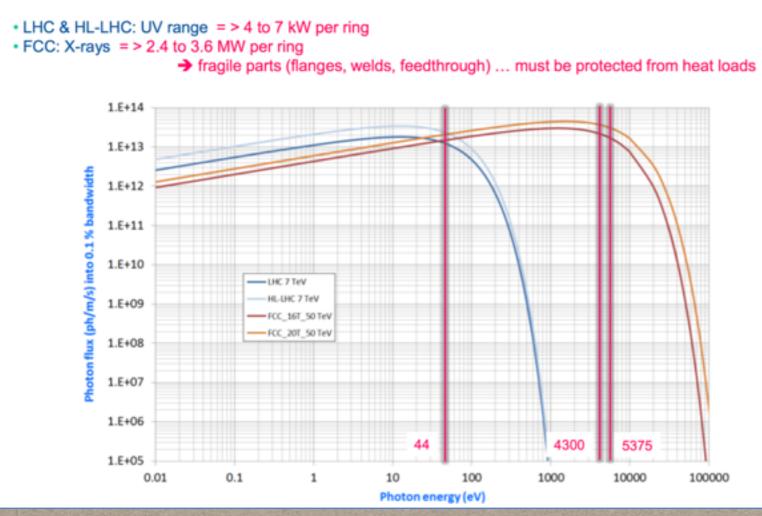
0.01

0.1

 $E_{_{FCC_{hh}}} \propto 7 \times E_{_{LHC}}$

5375

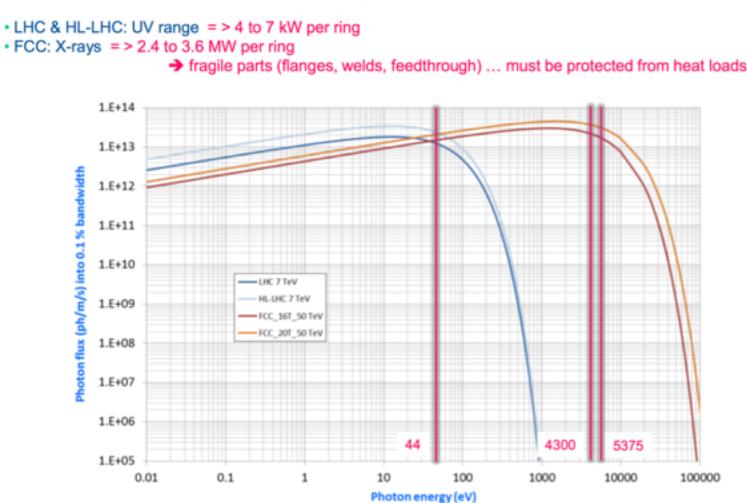
100000


10000

4300

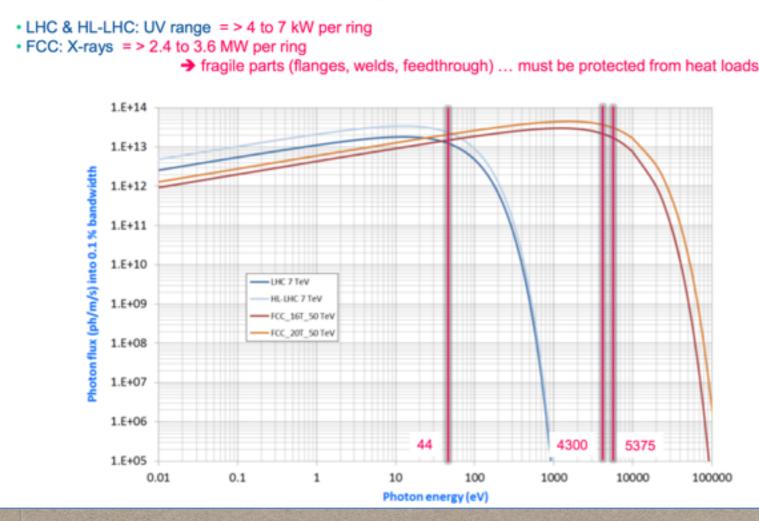
1000

 Energy distribution of synchrotron radiation photons for LHC and FCC-hh:


