

DASH-IN web-based analyses - TUTORIAL
For Debian jessie and Mac OS X

By Rosario Lombardo, The Microsoft Research – University of Trento (COSBI)

written by Rosario Lombardo and Fabio Moriero (COSBI)

What we’ll learn in this tutorial:

• Overview of the Dash-In infrastructure
• Installing the required software components

• Part 1

o Creating a Shiny app
o Structure of a Shiny app

• Part 2 – Creating dynamic UIs
• Part 3 – Linking into the Dash-In infrastructure
• Part 4 – The final application

• Server configuration and deployment of a multi-application server

Extensive references on Shiny can be obtained from http://shiny.rstudio.com/

Overview of the Dash-In infrastructure

As discussed in the Workshop the orange boxes are being examined and in this tutorial
we’ll examine the green parts below starting from zero to a working web application.

Installing the required software components

DEBIAN
	

RStudio Desktop

Is the software that helps us working with R – hence with shiny as well.

Install gdebi (used to install RStudio server and the shiny server)

$ sudo apt-get install gdebi-core

Metadata	MICA		

Only	metadata	will	be	
shared	among	partners	

dbNP	connector	

Data	in	local	
instances	

h4p://ENPADASI	

API	FAIRport	compliant	

Other	ini>a>ves	

Exis;ng	

To	be	analyzed	and	developed	

European Nutrition Phenotype Assessment and Data Sharing Initiative

dataShield	Rserver	
interac;ng	with	

ENPADASI	R	package	
(value-added)			

Summary	analyses	and	informa;on	
Observa;onal	+	Interven;on	studies	

API	FAIRport	compliant	
dataShield	Rserver		

Harmoniza;on	
/	OPAL	schemes	

Download and install RStudio Desktop:

$ wget https://download1.rstudio.org/rstudio-0.99.902-amd64.deb

$ sudo gdebi rstudio-0.99.902-amd64.deb

If Debian is not your OS, then you can the other binaries or the sources here:
https://www.rstudio.com/products/rstudio/download/

Install R and Shiny

Add the CRAN repository to get the latest version of R. In this tutorial we use the GARR
repository, but you should choose the one that best fits you: https://cran.r-
project.org/mirrors.html

Add the following statement in the file /etc/apt/sources.list.d/cran.list

deb http://cran.mirror.garr.it/mirrors/CRAN/bin/linux/debian jessie-cran3/

Then add the key for this Debian archive:

$ sudo apt-key adv --keyserver keys.gnupg.net --recv-key 381BA480

And update the packages list:

$ sudo apt-get update

Install R from the command line:

$ sudo apt-get install r-base

Then install the shiny package from either the command line:

$ sudo R -e "install.packages('shiny', repos='https://cran.rstudio.com/')"

Or, from the R prompt:

> install.packages('shiny', repos='https://cran.rstudio.com/')

MAC
On Macs it is enough to download the latest R version from one of the mirrors at
https://cran.r-project.org/mirrors.html and the latest RStudio version from
https://www.rstudio.com/products/rstudio/download/.

Tutorial – Part 1

http://188.166.1.102/hackaton/part1

Creating a new Shiny App

From RStudio menu: File > New Project…

Click on “New Directory”

Then select “Shiny Web Application”

Enter the project name in the “Directory name” field and select where you want your
new project folder to be created.

The new project created in RStudio is composed of three files:

• ui.R: defines the user interface
• server.R: defines the server logic
• shinyapp.Rproj: a RStudio project file, not needed by the Shiny application

You can run the newly created shiny application either:

A. by hand
1. launch R:

$ R

2. Then type:

> library(shiny)
> runApp("~/shinyapp")

B. or from RStudio, by clicking on the "Run App" button

1.

And this is the web application than gets launched in the web browser:

Structure of a Shiny app

A shiny app is composed of two files:

• ui.R: defines the user interface
• server.R: defines the server logic

ui.R
Our ui.R file begins with:

library(shiny)

which loads the shiny library.

