2

Non-linear beam

dynamics
Yannis PAPAPHILIPPOU

Accelerator and Beam Physics group

Beams Department
CERN

Seminar, June 2016

Universita di Roma, La Sapienza
Rome, ITALY
20-23 June 2016

Non-linear beam dynamics, Graduate Studies in Accelerator Physics’



(&

B Lagrangian Formalism B Canonical perturbation
Lagrange mechanics theory

From the Lagrangian to the Form of the generating
Hamiltonian function

B Hamiltonian Formalism

Hamilton’s equations KAM theory

Properties of the Hamiltonian Perturbation treatment for a
flow sextupole

Poisson brackets and their Second order sextupole tune-
properties shift

B Canonical transformations Resonance driving terms,
Preservation of phase volume tune-shift and tune-spread

and examples B Secular perturbation theory
B Single particle relativistic Third order resonance

Small denominatorsand

Non-linear beam dynamics, Graduate Studies in Accelerator Physics’ Seminar, June 2016

Linear magnetic fields and
integrable Hamiltonian

Action-angle variables

General non-linear Hamiltonian

Hamllton.lan . Fixed points for general
Canonical transformations and multi-pole
approximations 4th order resonance

Onset of chaos
Resonance overlap

B Summary



Contents of

B [Lagrangian Formalism
0 Lagrange mechanics

0 From the Lagrangian to the
Hamiltonian
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1 Describe motion of particles in ¢, coordinates (n
degrees of freedom from time ¢, to time ¢,
1 Describe motion by the Lagrangian function

L(Ql) c o5 {4n, q.la SR 7Q7’L7t)W1th(Q17 R 7Q’n) the
generalized coordinates and (¢, ..., ¢,) the

generalized velocities

[ The Lagrangian function defined as [, =7 — V/,
i.e. difference between kinetic and potential energy

dThe integral W = / L(q;, i, t)dt | .
defines the action %
JdHamilton’s principle: system 1

evolves so as the action becomes
extremum (principle of stationary action)

Seminar, June 2016
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A The variation of the action can be written as

to

oL oL

to
STV — <umwm+ww—mmwmwj9(—@+—m
t1

t1

dq dq

2

) a

[ Taking into account that 54 = ddif, the 2nd part of the

integral can be integrated by parts giving

L |®
OL s

SW —
%% B

t1

d

oL

(e
¢, \Odq dt

(

dq

=

dThe first term is zero because §q(t1) = dq(t2) =0
so the second integrant should also vanish,
providing the following differential equations for
each degree of freedom, the Lagrange equations

d OL

dt 94,

0L
0g;

=0
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JFor a simple force law contained in a potential
function, governing motion among interacting
particles, the Lagrangian is (or as Landau-Lifshitz
put it “experience has shown that...”)

Seminar, June 2016

— 1
i=1
4 For velocity independent potentials, Lagrange
equations become %

0q;

i.e. Newton’s equations.

Non-linear beam dynamics, Graduate Studies in Accelerator Physics’



dSome disadvantages of the Lagrangian formalism:

2

No uniqueness: different Lagrangians can lead to same
equations

" Seminar, June 2016

Physical significance not straightforward (even its basic
form given more by “experience” and the fact that it
actually works that way!)
dLagrangian function provides in general 1 second
order differential equations (coordinate space)

dWe already observed the advantage to move to a
system of 2n first order differential equations,
which are more straightforward to solve (phase
space)

dThese equations can be derived by the Hamiltonian
of the system 7

Non-linear beam dynamics, Graduate Studies in Accelerator Physics
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B Hamiltonian Formalism

- Hamilton’s equations

0 Properties of the Hamiltonian
flow

0 Poisson brackets and their
properties
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[ The Hamiltonian of the system is defined as the Legendre
transformation of the Lagrangian

2 0L

2

where the generalised momenta are PD; — £y
qi

1 The generalised velocities can be expressed as a function of
the generalised momenta if the previous equation is

invertible, and thereby define the Hamiltonian of the system

J Example: consider  [(q,¢q) = % Z mig; — V(qi, .., qn)

i OL ,
A From this the momentum can be determined as »: = Bg, i

which can be trivially inverted to provide the Hamiltonian
2

b;
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1 The equations of motion can be derived from the
Hamiltonian following the same variational principle as for
the Lagrangian (“least” action) but also by simply taking the
differential of the Hamiltonian

| oL .. OL oL

dH = Zlfzdéz + gidp; @Cﬁdq.i 90 dg; — —-dt
Di Di

Seminar, June 2016
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1 The equations of motion can be derived from the
Hamiltonian following the same variational principle as for
the Lagrangian (“least” action) but also by simply taking the
differential of the Hamiltonian

: A OL 0L oL

: dH = sz’dqfi + ¢idp; dqz 9 dq; — Ed
= ] // i

% 1, \-1—'—’ \_!_’

< or :

: oH . OH
s dH ( idp; — Zalz——al— dp; +  + ——dt
: 0! qu o Z@pzp 9qi AT
U d By equatmg terms, Hamilton’s equations are derived

. 9H . 9H 9L _ 0H

;? Q’Z - apz Y p?, - aq ’ 8t - at

1 These are indeed 2n + 2 equations describing the motion in
the “extended” phase space (¢;,...,qn,p1,...,Pn,t,—H) u



2

A The variables (¢, ..., qn,p1,...,pn, t,—H) are called
canonically conjugate (or canonical) and define the
evolution of the system in phase space

1 These variables have the special property that they
preserve volume in phase space, i.e. satisfy the
well-known Liouville’s theorem

The variables used in the Lagrangian do not
necessarily have this property

JdHamilton’s equations can be written in vector form
7 = J - VH(Z) with z = (C_Iza ooy qnyP1y = 7pn)
and V = (aQ’La R 8Qn7 8p17 R apn)

dThe 21 x 2n matrix j — ( 0 (I)) is called the

" Seminar, June 2016
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JCrucial step in study of Hamiltonian systems is
identification of integrals of motion

Seminar, June 2016

1 Consider a time dependent function of phase space.
Its time evolution is given by

d o~ ((dgi Of | dp; Of of
dtf(p’q’t) B ; ( dt dg; AT 3pi> T

" COH Of OH Of\ Of 9
Sl ) Ay

Op; 0q;  Dq; Op; " ot H, ot

1=1

where [H, f] is the Poisson bracket of f with H

dIf a quantity is explicitly time-independent and its
Poisson bracket with the Hamiltonian vanishes (i.e.
commutes with the [f), it is a constant (or integral)
of motion (as an autonomous Hamiltonian itself)

Non-linear beam dynamics, Graduate Studies in Accelerator Physics’
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Poisson @

L The Poisson brackets between two functions of a set
of canonical variables can be defined by the
differential operator

B “/0f Og Og Of
91 = ; <5pi dq;  Opi 3%‘)
0 From this definition, and for any three given

functions, the following properties can be shown
af 4+ bg,h| =al|f,h] +blg,h] ,a,b € R bilinearity
f, 9] = =g, f] anticommutativity
f5lg, M) 4 g, (R, fI] + [h, [, 9] = O Jacobi’s identity

f,gh] = [f,glh + glf, h]

= WU Poisson brackets operation satisfies a Lie algebra

14
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B Canonical transformations

0 Preservation of phase volume
and examples
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[ Find a function for transforming the Hamiltonian from
variable (q, p)to (Q,P) so system becomes simpler to study

[ This transformation should be canonical (or symplectic), so
that the Hamiltonian properties of the system are preserved

[ These “mixed variable” generating functions are derived by

OF OF OF; 0F3
F - Pi — 9 P’L — = F: ’ -4 — — 9 Pz —
8F2 5’F2 8F4 8F4
d A general non-autonomous Hamiltonian is transtormed to
H(QP.1)= Hlq.p.t) + 50 . j=123.4

ot
[ One generating function can be constructed by the other

through Legendre transformations, e.g.