SR Spectrum

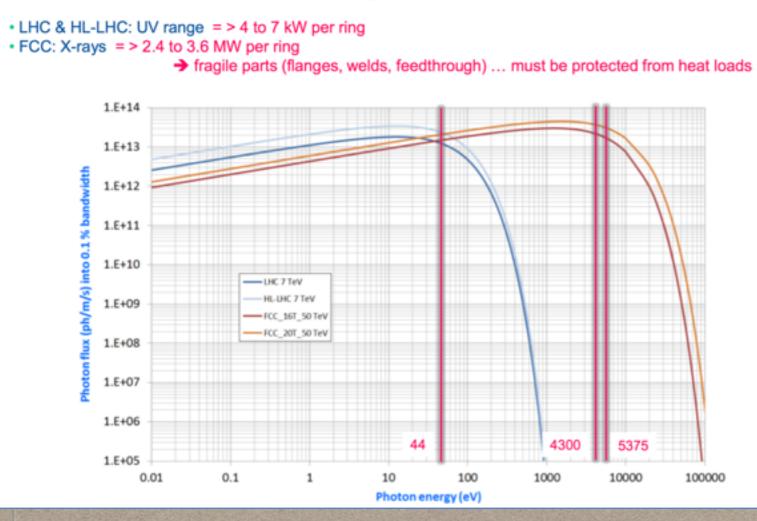
 $E_{FCC_{hh}} \propto 7 \times E_{LHC}$ $P_{SR_{FCC_{hh}}} \propto 170 \times P_{SR_{LHC}}$

 Energy distribution of synchrotron radiation photons for LHC and FCC-hh:

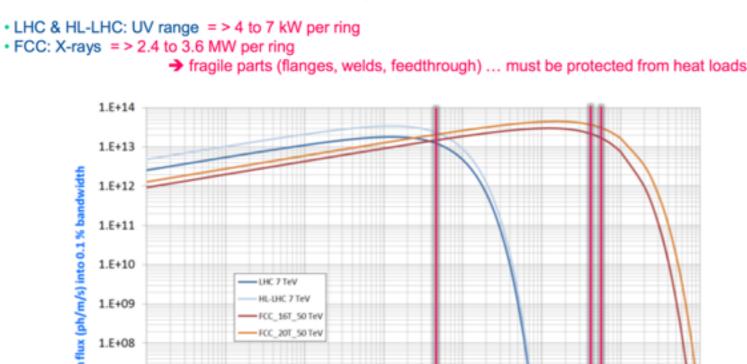

SR Spectrum

 $E_{FCC_{hh}} \propto 7 \times E_{LHC}$ $P_{SR_{FCC_{hh}}} \propto 170 \times P_{SR_{LHC}}$ $E_{Crit_{FCC_{hh}}} \propto 100 \times E_{Crit_{LHC}}$

 Energy distribution of synchrotron radiation photons for LHC and FCC-hh:


SR Spectrum

$$\begin{split} E_{FCC_{hh}} &\propto 7 \times E_{LHC} \\ P_{SR_{FCC_{hh}}} &\propto 170 \times P_{SR_{LHC}} \\ E_{Crit_{FCC_{hh}}} &\propto 100 \times E_{Crit_{LHC}} \\ & \checkmark \\ \end{split}$$


 Energy distribution of synchrotron radiation photons for LHC and FCC-hh:

SR Spectrum

 Energy distribution of synchrotron radiation photons for LHC and FCC-hh:

SR Spectrum

44

Photon energy (eV)

10

100

1.E+07

1.E+06

1.E+05

0.01

0.1

1

$$\begin{split} E_{FCC_{hh}} &\propto 7 \times E_{LHC} \\ P_{SR_{FCC_{hh}}} &\propto 170 \times P_{SR_{LHC}} \\ E_{Crit_{FCC_{hh}}} &\propto 100 \times E_{Crit_{LHC}} \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & &$$

The total radiated power will probably be still low, but the much greater photon energy demands for a careful evaluation

5375

100000

10000

4300

1000

 Energy distribution of synchrotron radiation photons for LHC and FCC-hh:

SR Spectrum

1.E+12 1.E+11 1.E+10 LHC 7 TeV 1.E+09 FCC 16T 50 TeV FCC 20T 50 TeV 1.E+08 1.E+07 1.E+06 44 4300 5375 1.E+05 0.01 0.1 100 1000 10000 100000 1 10 Photon energy (eV)

$$\begin{split} E_{FCC_{hh}} &\propto 7 \times E_{LHC} \\ P_{SR_{FCC_{hh}}} &\propto 170 \times P_{SR_{LHC}} \\ E_{Crit_{FCC_{hh}}} &\propto 100 \times E_{Crit_{LHC}} \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & &$$

The total radiated power will probably be still low, but the much greater photon energy demands for a careful evaluation

More, and more energetic photons!