All the magic in this file happens inside one function:

shinyUI(...)

which contains other functions (with quite self-explanatory names):

• fluidPage it creates a fluid page
• titlePanel it renders the title of the page
• sidebarLayout it declares the structure of the page.
• sidebarPanel it allows to put the desired controls in a lateral panel
• mainPanel it allows to put the desired controls in the main panel

shinyUI(fluidPage(

 # Application title
 titlePanel("Old Faithful Geyser Data"),

 # Sidebar with a slider input for number of bins
 sidebarLayout(
 sidebarPanel(
 sliderInput("bins",
 "Number of bins:",
 min = 1,
 max = 50,
 value = 30)
),

 # Show a plot of the generated distribution
 mainPanel(
 plotOutput("distPlot")
)
)
))

As we can see, these functions are structured in a way that defines the layout of the page.
Then, there are the titlePanel, sliderInput and plotOutput functions that define actual
objects for that page – respectively, a title, a slider control for the user and a plot showing
some data.

Common HTML tags can be used, you just need to specify one of the a shiny functions
(there's a list at: shiny.rstudio.com/tutorial/lesson2) that map to the HTML tags.
e.g. the code:

h1("Title")

p("Text", style = "font-family: 'times'")

will result in:

<h1>Title</h1>

<p style="font-family: 'times'">Text</p>

Control widgets are available (check them at: shiny.rstudio.com/tutorial/lesson3). In our
example, we are using the sliderInput. Others are:

function widget

actionButton Action Button

checkboxGroupInput A group of check boxes

checkboxInput A single check box

dateInput A calendar to aid date selection

dateRangeInput A pair of calendars for selecting a date range

fileInput A file upload control wizard

helpText Help text that can be added to an input form

numericInput A field to enter numbers

radioButtons A set of radio buttons

selectInput A box with choices to select from

sliderInput A slider bar

submitButton A submit button

textInput A field to enter text

server.R
Let's take a look at the server.R file.

shinyServer(function(input, output) {

 output$distPlot <- renderPlot({

 # generate bins based on input$bins from ui.R
 x <- faithful[, 2]
 bins <- seq(min(x), max(x), length.out = input$bins + 1)

 # draw the histogram with the specified number of bins
 hist(x, breaks = bins, col = 'darkgray', border = 'white')

 })
})

This file is composed of one single function as well:

shinyServer(...)

which takes an anonymous function as an argument

function(input, output) { ... }

Notice the two arguments of the anonymous function:

• input is a list-like object containing the input elements we have in ui.R – that
is, for our example, the sliderInput object.

• output is a list-like object containing the output elements from ui.R – in our
example, plotOutput

So, what's happening in our server.R file? As it can be below, we are using a renderPlot
function to draw some plot in a distPlot object: that distPlot name refers to the id we gave
to our plotOutput element in the ui.R file.

ui.R server.R

plotOutput("distPlot") ... output$distPlot <- renderPlot({ ...

The other way around, looking inside the renderPlot function we see that input$bins is
used in some calculation: we are using the value of the sliderInput object with id bins.

The important thing here, is that the shiny framework takes care of updating all these
values in real-time, as, e.g., the user changes values in the input controls.

The unnamed function returns a list-like object named output that contains the code
needed to update the R objects in the app: each R object needs to have its own entry in
that list.

To add an entry, use one of the functions prefixed with “render”; e.g.:

output$text1 <- renderText({ "Example text" })

More render functions are:

• renderImage images (saved as a link to a source file)

• renderPlot plots

• renderPrint any printed output

• renderTable data frame, matrix, other table like structures

• renderText character strings

• renderUI a Shiny tag object or HTML

In order to use the values of the UI objects, you need to use the input objects – which is
similar to the output object.
As an example, we can have a label always updated with the text inserted by the user by
just writing this:

ui.R server.R

shinyUI(fluidPage(

mainPanel(
 selectInput("var",
 label = "Choose a variable",
 choices = c("A", "B", "C"),
 selected = "A"),

 textOutput("text1")
)

))

shinyServer(function(input, output) {

output$text1 <- renderText({
 paste("You have selected",
 input$var)
 })

})

Here we see an important concept: reactivity, which is the ability of a shiny app to take
input values from a web page, make them available to R and have the results back as
output values on the web page. These input and output values are bound and changes to
the former are immediately reflected on the latter.

This is achieved by using reactive programming: it all starts with reactive values – that
can change over time or in response to the user interaction – and these values are given
to reactive expressions, which can execute other reactive expressions; so that,
whenever a change occurs on the reactive values, the reactive expressions using them
are re-executed.

• Reactive values are often input objects
• Reactive expressions are created by passing a normal expression into the reactive

function

Tutorial – Part 2 – Creating dynamic UIs

http://188.166.1.102/hackaton/part2

Let's add some dynamism: in this part of the tutorial we are going to modify the previous
sources in order to have a dynamic user interface that changes accordingly to the user
interaction.