FQ(qv:P):Fl(an)_QPa F3(Q7p):F1(q7Q)_qp7
with the inner product define as q-p=) g

1

Non-linear beam dynamics, Graduate Studies in Accelerator Physics’ Seminar, June 2016
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Preserve

d A fundamental property of canonical transformations is the
preservation of phase space volume

2

[ This volume preservation in phase space can be represented
in the old and new variables as

/Hdpquz = /HdP dQ;

O The volume element in old and new variables are related
through the ]acoblan

O(Py,.... Py, Q1. ... O
Hdpquz— 17 9 Q]. Q HdeQZ
(p17'°'7pn7Q17°'°7Q?7, i1

d These two relationships imply that the Jacobian of a
canonical transformation should have determinant equal to 1

O(Pi,...,P,Q1,...,Qn)
a(pla“')anQ17“'7qn)

a(plv ey Pnyq1, - - 7qn)

=1
O(Pi,...,Py,Q1,...,Qn)

17
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A The transformation ) = —p , P = g, which interchanges
conjugate variables is area preserving, as the Jacobian is

2

or 0@ 1
0(P,Q) _ Op Op _ 0 — — 1
d(p,q) or  9Q 1 0

dq dq
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A The transformation ) = —p , P = g, which interchanges
conjugate variables is area preserving, as the Jacobian is

2

or 0@ 1
oP,Q) _ | op Op | — 0 — — 1
(p,q) or  0Q 1 0

0q 0q

1 On the other hand, the transformation from Cartesian to
polar coordinates ¢ = Pcos(), p = Psin() isnot, since

d(a.p) _ |—PsinQ Pcos@

(Q,P) cos () sin@Q | -

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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A The transformation ) = —p , P = g, which interchanges
conjugate variables is area preserving, as the Jacobian is

2

or 0@ 1
oP,Q) _ | op Op | — 0 — — 1
(p,q) or  0Q 1 0

0q 0q

1 On the other hand, the transformation from Cartesian to
polar coordinates ¢ = Pcos(), p = Psin() isnot, since

d(a.p) _ —Psin) Pcos@
0(Q,P) cos () sin @)

[ There are actually “polar” coordinates that are canonical,

givenby ¢ =—V2Pcos@), p=+v2PsinQ for which

5 V2Psin() 2P cos()
B (qJ;) — cos sin () =1
@) V2P V2P ,

S
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B Single particle relativistic
Hamiltonian

Canonical transformations and
approximations

Linear magnetic fields and
integrable Hamiltonian

Action-angle variables
General non-linear Hamiltonian
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Single-partic

dNeglecting self fields and radiation, motion can be
described by a “single-particle” Hamiltonian

2

H(x,p,t) = cy/ (p — £A(x, 1)) +m2e2 + ed(x, 1)

[ (z,y, 2) Cartesian positions
d p = (p., DysDz) conjugate momenta
d A= (A,,A4,,A,) magneticvector potential

Qo electric scalar potential

[ The ordinary kinetic momentum vector is written
— — _ £
P=ymv=p—-ZA

with v the velocity vector and v = (1 — v?/c?)~ /2 the
relativistic factor

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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Single-partic @

d It is generally a 3 degrees of freedom one plus
time (i.e. 4 degrees of freedom)

" Seminar, June 2016

0 The Hamiltonian represents the total energy
H=FE =~ymc* + ed
Q The total kinetic momentum is

2 1/2
P = (H m262>
d Using Hamilton's equations
(x,p) = [(x,p), H]

it can be shown that motion is governed by Lorentz
equations 2

Non-linear beam dynamics, Graduate Studies in Accelerator Physics
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It is useful (especially for rings) |y Pl rajctory
to transform the Cartesian "
coordinate system to the O
Frenet-Serret system moving .
to a closed curve, with path length s

dThe position coordinates in the two systems are
connected by r = ry(s) + Xn(s) + Yb(s) = zuy + yuy, + 2u,

A The Frenet-Serret unit vectors and their derivatives

. d d*
are defined as (t,n,b) = (@I‘O(S), —p(s)@ro( s),t X n)
1
d t 0 ~o(s) 0 t
el e 0 0 7(s) n
> \b L0  —7(s)) \b

p(s)
with p(s) the radius of curvature and 7(s)the torsion

which vanishes in case of planar motion 24
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JdWe are seeking a canonical transformation between

(a,p) = (Q,P) or
(2,9, 2, P2, Dy, 02) — (X,Y,s, Py, P,, Ps)

2

" Seminar, June 2016

L The generating function is

OF3(p, OFs3(p,
(a,P) = —(%55p=, 258

By using the relationship between the positions, the
generating function is

F5(p, Q) =—-p-r+F3(Q) =—p-r

Non-linear beam dynamics, Graduate Studies in Accelerator Physics
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L for planar motion, the momenta are

X
P = (Px,Py,PS) — p-(n,b, (1 + ;)t)

" Seminar, June 2016

[ Taking into account that the vector potential is also

transformed in the same way

X
(Ax, Ay, AS) = A-(n, b, (1 + ;)t)

the new Hamiltonian is given by

m dynamics, Graduate Studies in Accelerator Physics

<

H(Q,P.t) = C\/(PX — ZAX)2 + (Py — gAy)z 4

Non-linear be

26



Changing of ‘@

[ It is more convenient to use the path lengths,
instead of the time as independent variable

1 The Hamiltonian can be considered as having 4
degrees of freedom, where the 4t “position” is
time and its conjugate momentum is P, = —H

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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[ It is more convenient to use the path lengths,
instead of the time as independent variable

1 The Hamiltonian can be considered as having 4
degrees of freedom, where the 4t “position” is
time and its conjugate momentum is P, = —H

Seminar, June 2016

dIn the same way, the new Hamiltonian with the
path length as the independent variable is just
= —H(X,Y,t, Px, Py, P,s) with
H=—4,- ( %) \/(Pt“q)) —me? — (P — SAx)2 = (Py — SAy)?
Q1t can be proved that this is indeed a ‘canonical
transformation
1 Note the existence of the reference orbit for zero

vector potential, for which (x,v, P, P, P,) = (0,0,0,0, R)_

Non-linear beam dynamics, Graduate Studies in Accelerator Physics’
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0 Due to the fact that longitudinal (synchrotron)
motion is much slower than the transverse
(betatron) one, the electric field can be set to zero
and the Hamiltonian is written as

" Seminar, June 2016

Q)

g
|

I

|

(1 - %) \/l (%)2 —me = (P, - “Ax)? = (Py = “Ay)?