 In the case of FCC-HH 50 TeV Protons, two more aspects must be considered:

- In the case of FCC-HH 50 TeV Protons, two more aspects must be considered:
 - Edge effect: rise in the critical frequency at the borders of the magnets due to magnetic gradient

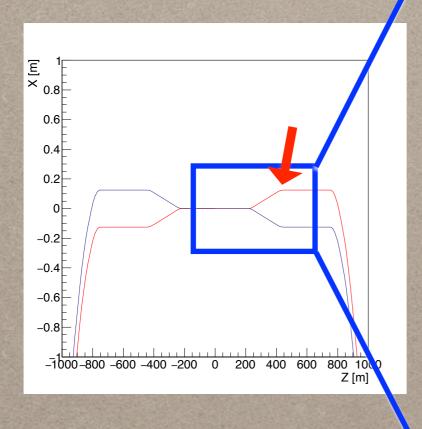
$$\omega_c' = \frac{L}{\Delta L} \omega_c$$

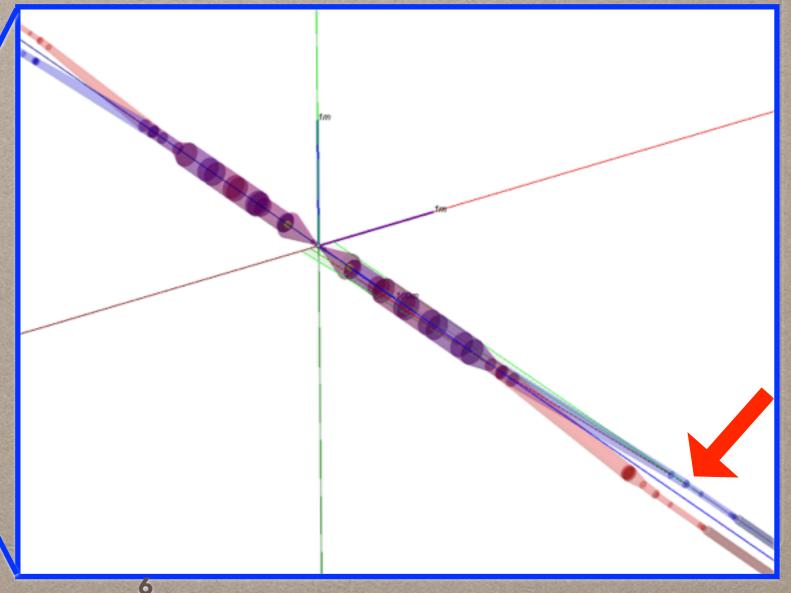
L=magnet length DL=gradient length

 In the case of FCC-HH 50 TeV Protons, two more aspects must be considered:

 Edge effect: rise in the critical frequency at the borders of the magnets due to magnetic gradient

$$\omega_c' = \frac{L}{\Delta L} \omega_c$$

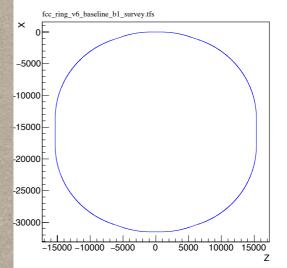

L=magnet length DL=gradient length

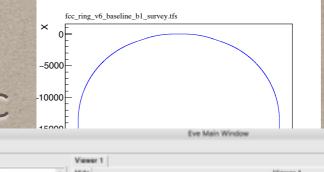

→ The radiation cone is very narrow:

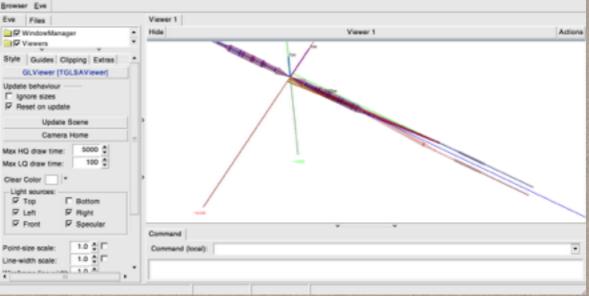
$$\gamma_p = \frac{E_p}{m_p} = \frac{50TeV}{938MeV} \sim 5 \times 10^4$$
$$\frac{1}{\gamma_p} \sim 1.9 \times 10^{-5} rad \sim 10^{-3} grd$$