In ui.R we add new controls: selectInput; for example, the code below add a control for
selecting the type of plot that has to be drawn, choosing between two elements of a list we
define:

selectInput("plotType",
 "Plot type:",
 list("Histogram" = "hist",
 "Contour Plot" = "contour"))

Another kind of control we are introducing now is the conditionalPanel, which will draw
the controls given to it as parameters only if a given (javascript) condition is true; in the
piece of code below, another selectInput is added only if the selectInput with id plotType
selects the element "hist":

conditionalPanel(
 condition = "input.plotType != 'hist'",
 selectInput("var_y",
 "Contrast variable",
 list("var1", "var2")))

The new ui.R:

library(shiny)

shinyUI(fluidPage(

 # Application title
 titlePanel("Old Faithful Geyser Data"),

 # Sidebar with a slider input for number of bins
 sidebarLayout(
 sidebarPanel(

 selectInput("plotType",

 "Plot type:",
 list("Histogram" = "hist",
 "Contour Plot" = "contour")
),
 selectInput("var_x",
 "Variable",
 list("var1", "var2")
),

 conditionalPanel(
 condition = "input.plotType != 'hist'",

 selectInput("var_y",
 "Contrast variable",
 list("var1", "var2")
)
),

 conditionalPanel(
 condition = "input.plotType == 'hist'",

 sliderInput("bins",
 "Number of bins:",
 min = 1,
 max = 50,
 value = 30)
)

),

 # Show a plot of the generated distribution
 mainPanel(
 plotOutput("distPlot")
)
)
))

As for the server.R file, we need to add the logic to make the magic happen: we add an if-
else construct that draws either one or the other kind of plots, depending on the value of
the "plotType" selectInput.
So, if the "histogram" plot is selected, then the plot from the previous example will be
drawn; otherwise, we will draw a new kind of plot.

The new server.R:

library(shiny)

shinyServer(function(input, output) {
 output$distPlot <- renderPlot({

 if (input$plotType == "hist") {

 # generate bins based on input$bins from ui.R
 x <- faithful[, 2]
 bins <- seq(min(x), max(x), length.out = input$bins + 1)

 # draw the histogram with the specified number of bins
 hist(x, breaks = bins, col = 'darkgray', border = 'white')

 }
 else if (input$plotType == "contour") {

 if (input$var_x == "var1") {
 x <- -6:16
 }
 else {
 x <- 20:30
 }

 if (input$var_y == "var1") {
 y <- -6:16
 }
 else {
 y <- 20:30
 }

 contour(outer(x, y), method = "edge")
 }

 })
})

The following are the two kind of plots rendered on the web from R analysis:

Read and try this code, and observe how the "var1" and "var2" variables are used in the
plot. Again, the ui.R has some "logic" to hide or show the "contrast variable"; while the
server.R uses their values for the "contour" plot.

We can go further in dynamic pages by having UI controls filled with custom information.
For example, in the previous example, the selectInput control takes a list argument –
list("var1", "var2").

selectInput("var_x",
 "Variable",
 list("var1", "var2"))
We can define a function returning a list:

selectInput("var_x",
 "Variable",
 get_study_variables())

get_study_variables <- function() {

 return(list("var1", "var2"))
}

Please note that this function will have the code needed to, e.g., connect to a remote
database and fetch some data; so that our selectInput control is created with the elements
from an external service and this lays down the basis for building interactive web-based
analyses for the Dash-In infrastructure.

Tutorial – Part 3 – Linking into the Dash-In infrastructure

http://188.166.1.102/hackaton/part3

In the last section of this tutorial, we saw a (very simple) way of having a dynamic user
interface with functions allowing to potentially fetch data from external services before
populating the UI controls in the web page. Now we are going to see how to use external
data in our shiny application.

Let's introduce a new file, global.R – whatever is declared in this file, it is parsr first of any
other Shiny file and it also accessible from both ui.R and server.R files – so let's put the
definition of our functions there.

Below we see the complete global.R, ready to interact with the Dash-In infrasctrure and
namely the DataShield system. Most of these commands have been covered in previous
Datashield tutorials of the Hackaton so let’s briefly say that the first commands perform a
distributed login across all the sites from which we want to fetch data.