@)

P'2
A The Hamiltonian is then written as

H = —ZAS — (1 - %) \/(P2 — (P — ZAx)2 — (Py — EAW

L If static magnetic fields are considered, the time
dependence is also dropped, and the system is
having 2 degrees of freedom + “time” (path length)

Non-linear beam dynamics, Graduate Studies in Accelerator Physics
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0 Due to the fact that total momentum is much larger
than the transverse ones, another transformation
may be considered, where the transverse momenta
are rescaled

(Q,P) — (q,p) or

2

Px Py P

P, P ’_Poc)

(JThe new variables are indeed canonical if the
Hamiltonian is also rescaled and written as

(X,Y,t,Px,Py,Pt) = (a_jag7t_aﬁazapyvﬁt):(X7Y7_C tv

- H - T o m2c? _ _
H(T Gt Pas Pys P1) = - = —eAs—(l + —) \/pf - — (P» — €Ag)? — (Dy — eAy)?

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016

p(s) P
- o 1
with (4,4, 4,) = —(A,, Ay, As)
2 2 1 PO
= cC
and 2 :6378 .
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L Along the reference trajectory p,, = 1 and
dt OH _ 1 fo
ds | P=P, — 8_13,5|P:P0 — —Pito = —E

O It is thus useful to move the reference frame to the
reference trajectory for which another canonical

transtormation is performed
(@p) — (§p) or

- A .- S8—80 . 1
($7y7t7px7py7pt) = ($7y7t7px7py7pt) — (337y7t +

» P 7]3 7]5t__
Bo U o)

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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1 Along the reference trajectory p, = 1 and
dt OH 1 o

%‘PzPo = o, \p=p, = —Dio = 5o
A It is thus useful to move the reference frame to the

reference trajectory for which another canonical

transtormation is performed
(@p) — (§p) or

- T . .- 8—S80 . . _ 1
<$7y7t7px7py7pt> = ($7y7t7px7p’y7pt) — (Jf,y,t—|— dezmpy)pt _ _0)
L The mixed variable generating function is

- OFy(q,p) OF:(q,p id]
(4,P) = ( 8(gl B). 8((;1 P)) providing

F5(Q,D) = Tp, + ypy + (T +
A The Hamiltonian is then
% 1 1

? ~ 1 1 ~ €T
H £7g7tapx7ﬁ 723 = 5 _+]3 —GAS—(].—|——> ﬁ + —)2 —
( P = 5y (T &)V w

S — Sp 1

Ge ) (D + %)

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016

— (po — €Ay)? — (Py — €A,)?
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Relativistic and t

2

: 1 P — B
A First note that ﬁt:ﬁt_ﬁ_:pt_ﬁw: tP 0 —
and | = { 0 | 0
dIn the ultra-relativistic limit 5y -1, —— — 0
and the Hamiltonian is written as 0
H(z,y,l, Pz, Py, 0) = (1—|—(5)—efls— (1 + %) \/(1 +0)2 — (py — eflx)2 — (py — efly)Q

where the “hats” are dropped for simplicity

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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Relativistic a

=

: 1
- U First note that p, = p; — =P P = _
: and [=1¢ 0 1
¢ OIn the ultra-relativistic limit 3, — 1, — — 0
and the Hamiltonian is written as 0
S (2,1, D py, 0) = (140)—e Ay~ (1 + %) \/(1 +0)2 — (py — eAy)? — (py — e4y)?

where the “hats” are dropped for simplicity

JIf we consider only transverse field components,
the vector potential has only a longitudinal
component and the Hamiltonian is written as

EI Note that the Hamiltonian is non-linear even in the

absence of any field component (i.e. for a drift)! y

Non-linear beam dynamics, Graduate Studies in Accelerator Physics’
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[ It is useful for study purposes (especially for
finding an “integrable” version of the Hamiltonian)
to make an extra approximation

" Seminar, June 2016

1 For this, transverse momenta (rescaled to the
reference momentum) are considered to be much
smaller than 1, i.e. the square root can be expanded.

0 Considering also the large machine approximation
r << p , (dropping cubic terms), the Hamiltonian
is simplified tg ,
> T 1+0 A
H = PrtpPy  x{1+9) eA,
2(1+0)  p(s)

L This expansion may not be a good idea, especially
for low energy, small size rings .

Non-linear beam dynamics, Graduate Studies in Accelerator Physics
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Linear

B Assume a simple case of linear transverse magnetic
: fields, B, = bi(s)y
g By = — bQ(S) + bl(s)x ’
: main bending field —Bg = bo(s) = L ?C) T]
ep(s
normalized o bl(s)
quadrupole gradient K(s) = bi(s )cPo o [1/m?,
P()C
magnetic rigidity Bp = - T - m]

Non-linear beam dynamics, Graduate Studies in Accelerator Physics’
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2

B Assume a simple case of linear transverse magnetic
: fields, B, = bi(s)y
g By = — bO(S) + bl(s)x ’
; main bending field —Bg = bo(s) = L ?C) T]
ep(s
normalized o bl(s)
quadrupole gradient K(s) = bi(s )cPo - [1/m?,
P()C
magnetic rigidity Bp = - T - m]

B The vector potential has only a longitudinal
component which in curvilinear coordinates is

_ 1 OA; - 1 OA .
Be = "5 oy Py T T o

B The previous expressions can be integrated to give

Aws) = 2 [=5t5 = (b + K(9) 5 + KG)5] = Poc Aulpos)

Non-linear beam dynamics, Graduate Studies in Accelerator Physics’



B The Hamiltonian for linear fields can be finally written as

2

2 2
DL tDy xd 2 . K(s) /2 2
H=g5058) ~ o0 T2z T2 (& —Y)
v p.  dp. 5 (1

ds 1467 ds  p(s) <p2(8) +K(S))m
dy — py  dpy

. s 140 d
and they can be written as two second order uncoupled

differential equations, i.e. Hill’s equations

B Hamilton’s equation are

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016

K,
\
1 1 5
x” + ( 2+K(3)>x:
: Jlr > \Ps) pLs) with the usual solution for
y_1—|—5[‘i'(i2y20 d = (0 and U =2,y
K u(s) = VeB(s) cos(y(s) + o)
Yy €

u'(s) =

5057 (S((6) o) F als) cos(u(s) + vo)



B There is a canonical transformation to some optimal set of
variables which can simplify the phase-space motion

2

B This set of variables are the action-angle variables

B The action vector is defined as the integral J = 7{ pdq
over closed paths in phase space.
B An integrable Hamiltonian is written as a function of only

the actions, i.e. Hy = Hy(J). Hamilton’s equations give

- OHy(J

bi = 8? | = w;(J) = ¢ = wi(I)t + ¢io

. O0Ho(J) o N
Ji = 96 0 = J; = const. &

i.e. the actions are integrals of motion and the angles are
evolving linearly with time, with constant frequencies
which depend on the actions

B The actions define the surface of an invariant torus,
topologically equivalent to the product of n circles 3

Non-linear beam dynamics, Graduate Studies in Accelerator Physics’ Seminar, June 2016



Accelerator He
variables
B Considering on-momentum motion, the Hamiltonian can

be written as .
Y — Dz TDy | K;c(s)a:2—Ky(s)y2
2 | 2

2

B The generating function from the original to action angle
variables is

F1(:1:‘,y, ¢$7 ¢y7 S) - =

5132 y2
25,y e F 556

tan ¢, (s) + ay(s)]

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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Accelerato
variables
B Considering on-momentum motion, the Hamiltonian can

be written as .
g PatPy | Ke(9)e? =K, (s)y?