MY TASK

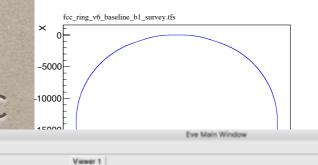
- My (current) task is to evaluate the contribution of synchrotron radiation photons emitted in the last bending magnets into the interaction region
- Tool used: MDISim

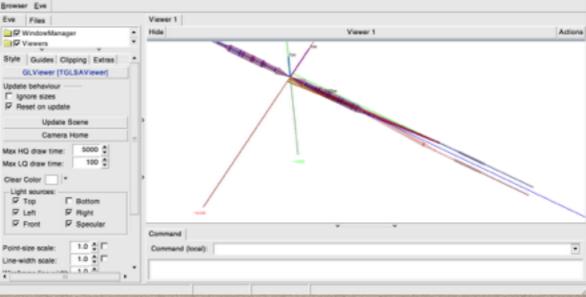



 Developed by Helmut Burkhardt (CERN), is a set of C++/Root classes that allow to:

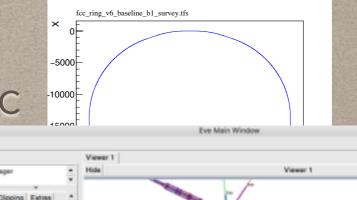

- Developed by Helmut Burkhardt (CERN), is a set of C++/Root classes that allow to:
 - → Run Madx on the desired lattice of the FCC

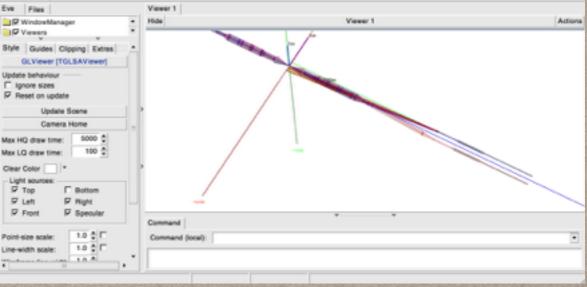
- Developed by Helmut Burkhardt (CERN), is a set of C++/Root classes that allow to:
 - → Run Madx on the desired lattice of the FCC
 - → Read Madx output, plot the lattice


- Developed by Helmut Burkhardt (CERN), is a set of C++/Root classes that allow to:
 - Run Madx on the desired lattice of the FCC
 - ➡ Read Madx output, plot the lattice
 - Calculate Synchrotron Radiation (Power Radiated, Critical Energy..) and plot it over the geometry



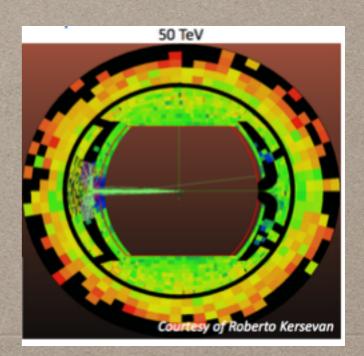
iele	NAME KEYWORD	S	L	Angle	Ecrit ngamBend	rho	B BETX	SIGX	divx	Power	frac>10MeV	ngam*npart Egamt	ot Emean
		m	m		keV	m	T m	mm	mrad	kW		GeV	keV
23	MBXA.A4RA.H SBEND	231.3	12.5	-0.0003199	1.146 0.1795	39079.0	-4.267862523.1459	1.6066	0.0037	0.03221	Θ	1.8e+10 6.34e+0	3 0.353
25	MBXA.B4RA.H SBEND	245.3	12.5	-0.0003199	1.146 0.1795	39079.0	-4.267858576.9378	1.5551	0.0037	0.03221	Θ	1.8e+10 6.34e+0	3 0.353
27	MBRD.A4RA.H1 SBEND	426.9	15	0.0003199	0.9552 0.1795	46894.8	3.556519052.8783	0.8869	0.0037	0.02684	Θ	1.8e+10 5.28e+0	3 0.294
29	MBRD.B4RA.H1 SBEND	443.4	15	0.0003199	0.9552 0.1795	46894.8	3.556516533.0927	0.8262	0.0037	0.02684	Θ	1.8e+10 5.28e+0	3 0.294
51	MBS.A8RA.H1 SBEND	767.1	13.4	0.00128	4.279 0.7183	10468.8	15.9313 133.1204	0.0741	0.0013	0.481	θ	7.18e+10 9.46e+04	1.32
55	MBS.B8RA.H1 SBEND	781.8	13.4	0.00128	4.279 0.7183	10468.8	15.9313 79.5007	0.0573	0.0013	0.481	θ	7.18e+10 9.46e+04	1.32
59	MBS.C8RA.H1 SBEND	796.6	13.4	0.00128	4.279 0.7183	10468.8	15.9313 43.8806	0.0426	0.0013	0.481	θ	7.18e+10 9.46e+04	1.32