As prerequisites the following DataShield R packages should be installed system-wide
(Debian):

sudo apt-get install r-cran-rjson

sudo apt-get install libcurl4-gnutls-dev libcurl4-openssl-dev

in R console:

install.packages('RCurl', repos='http://cloud.r-project.org', dependencies=TRUE)

Additionally the following packages need to be installed on any OS:

install.packages('opaladmin', repos='http://cran.obiba.org', dependencies=TRUE)

install.packages('dsBaseClient', repos=c(getOption('repos'), 'http://cran.obiba.org'), depend
encies=TRUE)

install.packages('dsModellingClient', repos=c(getOption('repos'), 'http://cran.obiba.org'), de
pendencies=TRUE)

install.packages('dsStatsClient', repos=c(getOption('repos'), 'http://cran.obiba.org'), depend
encies=TRUE)

install.packages('dsGraphicsClient', repos=c(getOption('repos'), 'http://cran.obiba.org'), de
pendencies=TRUE)

NOTE: soon also an ENPADASI R package will be needed to fully connect the Dash-In infrastructu
re.

The focus in this tutorial is the definition of the get_study_variables() function – as a
demonstration of the web-based interactive analysis system offered within the Dash-In
infrastructure for both intervention and observational studies.

global.R

library(opal)
library(dsBaseClient)
library(dsStatsClient)
library(dsGraphicsClient)
library(dsModellingClient)

DATASHIELD commands

load the login file
my_login<-read.table('../logins.txt', sep="", header=TRUE)
log in to the remote servers
assign=TRUE will have the remote opal server instruct the remote R
instance to assign the dataframe into variable 'D'
opals <- datashield.login(logins=my_login, assign=TRUE, symbol = 'D')

detect the list of variables in the study
get_study_variables <- function(symbol="D") {

 tryCatch({
 ds.colnames(x=symbol)[[1]]
 }, error = function(e) {
 print(e)
 return(list("No data was loaded! See error messages!"))
 }
)
}

In the logins.txt files a list of different OPAL and DBNP DataShield-enabled servers can be
entered. For the tutorial we’ll use a guest account created on the RECAS Opal instance in
Bari:

logins.txt

server url user password table

OpalRecas http://90.147.170.46:8080 enpadasi.guest1 Et6w23AA LifeLines.Lif
eLines

The get_study_variables() function fetches the variables in the study. It also handles
some error condition, for example no internet connection or remote servers not reachable.

At the same time we extend the application with all DataShield supported plots, i.e.
histogram, contourPlot and heatmap.

note: since the UI is fetching the data from remote, it may take a short while for the page to load.

In our new ui.R, we replace the static lists with "var1" and "var2" with the new defined
function, and we also removed the sliderInput for the number of bins, since we don't need
it anymore. The new file is now this:

ui.R

library(shiny)

shinyUI(fluidPage(

 # Application title
 titlePanel("Old Faithful Geyser Data"),

 # Sidebar with a slider input for number of bins
 sidebarLayout(
 sidebarPanel(

 selectInput("plotType",
 "Plot type:",
 list("Histogram" = "hist",
 "Contour Plot" = "contour",
 "Heatmap" = "heatmap")
),
 selectInput("var_x",
 "Variable",
 get_study_variables()
),

 conditionalPanel(
 condition = "input.plotType != 'hist'",

 selectInput("var_y",
 "Contrast variable",
 get_study_variables()
)
)

),

 # Show a plot of the generated distribution
 mainPanel(
 plotOutput("distPlot")
)
)
))

We need to modify server.R for drawing the plots using the data fetched from the Dash-In
infrastructure. In particular we use the DataShield functions that have been previously tied
to the correct data providers (opal / phenotype database).

Note how the input variables for DataShield are created from the selected UI.

server.R

library(shiny)

shinyServer(function(input, output) {

 output$distPlot <- renderPlot({

 if (input$plotType == "hist") {

 ds.histogram(x = paste0("D$", input$var_x))

 }

 else if (input$plotType == "contour") {

 ds.contourPlot(x = paste0("D$", input$var_x),

 y = paste0("D$", input$var_y),

 show = "zoomed"

)

 } else if (input$plotType == "heatmap") {

 ds.heatmapPlot(x = paste0("D$", input$var_x),

 y = paste0("D$", input$var_y),

 show = "zoomed"

)

 }

 })

})

note: for our convenience, since this is just a demo, we are not doing the needed checks over the
selected variable(s) that are passed to the plot – for this reason, some variable-plot combinations
will produce an error line instead of drawing a result.

Tutorial – Part 4 - The final application

http://188.166.1.102/hackaton/part4

Let's get step-by-step to the final application.