2

2 | 2
B The generating function from the original to action angle

variables is
Fi(#,9, 62 0475) = ~ 55 o7 [tan 62(5) + aa(5)] = 3 5 57 [tan dy(5) + ay s)]
x Y
B The old variables with respect to actions and angles are

u \/2/6’& J COS Qbu( ) ) pu(s) — T/ ﬁu( ) (Sln¢u( )_i_a’u(s) COSQbu(S))

and the Hamiltonian takes the form

Jy
HO(J$7Jy7S) ﬂ;;](S) | By(s)

B The “time” (longitudinal position) dependence can be
eliminated by the transformation to normalized coordinate

()= (2 73) (2) orla) = v (S wieno = 5 £ 35

2

Non-linear beam dynamics, Graduate Studies in Accelerator Physics’ Seminar, June 2016



Hamiltonian
B Considering the general expression of the the longitudinal

component of the vector potential is

In curvilinear coordinates (curved elements)

2

€T > b, +ia
Ag=(1+—=)ByRe» ———" y)" !
(14 )BofRe — (x + iy)

p(s) s oo
bn + i0n
i i As = BoR
In Cartesian coordinates 0N€e Z nt1

n+1

(x + iy)
with the multipole coefficients being written as

— lde and p, — 1QBy
Bon! 0x™ lz=y=0 Bon! 0xz™

(U

z=y=0
B The general non-linear Hamiltonian can be written as

H(2, Y, PasPys 5) = Ho(@,Ys Doy Dys 8) + Y Py i, (8) 2"y
ko ky

with the periodic functions hy, 1, (5) = hi, x, (s + C)

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B Canonical perturbation
theory

2 Form of the generating
function

2 Small denominatorsand
KAM theory

) Perturbation treatmentfora
sextupole

- Second order sextupole tune-
shift

- Resonance driving terms,
tune-shift and tune-spread

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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Canonice

B Consider a general Hamiltonian with n degrees of freedom
H(J,p,0) = Ho(J) + eHy(J, p,0) + O(€?)
B The non-integrable part H;(J, ¢, 0) is 27 -periodic on the
angles ¢ and the “time” 6

2

B Provided that € is sufficiently small, tori should still exist
but they are distorted

B We seek a canonical transformation that could “straighten
up" the tori, i.e. it could transform the non-integrable part
of the Hamiltonian (at first order in €) to a function only of
some new actions H(J) plus higher orders in €

B This can be performed by a mixed variable close to identity
generating function S(J,p,0) = J - ¢ + eS1(J, p,0) + O(?)
for transforming old variables to new ones —
(J; )

B |n principle, this procedure can be carried
to arbitrary powers of the perturbation

Non-linear beam dynamics, Graduate Studies in Accelerator Physics’ Seminar, June 2016



Canonical

B By the canonical transformation equations, the old action
and new angle can be also represented by a power series in €

2

J = j—|— 6851(J,¢79) —+ 0(62) J = j—|— 6851(]7_(’07(9) + 0(62)
Op 0P

- 051(J, ¢,0) 2 o = 051(J,,0) 2
— — O — — —

p=@+e 57 + O(e?) Y =@ —c¢ 57 + O(e)

B The previous equations expressing the old as a function of
the new variables assume that there is possibility to invert

the equation on the left, so that S1(J,®,60) becomes a
function of the new variables
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B By the canonical transformation equations, the old action
and new angle can be also represented by a power series in €

J = j—|— 6851(J7¢79) —+ O(GZ) J = j—l— 6851(!]7_(’07(9) + 0(62)
Op 0P

- 051(J, ¢,0) 2 o = 051(J,,0) 2
— — O — — —

p=@+e 57 + O(e?) Y =@ —c¢ 57 + O(e)

B The previous equations expressing the old as a function of
the new variables assume that there is possibility to invert

the equation on the left, so that S1(J,®,60) becomes a
function of the new variables

B The new Hamiltonian is then

(1.8.0) = HJ (T, 3). (T, §).0) + oL 20

00

B The second term is appearing because of the “time
dependence through 6

+ O(€?)

Non-linear beam dynamics, Graduate Studies in Accelerator Physics’ Seminar, June 2016
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Canonical

B Expand term by term the Hamiltonian H(J(J, @), o (J, &), 0)
to leading order in ¢

Ho(J(J, @) = Ho(J) +

2

GQHO(J_) 051(J, ¢,9)
a.J 9P
ey (J(J, @), (T, §),0) = cHi(J, @) + O(?)
B The new Hamiltonian can also be expanded in orders of €

H:HQ—I—GH1+...

+ O(€?)

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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Canonice

B Expand term by term the Hamiltonian H(J(J, @), o (J, &), 0)
to leading order in ¢

Ho(J(J, @) = Ho(J) +

2

eaﬂo(j) 051(J, ¢,9)
a.J 9P
ey (J(J, @), (T, §),0) = cHi(J, @) + O(?)
B The new Hamiltonian can also be expanded in orders of €

H:HO—|—€H1—|—...
B Equating the terms of equal order, we obtain
Zero order E’o — Ho(j)

— 0S1(J,®,0
First order H{ = 1(8;0’ )

+ O(€?)

where the frequency vectoris  w(J) = -

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B From the 1%t order Hamiltonian, the angles have to be
eliminated. For this purpose, it can be splitin two parts:

1\" —
Average part: (Hp)g = (5) %Hl(J,gﬁ)dgﬁ

Oscillatingpart:{ H } = H1 — <[{1>“5
B The 1%t order perturbation part of the Hamiltonian then
becomes

_ 051(J,p,0
7, — 1(8990 )

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B From the 1%t order Hamiltonian, the angles have to be
eliminated. For this purpose, it can be splitin two parts:

1\" —
Average part: (Hp)gp = (%) %Hl(J,QB)dQB

Oscillatingpart:{ H1 } = H1 — <[{1>“5
B The 1%t order perturbation part of the Hamiltonian then
becomes

i = PHE 2D o(g) PR (5. 9)p + (H1(T. 9))

B Thus, the generating function should be chosen such that
the angle dependence is eliminated, for which
o _ 05, (J. 3.0 _ 98,(J. 3.0 _
() = (Hi(J.8)p and NP0 ) P20 (7 g
B The new Hamiltonian is a function only of the new actions
A(T) = Ho(7) + € (1 (7, @) + O()
with the new frequency vector )
_oH(J) = O(H1(J,P))e

o(J) = 5T w(J)+ e 57 2+ 0O(e%) 50
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Form of t

B The question that remains to be answered is whether a
generating function can be found that eliminates the angle
dependence

2

B The oscillating part of the perturbation and the generating
function can be expanded in Fourier series

{Hq(J Z Hyy (J)eik-#+rf)  and
k,p Sl Z Slk z(k Pp+pb)

B Following the relationship for the angle elimination, the
Fourier coefficients of the generating function should

satisty k- @ = k11 + -+ - + kn¥n  with
- Hq(J
Slk(J):ik-wl(k}))—i—p with k,p#0
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AP S Hie(I)  iegtpo
S(J.@¢)=J-@+ei ) S elk-@1p0) L (2
(. ?) ’ k#Okz-w(J)—HU ()
B The denominator is composed by the frequency vector

B Finally the generating function can be written as

w(J) = 8}({;}']) and the integers k,p # 0

B If the denominator vanishes, i.e. for the resonance
condition k - w(J) + p = 0, the Fourier series
coefficients (driving terms) become infinite

B |t actually implies that even at first order in the
perturbation parameter and in the vicinity of a resonance, it
is impossible to construct a generating function for
seeking some approximate integrals of motion

Non-linear beam dynamics, Graduate Studies in Accelerator Physics’ Seminar, June 2016
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B |n principle, the technique works for arbitrary order, but
the disentangling of variables becomes difficult even to
2nd order!!!