- Developed by Helmut Burkhardt (CERN), is a set of C++/Root classes that allow to:
 - → Run Madx on the desired lattice of the FCC
 - ⇒ Read Madx output, plot the lattice
 - Calculate Synchrotron Radiation (Power Radiated, Critical Energy..) and plot it over the geometry

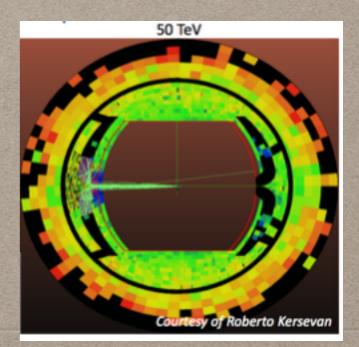


iele		S	Ξ.	Angle	Ecrit	ngamBend	rho	В	BETX	SIGX	divx	Power	frac>10MeV	ngam*npart	Egamtot	Emean
		m	m		keV		m	т		mm	mrad	kW			GeV	keV
23	MBXA.A4RA.H SBEND	231.3	12.5	-0.0003199	1.146	0.1795	39079.0	-4.26786	2523.1459	1.6066	0.0037	0.03221	Θ	1.8e+10 6	.34e+03	0.353
25	MBXA.B4RA.H SBEND	245.3	12.5	-0.0003199	1.146	0.1795	39079.0	-4.26785	8576.9378	1.5551	0.0037	0.03221	Θ	1.8e+10 6	.34e+03	0.353
27	MBRD.A4RA.H1 SBEND	426.9	15	0.0003199	0.9552	0.1795	46894.8	3.55651	9052.8783	0.8869	0.0037	0.02684	Θ	1.8e+10 5		
29	MBRD.B4RA.H1 SBEND	443.4	15	0.0003199	0.9552	0.1795	46894.8	3.55651	6533.0927	0.8262	0.0037	0.02684	Θ	1.8e+10 5	.28e+03	0.294
51	MBS.A8RA.H1 SBEND	767.1	13.4	0.00128	4.279	0.7183	10468.8	15.9313	133.1204	0.0741	0.0013	0.481	θ	7.18e+10 9.	46e+04	1.32
55	MBS.B8RA.H1 SBEND	781.8	13.4	0.00128	4.279	0.7183	10468.8	15.9313	79.5007	0.0573	0.0013	0.481	θ	7.18e+10 9.	46e+04	1.32
59	MBS.C8RA.H1 SBEND	796.6	13.4	0.00128	4.279	0.7183	10468.8	15.9313	43.8806	0.0426	0.0013	0.481	6	7.18e+10 9.	46e+04	1.32

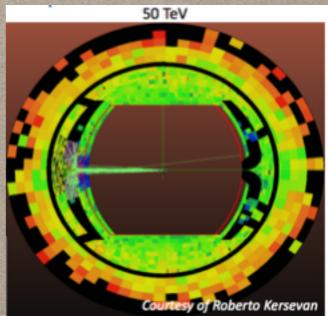
- Developed by Helmut Burkhardt (CERN), is a set of C++/Root classes that allow to:
 - Run Madx on the desired lattice of the FCC
 - ⇒ Read Madx output, plot the lattice
 - Calculate Synchrotron Radiation (Power Radiated, Critical Energy..) and plot it over the geometry