First, let's get rid of that "Old Faithful Geyser Data" title and let's have a more dynamic
one, using also an image.

All the images have to be located in a www directory, which has to be at the same
directory level of ui.R (and others). In that directory, let's put an image: "dash-in-png".

note: You may download the Dash-In logo from the part4 link above.

As we have seen at the beginning of this tutorial, shiny offers some functions that map to
HTML tags: one of these functions is img:

img(src="dash-in.png", width="250px")

Let's use this image in our title, like this:

titlePanel(title = "", windowTitle = "DASH-IN interactive federated analysis system"),

h1("The", img(src="dash-in.png", width="250px"), "interactive federated analysis system")

Now let's add some customization to the labels of our plots. First of all, we add a bunch of
controls in ui.R, for the user to (optionally) type the labels for the plots. We put these
controls in a div in order to add some style to them; then, notice that we are adding only
one input control, while the last two are output objects: what we are going to do with them
is using the renderUI() functions in server.R to (kind of) "inject" the dynamically created
input controls using the uiOutput() function in ui.R.

ui.R

div(style="font-size: .9em",

 hr(style="border-top-color: #aaa"),
 helpText("You may specify custom wording in the plot before exporting for publicati
on."),

 textInput("title", "title", ""),
 uiOutput("xlabel"),
 uiOutput("ylabel")
)

server.R

output$xlabel <- renderUI({
 textInput("xlabel", paste0("x label (for variable ", input$var_x, ")") , "")
 })

 output$ylabel <- renderUI({
 if (input$plotType == "hist") {
 textInput("ylabel", "y label (for frequency)", "")

 } else {
 textInput("ylabel", paste0("y label (for variable ", input$var_y, ")") , "")
 }

 })

At this point we have the controls, but they will not react with the labels yet. Let's make
them useful by editing a little bit more server.R:

• for the histogram

plot(x = h,
 main = ifelse(input$title != "", input$title, paste("Histogram of", input$var_x)),
 xlab = ifelse(input$xlabel != "", input$xlabel, input$var_x),
 ylab = ifelse(input$ylabel != "", input$ylabel, "Frequency"))

• for the contour

title(main = ifelse(input$title != "",
 input$title,
 paste("Correlation of", input$var_x, "and", input$var_y)),
 col.main="black")
 mtext(ifelse(input$xlabel != "", input$xlabel, input$var_x), side=1, line=3, col = "black")
 mtext(ifelse(input$ylabel != "", input$ylabel, input$var_y), side=2, line=3, col = "black")

For convenience, we show here the complete files:

ui.R

library(shiny)

shinyUI(fluidPage(

 # Application title

 titlePanel(title = "", windowTitle = "DASH-IN interactive federated analysis system"),

 h1("The", img(src="dash-in.png", width="250px"), "interactive federated analysis system")
,

 # Sidebar with a slider input for number of bins

 sidebarLayout(

 sidebarPanel(

 selectInput("plotType",

 "Plot type:",

 list("Histogram" = "hist",

 "Contour Plot" = "contour",

 "Heatmap" = "heatmap")

),

 selectInput("var_x",

 "Variable",

 get_study_variables()

),

 conditionalPanel(

 condition = "input.plotType != 'hist'",

 selectInput("var_y",

 "Contrast variable",

 get_study_variables()

)

),

 div(style="font-size: .9em",

 hr(style="border-top-color: #aaa"),

 helpText("You may specify custom wording in the plot before exporting for publicati
on."),

 textInput("title", "title", ""),

 uiOutput("xlabel"),

 uiOutput("ylabel")

)

),

 # Show a plot of the generated distribution

 mainPanel(

 plotOutput("distPlot")

)

)

))

server.R

library(shiny)

shinyServer(function(input, output) {

 output$distPlot <- renderPlot({

 if (input$plotType == "hist") {

 h <- ds.histogram(x = paste0("D$", input$var_x))

 plot(x = h,

 main = ifelse(input$title != "", input$title, paste("Histogram of", input$var_x)),

 xlab = ifelse(input$xlabel != "", input$xlabel, input$var_x),

 ylab = ifelse(input$ylabel != "", input$ylabel, "Frequency"))

 } else if (input$plotType == "contour") {

 # delete unclear labels and title

 par(col.main="white", col.lab="white")

 ds.contourPlot(x = paste0("D$", input$var_x),

 y = paste0("D$", input$var_y),

 show = "zoomed"