)

B The solution was given in the late 60s by introducing the
Lie transforms (e.g. see Deprit 1969), which are
algorithmic for constructing generating functions and
were adapted to beam dynamics by Dragt and Finn (1976)

B On the other hand, the problem of small denominators
due to resonances is not just a mathematical one. The
inability to construct solutions close to a resonance has to
do with the un-predictable nature of motion and the onset
of chaos

B KAM theory developed the mathematical framework into
which local solutions could be constructed provided some
general conditions on the size of the perturbation and the
distance of the system from resonances are satisfied

Non-linear beam dynamics, Graduate Studies in Accelerator Physics’ Seminar, June 2016
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KAM the

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016

Original idea of Kolmogorov (1954) (super-convergent series expansion)
later proved by Arnold (1963) and Moser (1962)

If a Hamiltonian system is subjected to weak nonlinear perturbation,
some invariant tori are deformed and survive

Trajectories starting on one of these tori remain on it thereafter,
executing quasi-periodic motion with a fixed frequency vector
depending only on the torus.

The family of tori is parameterized over a Cantor set of frequency
vectors, while in the gaps of the Cantor set chaotic behavior can occur
The KAM theorem specifies quantitatively the size of the perturbation
for this to be true.

The KAM tori that survive are those that have “sufficiently irrational”
frequencies

The conditions of the KAM theorem become increasingly difficult to
satisfy for systems with more degrees of freedom. As the number of
dimensions of the system increases, the volume occupied by the tori
decreases

A complement of KAM theory for the stability of dynamical systems
were given by Nekhoroshev (1971) who proved that if the density of
tori is large, all solutions will stay close to the tori for exponentially
long times showing practical stability of motion
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Perturbation t @

perturbation and restrict the study only to one plane. The

B Consider the simple case of a periodic sextupole

Hamiltonian is written as,

2+ K(s8)x? | Kss:L*3
H(x,py,s) = L= 2( ) | (3)

where K (s)and K;(s)are periodic functions of time.

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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perturbation and restrict the study only to one plane. The

B Consider the simple case of a periodic sextupole

Hamiltonian is written as,

2+ K(s8)x? | KSS.CUS
H(x,py,s) = L= 2( ) | (3)

where K (s)and K;(s)are periodic functions of time.

B We proceed to the transformation in action angle variables

to write the Hamiltonian in the form

J 2v/2K,(s)
Bs) 3

L ) (55()2 (cos 3 + 3cos 0)

H = Hy(J) + Hi(¢,J) = ) 32

(JB(s))%? cos® ¢ = 5

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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perturbation and restrict the study only to one plane. The

B Consider the simple case of a periodic sextupole

Hamiltonian is written as,

H(,p,,s) = B 4 o

o 2 | 3

where K (s)and K;(s)are periodic functions of time.

B We proceed to the transformation in action angle variables

to write the Hamiltonian in the form

J  2v2K,(s) J  K(s)
Bs) " 3 () " 3v2

B [t can be shown that the average of the sextupole

H = Hy(J)+ Hy(¢,J) = (JB(5))*'? (cos 3¢ + 3 cos ¢)

(JB(s))%? cos® ¢ = 5

perturbation, over the angles vanishes

(PG, KZ(\S/)@[jT(S> (Jﬁ(s))l/Q/O " (cos 36 + 3 cos §)d = 0

B Sextupoles do not provide any tune-shift at first order

Non-linear beam dynamics, Graduate Studies in Accelerator Physics’ Seminar, June 2016
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Perturbation t @

B The close to identity generating function is written as

S(J,0,0)=J -6+ S1(J,,0) +
B Following the perturbation steps, the generating function

has to be chosen such that the following relationship is

satistied 8sl(géé,9) +u(J)- 851((;3&’9) — —{H,(],$)} with
Ks(s)

3v/2

{H1} = Hi— (1) =H1 = (JB(s ))3/2 (cos 3¢ + 3 cos @)

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016

58



2

B The close to identity generating function is written as

S(J,0,0)=J -6+ S1(J,,0) +
B Following the perturbation steps, the generating function

has to be chosen such that the following relationship is

satistied 831(;;&,0) +u(J)- aSl(gf’e) — —{H,(],$)} with
{H1} = Hi— (1) =H1 = I;\([) (JB(s ))3/2 (cos 3¢ + 3 cos @)

B Following the canonical perturbation procedure the
generating function is

Hlk(j) (k-d+p0
S(J, J -0+ Ej A i(k-¢t+pt) 4
( ¢) ¢ 0 hp#O}C.V(J)%_pe

B The only non-zero coefficients are for  — 1,3 and
_ - K(s) > <6i<3¢+p9> 367:<¢+pe>>
59
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B Expand both the perturbation and generating function in
Fourier series of the form

$1(J,¢,0) = Z Sik (. H)Qikq; and {Hi(J,¢,0)} =) Hux(J, 0)et*?
k

k
B The equation relating the amplitudes is

0S
’ikVSlk+ 1k:—H1k
which can be solved yie91$12ing 00
) T : ,
— H ikv(0"—0—m) 3pn/
Sk 2 sin(wkv) /9 1K€ ao

e @)
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Perturbatic

2

N Expand both the perturbat10n and generating function in
Fourier series of the form

$1(J,¢,0) = Z Sik (. H)in and {Hi(J,¢,0)} =) Hux(J, 0)et*?
k

k
B The equation relating the amplitudes is

0S
’ikVSlk—F 1k:—H1k
which can be solved yleliléng 00
7/ i . /
— H ikv(0"—0—m) 3n/
Sk 2 sin(mwkv) /9 1K€ do

B Following the canonical perturbation procedure the
generating function is

. 0-+2m
1 . /
_ E . etklo+v (0 —9—7T)]d9’
51 - QSin(ﬂ'l{?V)/ 1K€’

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016

B For the sextupole, and letting « (s / 3 We have
P sz [S(0 4 U() —Y(s) — ) | sind(6 4 () —ls) )]
o1 = 2v/2 Js Ko(s)5(s) [ sin(7v) i 3sin(3mwv) d61



2

B We derived (with a lot of effort) the common result that
sextupoles at first order excite integer and third integer
resonances