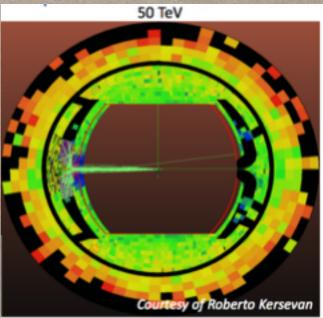
iele	NAME KEYWORD	S	Ξ. L	Angle	Ecrit	ngamBend	rho	В	BETX	SIGX	divx	Power	frac>10MeV	ngam*npart	Egamtot	Emean
23	MBXA.A4RA.H SBEND	231.3	12.5	-0.0003199	1.146	0.1795	39079.0	-4.26786	2523.1459	1.6066	0.0037	0.03221	Θ	1.8e+10 6	.34e+03	0.353
25	MBXA.B4RA.H SBEND	245.3	12.5	-0.0003199	1.146	0.1795	39079.0	-4.26785	8576.9378	1.5551	0.0037	0.03221	Θ	1.8e+10 6	.34e+03	0.353
27	MBRD.A4RA.H1 SBEND	426.9	15	0.0003199	0.9552	0.1795	46894.8	3.55651	9052.8783	0.8869	0.0037	0.02684	Θ	1.8e+10 5	.28e+03	0.294
29	MBRD.B4RA.H1 SBEND	443.4	15	0.0003199	0.9552	0.1795	46894.8	3.55651	6533.0927	0.8262	0.0037	0.02684	Θ	1.8e+10 5	.28e+03	0.294
51	MBS.A8RA.H1 SBEND	767.1	13.4	0.00128	4.279	0.7183	10468.8	15.9313	133.1204	0.0741	0.0013	0.481	θ	7.18e+10 9.	46e+04	1.32
55	MBS.B8RA.H1 SBEND	781.8	13.4	0.00128	4.279	0.7183	10468.8	15.9313	79.5007	0.0573	0.0013	0.481	Θ	7.18e+10 9.	46e+04	1.32
59	MBS.C8RA.H1 SBEND	796.6	13.4	0.00128	4.279	0.7183	10468.8	15.9313	43.8806	0.0426	0.0013	0.481	θ	7.18e+10 9.	46e+04	1.32

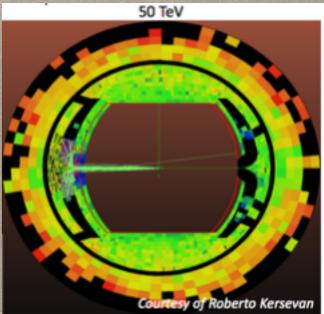

Browser Eve

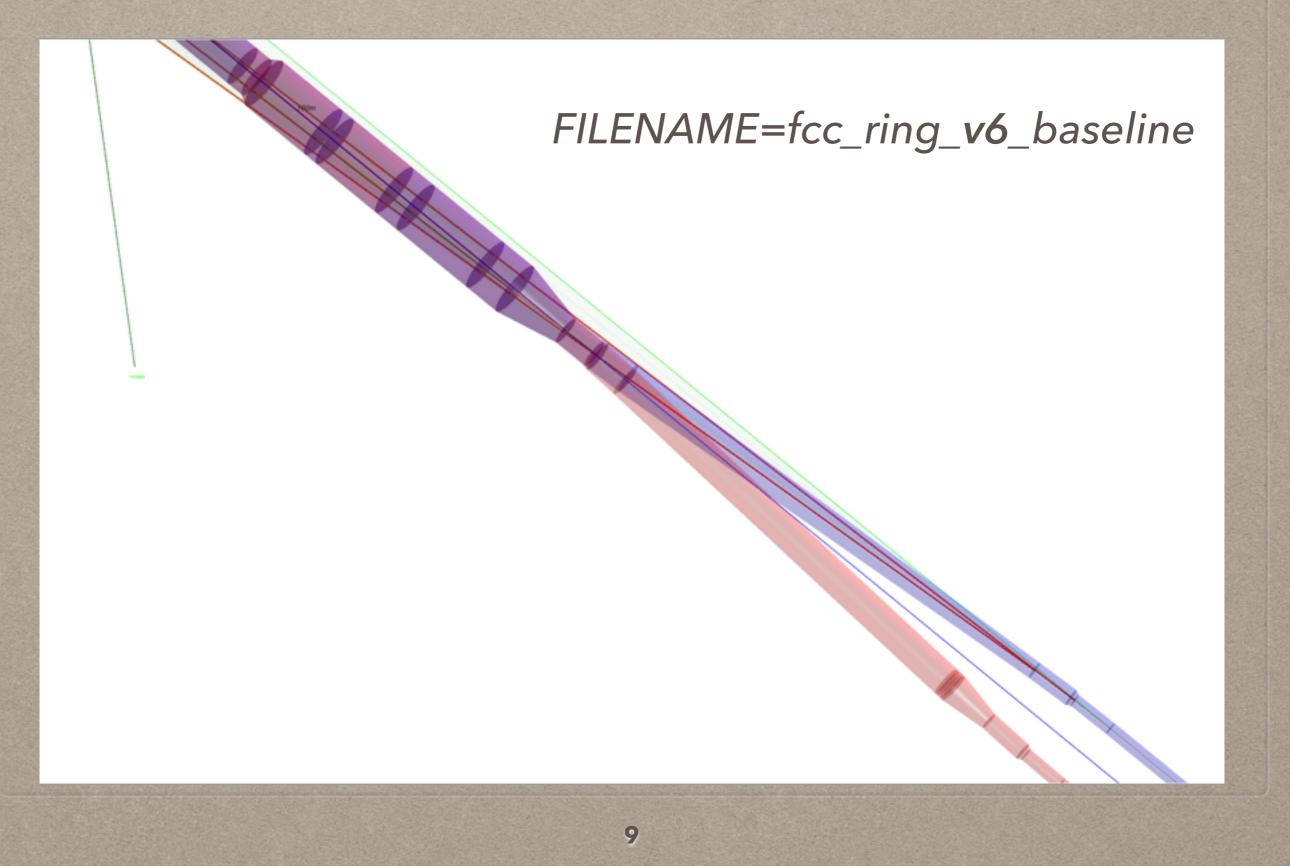
Import geometry and SR in Geant to perform full simulation