)

 title(main = ifelse(input$title != "",

 input$title,

 paste("Correlation of", input$var_x, "and", input$var_y)),

 col.main="black"

)

 mtext(ifelse(input$xlabel != "", input$xlabel, input$var_x), side=1, line=3, col = "black")

 mtext(ifelse(input$ylabel != "", input$ylabel, input$var_y), side=2, line=3, col = "black")

 } else if (input$plotType == "heatmap") {

 par(col.main="white", col.lab="white")

 ds.heatmapPlot(x = paste0("D$", input$var_x),

 y = paste0("D$", input$var_y),

 show = "zoomed"

)

 title(main = ifelse(input$title != "",

 input$title,

 paste("Heatmap of", input$var_x, "and", input$var_y)),

 col.main="black"

)

 mtext(ifelse(input$xlabel != "", input$xlabel, input$var_x), side=1, line=3, col = "black")

 mtext(ifelse(input$ylabel != "", input$ylabel, input$var_y), side=2, line=3, col = "black")

 }

 }) # output$distPlot <- renderPlot({

 output$xlabel <- renderUI({

 textInput("xlabel", paste0("x label (for variable ", input$var_x, ")") , "")

 })

 output$ylabel <- renderUI({

 if (input$plotType == "hist") {

 textInput("ylabel", "y label (for frequency)", "")

 } else {

 textInput("ylabel", paste0("y label (for variable ", input$var_y, ")") , "")

 }

 })

})

global.R

library(opal)

library(dsBaseClient)

library(dsStatsClient)

library(dsGraphicsClient)

library(dsModellingClient)

DATASHIELD commands

load the login file

my_login<-read.table('../logins.txt', sep="", header=TRUE)

log in to the remote servers

assign=TRUE will have the remote opal server instruct the remote R

instance to assign the dataframe into variable 'D'

opals <- datashield.login(logins=my_login, assign=TRUE, symbol = 'D')

detect the list of variables in the study

get_study_variables <- function(symbol="D") {

 tryCatch({

 ds.colnames(x=symbol)[[1]]

 }, error = function(e) {

 print(e)

 return(list("No data was loaded! See error messages!"))

 }

)

}

Server configuration and deployment of a multi-application server

DEBIAN
Install the shiny server

$ wget https://download3.rstudio.org/ubuntu-12.04/x86_64/shiny-server-1.4.2.786-
amd64.deb
$ sudo gdebi shiny-server-1.4.2.786-amd64.deb

At this point the server should be automatically up running.

Test if it's running

with the default configuration test: http://localhost:3838

The configuration file is located at /etc/shiny-server/shiny-server.conf
The file is well commented, so it will be easy to understand what to edit in order to get the
desired configuration.

To change the port, search and edit the line:

listen 3838;

To change the address:

location /put/here/your/address { ...

To reload the server with the new configuration:

$ sudo service shiny-server stop
$ sudo service shiny-server start

For the deployment of a multi-application server simply prepare different folders each
containing its own ui.R, server.R (and optionally global.R) and the server will treat each
such folder as a different application.

MAC
On Macs the shiny server needs to be complied form source. It all passes through
homebrew. Install homebrew with the following command:

$ /usr/bin/ruby -e "$(curl –fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

Using homebrew install the following software:

• python 2.6 or 2.7 (Really. 3.x will not work)
• cmake (>= 2.8.10)
• gcc
• g++
• git

typing commands as the following:

$ brew install python

Install a development version of R available from ATT: http://r.research.att.com/

Then install the shiny package in the system-wide library:

$ install.packages("shiny", repo="http://cran.rstudio.org", type="source")

Now proceed with the first steps – stopping before the CMAKE step – under
“Installation” on the official page at
https://github.com/rstudio/shiny-server/wiki/Building-Shiny-Server-from-Source
The current launcher.cc source file must be edited to use the proc_pidpath() function on
OSX instead of Linux proc (see this thread). Use this version from Nathan Weeks instead.
After replacing the file, you can proceed with cmake and all subsequent installation steps.

See references:
https://github.com/rstudio/shiny-server/wiki/Building-Shiny-Server-from-Source
http://www.ducheneaut.info/installing-shiny-server-on-mac-os-x/
https://groups.google.com/forum/#!topic/shiny-discuss/WTXFtrEnR-k
https://github.com/nathanweeks/shiny-
server/blob/d5240ef6d795dafc89c74a49d6f14d7fe0509541/src/launcher.cc