B Again this is not generally true! It is known that sextupoles
can drive any resonance (either if they are large enough, or
if the particle is far away from the closed orbit)

B This can be shown again by pursuing the perturbation
approach to second order (as for the tune-shift)

B A useful application is to use the generating function for
computing the correction to the original invariant, as the
new one should be an integral of motion (at first order)

J%j | aSl(ngpve)
Oy

Non-linear beam dynamics, Graduate Studies in Accelerator Physics’ Seminar, June 2016
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B [t can be shown that at second order in perturbation theory
the Hamiltonian depending only on the actions can be

written 1 9%H, (E)Sl ) 2 N 0H{ 051

2

HQ(‘]_):<§ 0J2 \ O¢ oJ 0¢ )¢

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B [t can be shown that at second order in perturbation theory
the Hamiltonian depending only on the actions can be

2

written = 1 52 H()/ 051 2 O0H{ 05,
Hy(J) = (= == -
) =15 7 (8qb> t o7 90
B This can be simplified to Hy(J) = <8;[jl %ilm

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B [t can be shown that at second order in perturbation theory
the Hamiltonian depending only on the actions can be

written 1 32/]{6' ( 0S4 ) 2 0H{ 051 >
@

D) =G5% 36 ) 57 94

B This can be simplified to H,(J) = ( o7 09 )

8H1 _ K ( )Jl/Qﬁ( )3/2(0083¢+3COS¢)
_ oJ 22

08 _ _J” / K. ()32 [C°S<¢+w< §) — (s >—7w>+C°s3<¢+¢<3’>‘¢(3)_w>]dsf

- sin(7v) sin(3mv)

op 22

OH, 051

B The two terms are

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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2

B [t can be shown that at second order in perturbation theory
the Hamiltonian depending only on the actions can be

written _ _ 102Hy (9S,\° OH; 85,
Hy(J) = (5 = -
)= g7 <a¢> T 07 06
B This can be simplified to Hy(J) = <86]§1 %j; )

. 881:171 _ [;s\;;) j1/25(5)3/2((;033gb—|—3608 ®)
651 J3 2 s+C

05, _ sz [€OS(O V() —U(s) — ) | cosB(p+v(s) —bls) )]
O¢ 2v/2 Js Ko()B(s) [ . SiI.l(WV). i sin(3mv) ] d
B The 27 order Hamiltonian is given by the angle-averaged

product of the last two terms.
B [t is quadratic in the sextupole strength and the new action.
The 274 order tune-shift is the derivative in the action

C s+C
o(7) = (5 i [ s [ K8

X[aw¢+ww»~w@—ww+p%a¢+wwr~ma—ww ,

d
sin(7v) sin(37v) 7 66

B The two terms are

7 *

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016




Phase space ic

B For small perturbations, the new action variable is almost
an invariant but for larger ones phase space gets deformed

B Close to the integer or third integer resonance, canonical
perturbation theory cannot be applied

B The solution is provided by secular perturbation theory

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B The general accelerator Hamiltonian is written as

H (2, Y, PasDys 8) = Ho(T, Y, Do Dy, 8) + Y hiy i, (s)2" =y
ks, k ) .
B The transverse coordinated can be exf)ressed in action-angle

variables as

u(s) = _Jugu(s) (0 +0u() y gitou( 0.1
B The Hamiltonian in action-angle variables is

%/(Ja:v Jya ¢a7> ¢y) — HO(Jxa Jy) T Hl(J:ca Jya ¢a:> ¢y)

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B The general accelerator Hamiltonian is written as

H (2, Y, PasDys 8) = Ho(T, Y, Do Dy, 8) + Y hiy i, (s)2" =y
ks, k ) .
B The transverse coordinated can be exf)ressed in action-angle

variables as

u(s) /Ju/BQu(S) (ei(¢u(s)—|—9u(s)) +€—i(¢u(s)+9u(s)))
B The Hamiltonian in action-angle variables is

%/(Ja:v Jya ¢a77 ¢y) — HO(Jxa Jy) T Hl(Jata Jya ¢a:> ¢y)

1
The integrable part Hy(J,, J,) = E(ijx + vy, Jy)
The perturbation —
Hy (Joy Jys Gur by 8) = D Ty 2T Y 0N gjaam(s)ellUm ot mmio
K oy i

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B The general accelerator Hamiltonian is written as

H (2, Y, PasDys 8) = Ho(T, Y, Do Dy, 8) + Y hiy i, (s)2" =y
ks, k ) .
B The transverse coordinated can be exf)ressed in action-angle

variables as

u(s) = /Ju/82u(5) (ei(¢u(s)—|—9u(s)) +€—i(qﬁu(s)+9u(s)))
B The Hamiltonian in action-angle variables is

%/(Jwa Jy7 ¢a?7 ¢y) — HO(J907 Jy) + Hl(‘]ic’ Jy’ ¢33’ ¢y)

1
The integrable part Hy(J,, J,) = E(V;,;Jg; + vy, Jy)
The perturbation _—
Hy(Jo, Ty, Gy byis) = 3 JE2TEZNTNT g5 g (5)ellU TR G (Emm)ey]
ok i
B The coefficients g;,,.(s) = ’;’f%ﬂ (“;) (k‘ly) 502 5) B2 ) Al =R)0= (<410 ()

depend on the optics, with the indexes k, =j+k, k,=1+m

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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Resonance dr

B As the coefficients 4, (s) are periodic, the perturbation
can be expanded in Fourier ser1es

Hl(‘]x7‘]y7¢x7¢y7 Z Jk /QJky/2YS1 Y 9iklm (J k)pr+(1—m)py,—pb]

2

kz,ky ' [l p=—o0
with the resonance driving terms

ko (K 11 (g
gj”“’“m;p:(')(zy) ERETE ]{ B, ey () 55212 (5) Bl /2 ()il =R)9 (5) + (1) ():+£0]
J 9 p) T

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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Resonance

B As the coefficients 4, (s) are periodic, the perturbation
can be expanded in Fourier serles

Hl(Jx7Jy7¢m7¢y;0): Z Jk /QJky/2S‘S‘ S‘ gj bl (] k)(bm—k(l m)¢y p@]

2

with the resonance drlvmg terms

ko \ (K 11 (ol
g”’”“’l’m;p:(')(zy) ERETE ]{ B, ey () 55212 (5) Bl /2 ()il =R)9 (5) + (1) ():+£0]
J ) p) s

W Forn, =7 —k, n,=10—m,resonance conditions
appear for ngv, + nyvy, = p
B Goal of accelerator design and correction systems is to
minimize the resonance driving terms
Change magnet design so that Ay, 1 (s) become smaller

Introduce magnetic elements capable of creating a cancelling effect

Sort magnets or non-linear elementsin a way that phase terms are
minimised

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B First order correction to the tunes is computed by the
derivatives with respect to the action of the average part of
perturbation. For a given term, Ay, 1, (s)z"=y"vthe leading

order correction to the tunes are
ky/2 ko Ky

0V = = 2y ZZQM ]{ UG =) Pzt (I=m) ¢y ]
v 47

ke /2 gk, /21 ke Ky
T k)pr+(l—m)p,
Wy = T ZZ%M ]{ ImRea ey

where G; .1.m 1S the average of g, k.1.m(s)around the ring.