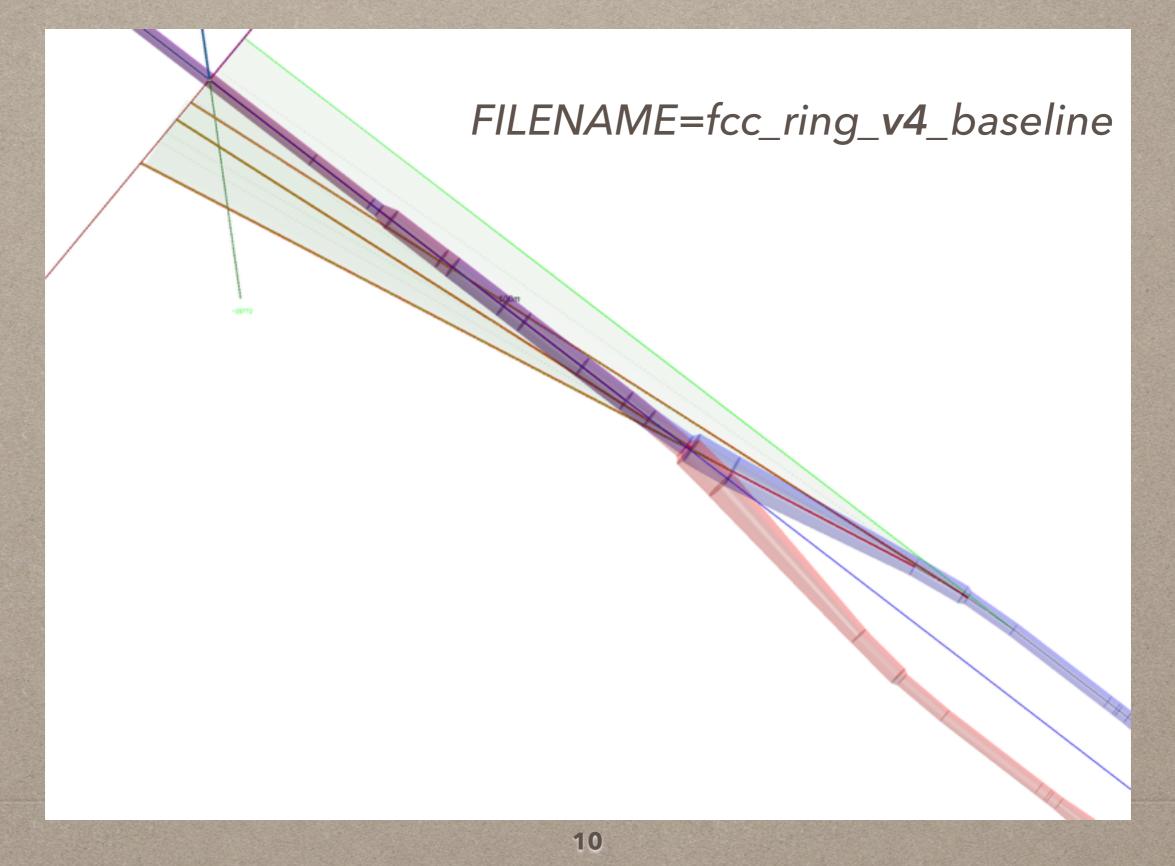

- Evaluate the solid angle of photons reaching the interaction region, assuming "worst case scenario" to see if the contribution is already negligible
 - Is "total absorption of the pipe" a "too good scenario"!?

- Evaluate the solid angle of photons reaching the interaction region, assuming "worst case scenario" to see if the contribution is already negligible
 - Is "total absorption of the pipe" a "too good scenario"!?
- Evaluate (by means of MC) the fraction of SR photons exiting the beam pipe


- Evaluate the solid angle of photons reaching the interaction region, assuming "worst case scenario" to see if the contribution is already negligible
 - Is "total absorption of the pipe" a "too good scenario"!?
- Evaluate (by means of MC) the fraction of SR photons exiting the beam pipe
- If still a non negligible contribution, evaluate the impact of:


- Evaluate the solid angle of photons reaching the interaction region, assuming "worst case scenario" to see if the contribution is already negligible
 - Is "total absorption of the pipe" a "too good scenario"!?
- Evaluate (by means of MC) the fraction of SR photons exiting the beam pipe
- If still a non negligible contribution, evaluate the impact of:
 - Edge effect

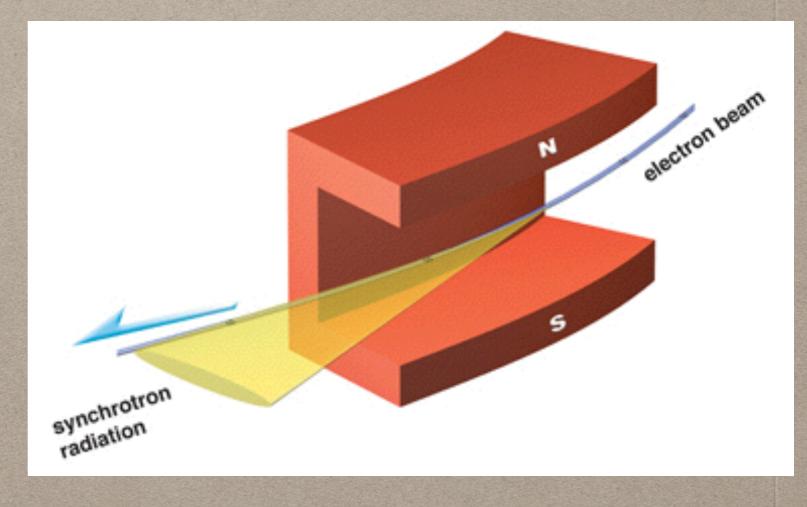

- Evaluate the solid angle of photons reaching the interaction region, assuming "worst case scenario" to see if the contribution is already negligible
 - Is "total absorption of the pipe" a "too good scenario"!?
- Evaluate (by means of MC) the fraction of SR photons exiting the beam pipe
- If still a non negligible contribution, evaluate the impact of:
 - Edge effect
 - Angular distribution of photons


- Evaluate the solid angle of photons reaching the interaction region, assuming "worst case scenario" to see if the contribution is already negligible
 - Is "total absorption of the pipe" a "too good scenario"!?
- Evaluate (by means of MC) the fraction of SR photons exiting the beam pipe
- If still a non negligible contribution, evaluate the impact of:
 - Edge effect
 - Angular distribution of photons
 - Polarization of photons

"CONE" DIRECTION

"CONE" DIRECTION

LHC, HL-LHC and FCC-hh Parameters


	LHC	Design	HL-LHC	F	cc		
	Nominal	Ultimate	Nominal	16 T	20 T		
Energy [TeV]		7		50			
Luminosity [x10 ³⁴ cm ⁻² .s ⁻¹]	1.0	2.3	5*	5 to	30		
Current [mA]	584	860	1090	509	609		
Proton per bunch [x10 ¹¹]	1.15	1.7	2.2	1.0			
Number of bunches	2	808	2736	10600	8900		
Bunch spacing [ns]		25	25 (then 5 ?)				
Critical energy [eV]		44.1		4300	5375		
Photon flux [ph/m/s]	1 10 ¹⁷	1.5 10 ¹⁷	1.9 10 ¹⁷	1.7 10 ¹⁷	2.6 10 ¹⁷		
SR power [W/m]**	0.22	0.33	0.42	36.3	68.0		
Photon dose [ph/m/year]	1 10 ²⁴	1.5 10 ²⁴	1.9 10 ²⁴	1.7 1024	2.6 10 ²⁴		

* Levelled luminosity

** to be multiplied by 0.8 to get the average power in the arc taking into account the quadrupoles and interconnects lenghts

* During MD periods OLAV-IV, Hsinchu, Taiwan, April 1-4, 2014