B In the accelerator jargon if 0V, ,is independent of the
action, it is referred to as tune-shift, whereas, if it depends
on the action, it is called tune-spread (or amplitude
detuning)

B At first order, § Vey =0, for odd multi-poles &, =j+k,
k, = | +m (trigonometric functions give zero averages). 73
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B Secular perturbation theory
0 Third order resonance

- Fixed points for general
multi-pole

2 4th order resonance
1 Onset of chaos
- Resonance overlap

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B Consider a general two degrees of freedom Hamiltonian:

H(Jv 90) — HO(J) T+ ng(Ja 90)
with the perturbed part periodic in angles:
Hi(J,p) = Zk k1 Hy, ko (J1, J2) expli(k11 + k2ip2))

B The resonance njw; + naws = 0 prevents the convergence
of the series

2

Seminar, June 2016
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B Consider a general two degrees of freedom Hamiltonian:

H(J7QO) — HO(J) _I_ng(J?QO)

with the perturbed part periodic in angles:
Hy(J,0) = 2oy ey Hia ko (J1, J2) expli(kr1 + Kaa)]

B The resonance njw; + naws = 0 prevents the convergence
of the series

B A canonical transformation can be applied for eliminating
one action: (J,¢) — (3, @) using the generating function
F.(J,0) = (n1p1 — naws)J1 + pa2Js

B The relationships between new and old variables are

Jo=mJ1 Jy = Jy — naJy
D1 = N1p1 — N2y D2 = P2

B This transformation put the system in a rotating frame,
where the rate of change ©1 =n1p1 —n2Y2  measures
the deviation from resonance 76
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B The transformed Hamiltonian is H(J, ¢) = Hy(J) + cH, (J, $)
with the perturbation written as

Z Hi, ke, (J) exp { k11 + (king + kzm)sol]}
k1,k2

2

AN AN

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B The transformed Hamiltonian is A (J, $) = Hy(J) + cH, (3, )
with the perturbation written as

E Hkl k2 exp { [klgal + (klnz + kgnl) ]}
1
k1,ko

B This transformation assumes that (o is the slow
frequency and the Hamiltonian can be averaged over the
corresponding angle to obtain

H(J3,@) = Ho() +<Hi(J, 41) With Ho(J) = Ho(J) and

Hl(ja¢1) — <ﬁ1(jv¢1)>¢2 — Z H_pnlaan (j) eXP(—ipsbl)

p=—00

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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@

B The transformed Hamiltonian is A (J, $) = Hy(J) + cH, (3, )
with the perturbation written as

E Hkl k2 exp { [klgol + (klnz + kgnl) ]}
1
k1,ko

B This transformation assumes that (o is the slow
frequency and the Hamiltonian can be averaged over the
corresponding angle to obtain

H(J,p) = Ho(J) +eH,(J, p1) Wlth Hy(J) = Hyo(J) and

ﬁl(ja¢1) <H1( 7901 — Z H—pn1 ,P12 )eXp( Zp@l)

p=—00
B The averaging eliminated one angle and thus J, = J, + .J; 12
is an invariant of motion "
B This means that the Hamiltonian has effectively only one
degree of freedom and it is integrable
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B Assuming that the dominant Fourier harmonics for p = 0, +1
the Hamiltonian is written as

H(J, $1) = Ho(I) + eHoo(J) + 26 Hpy i, (I) cos @1
B Fixed points (Jyo, ¢10) (i.e. periodic orbits) in phase space
(J1, ¢1) are defined by o _, , oM _,

2

A

d.J, Bl

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B Assuming that the dominant Fourier harmonics for p = 0, +1
the Hamiltonian is written as

H(J,$1) = Hy(J) + eHoo(I) + 2¢H,, —p, (T) cos @y
B Fixed points (Jyo, ¢10) (i.e. periodic orbits) in phase space
(J1, 1) are defined by OH _ —0, OH _

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016

2

OJ, Oy
B Introduce moving reference on fixed point

and expand H (J)around it AJ; = J; — Jyg
B Hamiltonian describing motion near a resonance:

0°Hy(J AJ
H.(AJy, 1) = Pg ) (A,
a‘]1 j1:j10

+2eH,, _n,(T) cos ¢
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B Assuming that the dominant Fourier harmonics for p = 0, +1
the Hamiltonian is written as

H(J,$1) = Hy(J) + eHoo(I) + 2¢H,, —p, (T) cos @y
B Fixed points (Jyo, ¢10) (i.e. periodic orbits) in phase space
(J1,¢1) are defined by O _ _o, 92 _y
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2

OJ, Oy
B Introduce moving reference on fixed point

and expand H (J)around it AJ; = J; — Jyg
B Hamiltonian describing motion near a resonance:
02 Ho(J) (AJy)?
(A, ) = 2
( 1 ¢1) a‘]12 j1:j10
B Motion near a typical resonance is like the one of the
pendulum!!! The libration frequency and the resonance

+2eH,, _n,(T) cos ¢

half width are / 1/2
— A 1/2 _ A
— A 82 O(J) T 2€Hn1,—n2 (J)
Sy — AJ maz = 2
W1 = 25Hn1 —ng (J) 29 A : 82Ho(J)
a‘]1 Ji1=J10 aJz2 |. . 82

Ji=J10



ecular pertu E@
order resonan A

B We first introduce the distance to the resonance

V:§+5, 0 << 1

B [t is convenient then to eliminate the “time” dependence by
passing on a “1-turn” frame, using the generating function

Fy(¢,J1,8) = ¢J1 + J1 (27WS —/ s ) = (¢ + x(s))J1
0

. ¢ Bls) .
with the new angle ¢); = ¢ — x(s) providing the Hamiltonian
2
Hy = L0+ 22 K () (1) cos* (W + X(9)

R 3
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ecular pert E@
order reson: A

B We first introduce the distance to the resonance

V:§+5, 0 << 1

B [t is convenient then to eliminate the “time” dependence by
passing on a “1-turn” frame, using the generating function

Fo(6, J1,8) = 61 + J1 (2””5 - [ ) — (6 + x(s))
0

C B(s')
with the new angle ), = ¢ — x(s) providing the Hamiltonian
22
Hy = %Jl + TIKS(S)(J15)3/2 cos” (Y1 + x(s))

B The perturbation can be expanded in a Fourier series, where
as before, only the resonant term is kept or,

ﬁl = vJ; + Jf/ZAgp cos(3y — ph)

in the rotating frame on top of the resonance

IAJQ — 5J2 -+ J§/2A3p COS(3¢2) 84
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Fixed points f¢

B By setting the Hamilton’s
equations equal to zero, three

: . 3 5
fixed points can be found at 20 = g : ;T ; 37T

0
W For 7~ > 0all three points are
p

unstable
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B By setting the Hamilton’s
equations equal to zero, three

! : T 3T o7 25\
fixed points can be found at 20 = 30 3 3 J20 = (3 Agp)

SIS
(table

oo =

0
W For 7~ > 0all three points are
p

Separatrix
unstable

Unstable -
fixed points

B Close to the elliptic one at
20 = 0 the motion in phase
space is described by circles
that they get more and more
distorted to end up in the
“triangular” separatrix uniting

the unstable fixed points

T
3

B The tune separation from the
resonance (stop-band width) is

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B The single resonance accelerator Hamiltonian
(Hagedorn (1957), Schoch (1957), Guignard (1976,

1978)) ) N
H(Jy, Jy, ¢z, by, ) = E(uxe +vyJy) + Gng o, EJ;,;Q Jy? cos(ngypg + nydy + ¢o — pb)
. 7
Wlth gnw,nye Po — gi k,l,m:p

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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Single resona

B The single resonance accelerator Hamiltonian
(Hagedorn (1957), Schoch (1957), Guignard (1976,

1978))

1
H(Jxa Jy: ¢ma ¢y7 S) —

E(ij =+ Vny) + 9n,

’L
Po = 9j,k,l,m;p

Ny RJ Jy2 coS(Ng Pz + Nydy + Po — o)

with gn, n,€

B From the generating function

Er (@ &y, jxv jya $) = (NaPu + nyy — p@)fx T gbyjy
the relationships between old and new variables are

A

ng — (nx¢x + nyqby — p@) , Jr=ngdy
ggyngy, Jy:nij—kjy
B The following Hamiltonian is obtained

NgVyp + NylVy — JAx+JA 2 A kg A ky ~
( z % p) 5 +gnx,nyﬁ(”wt]x) ¥ (nyJo + Jy) 7 cos(dg + do)

ﬁ(jxa jya éx) —

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B There are two integrals of motion

0 The Hamiltonian, as it is independent on “time”
2 The new action_J y @S the Hamiltonian is independenton ¢,

B The two invariants in the old variables are written as:

Jr

Cl = — — -
_ p p b 0
o e, M Y B A cosli ety 0 =00
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B There are two integrals of motion

The Hamiltonian, as it is independent on “time”
The new action J y 35 the Hamiltonian is independent on Oy

B The two invariants in the old variables are written as:

I, J,
cCh = —— —
Ny Ty
p p e
Co = (Vx — T)Jx + (I/y — m)J -+ gnw,nyt] 2 Jy2 COS(n$¢x + nyqby + Qbo —p@)

B Two cases can be distinguished

Nz , Ny have opposite sign, i.e. difference resonance, the motionis
the one of an ellipse, so bounded

ng , N, have the same sign, i.e. sum resonance, the motionis the one
of an hyperbola, so not bounded

B These are first order perturbation theory considerations

B The distance from the resonance is obtained as

—92 ky—2
A = g’”;;”y To T J, 7T (kungds + kynyJ,)

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B For any polynomial perturbation of the form " the
“resonant” Hamiltonian is written as

Hy = 6Jy + a(J2) + J§/2Akp cos( ko)

B Note now that in contrast to the sextupole there is a non-
linear detuning term a(.J2)

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B For any polynomial perturbation of the form " the
“resonant” Hamiltonian is written as

Hy = 6Jy + a(J2) + J§/2Akp cos( ko)

B Note now that in contrast to the sextupole there is a non-
linear detuning term a(.J2)

" Seminar, June 2016

B The conditions for the fixed points are

Oa(J k _
sin(kig) =0, 0+ C({;?] 2) + §J§/2 1Akp cos(kis) =0
B There are k fixed points %or which cos(ko9) = —1 and the

fixed points are stable (elliptic). They are surrounded by

ellipses

B There are also k fixed points for which cos(k99) = 1 and
the fixed points are unstable (hyperbolic). The trajectories

Non-linear beam dynamics, Graduate Studies in Accelerator Physics

are hyperbolas %
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Fixed po
B The resonant Hamiltonian close to the 4t order resonance
1S written as

& 2 2
Hy = 0Js 4 c¢J3 + J5 Agy cos(41)2)
B The fixed points are found by taking the derivative over
the two variables and setting them to zero, i.e.

2

sin(4y2) =0, 0+ 2¢cJs 4+ 2J2 Ay, cos(41pe) = 0

B The fixed points are at
' 7T \ ,’ T \ |'37T \ ," \\‘ II vV N 77'(}“ / \‘|
— 1 7'(' I
\2 I'l7 “\ /I" A ' \ 4 ,
f

_____________
L
-~
\

-
-
L

—————
______________
______________

\~ ’/
sssss
———————————
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Topology «

B Regular motion near the
center, with curves getting more

deformed towards a rectangularSFP L
shape %

UFP

B The separatrix passes
through 4 unstable fixed points,
but motion seems well contained

B Four stable fixed points
exist and they are surrounded by
stable motion (islands of
stability)

B Question: Can the central
fixed point become hyperbolic
(answer 1n the appendix)

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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Octupole with hy

B Now, if ¢ = () the solution for the action is JZO — ()

2

B So there is no minima in the potential, i.e. the central fixed

point is hyperbolic
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B When perturbation becomes higher, motion around the
separatrix becomes chaotic (producing tongues or
splitting of the separatrix)

B Unstable fixed points are indeed the source of chaos
when a perturbation 1s added

5e-06
4e-06 |
[
<\ (’_\ H+ 38-()6 N
\ \\ ’
H+ ' \\ \\ \ ‘ 2e-06 :5_,. i
K \\ > 1e-06 NG
N e- - ¢
N B e
\\\\\\ \ e
Q\\) X 0+ ‘
T // 1e-06 |
X?\‘
2e-06 +
-3e-06
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B Poincare-Birkhoff theorem states that
under perturbation of a resonance only an

even number of fixed points survives
(half stable and the other half unstable)

B Themselves get destroyed when
perturbation gets higher, etc. (self-similar
fixed points)

B Resonance islands grow and resonances
can overlap allowing diffusion of particles
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When perturbation grows, the resonance island width grows

Chirikov (1960, 1979) proposed a criterion for the overlap of two
neighboring resonances and the onset of orbit diffusion

/

. . 2 ( 1 — 1 >
The distance between two resonancesis 57, — —1f" mtns
2 Hy(J)
dJ 2

The 51mp1e overlap criterionis
AJn maz T AJn’ maz = 5Jn ,n’

j1:j10

Considering the width of chaotic layer and secondary islands, the “two
5 5 2 .
thirds” rule apply AJy maz + Adws maz > §5J'n,,n’

The main limitation is the geometrical nature of the criterion (difficulty
to be extended for > 2 degrees of freedom)

1.0
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Hamiltonian formalism provides the natural framework for studying
non-linear dynamics

The relativistic Hamiltonian is non-linear by construction and can only
be transformed to an integrable one after a series of approximations

Action-angle is the set of variables adequate for studying integrable
systems, as motion evolves on multi-dimensional tori

Perturbation of integrable Hamiltonian distorts tori and canonical
perturbation theory looks for an appropriate canonical transformation to
“straighten” tori

Small denominators (resonances) appear preventing the convergence
of generating functions

Secular perturbation theory enables the analysis of the phase space close
to a resonance, which is similar to the motion of a pendulum

Appearance of fixed points (periodic orbits) determine topology of the
phase space

Perturbation of unstable (hyperbolic points) opens the path to chaotic
motion

Resonance can overlap enabling the rapid diffusion of orbits 100



