DA ONE: the Italian Lepton Collider

Catia Milardi on behalf of the DA Φ NE Team

Outline

- $DA \Phi NE$ original configuration
- Looking for higher luminosity
 Improving components and subsytems
 new approach to collisions
- Crab-Waist Collision Scheme
- Testing the CW Collision Scheme with the SIDDHARTA experiment
- The new KLOE IR including CW
- CW collisions for the KLOE-2 detector
- Conclusions

The DA Φ NE Accelerator Complex

$DA\Phi NE$ Parameters

(original configuration)

Energy, GeV	0.51
Circumference, m	97.69
RF Frequency, MHz	368.26
Harmonic Number	120
Damping Time, ms	17.8/36.0
Bunch Length, cm	1-3
Emittance, mmxmrad	0.34
Coupling, %	0.2-0.3
Beta Function at IP, m	1.7/0.017
Max. Tune Shifts	.0304
Number of Bunches	111
Max.Beam Currents, A	2.4/1.4

"Proposal for a Φ -factory", LNF-90/031 (IR), 1990.

Colliding beams have: low E high currents long damping time

L_{peak} at DA Φ NE 2001 ÷ 2007

 L_{peak} had a remarkable evolution mainly due to several machine upgrades Experiments took data one at the time, although DA Φ NE had been originally conceived as collider with two IRs

h_{logged} (fb ⁻¹) 2001 - 2007			
	KLOE	3.0	
	FINUDA	1.2	
	DEAR	0.2	

The nature of a Φ -factory in itself indictates a minimum target luminosity of 10^{32} cm⁻² s⁻¹....

KLOE Luminosity [cm-2 s-1] 1.5E+32-1.0E+32-5.0E+31 0.0E+0-23:54 04:00 07:00 10:00 13:00 16:00 19:00 22:0023:54 0.20 current [mA] BTF[h] 1.45E+32 KLOE luminosity [cm-2s-1] 2000.0 1500.0 1000.0difficulture denomination 500.0 0.0-1.0 10 19:00 23:54 04:00 07:00 10:00 13:00 16:00 22:0023:54 9479.0 Acq. (nb-1) Integrated daily luminosity [nbarn-1] 9806.4 delivered 10000.0 7500.0- logged delivered 5000.0-2500.0 0.0-23:54 04:00 07:00 10:00 13:00 16:00 19:00 23:54

FINUDA

"Proposal for a Φ -factory",

LNF-90/031 (IR),1990.

111 bunches, β_{y}^{*} = 1.8 cm, β_{x}^{*} = 1.5 m

106 bunches, β_v^* = 1.9 cm, β_x^* = 2.0 m

Ideas, Tests and Proposals about DAONE

Ideas aimed at improving performances and increasing Luminosity:

- eliminate non linearities in the magnet fields mostly in the wiggler ones
- collisions with negative momentum compaction
- parasitic crossing compensation with wires
- collisions with a very high crossing angle
- strong RF focusing
- crab Waist collisions
- electrodes for e-cloud compensation

Proposals:

- DANAE (1.02 GeV ÷ 2.4 GeV)
- Bunch lenght modulation experiment
- Crab waist collision scheme
- DAFNE-VE (0.6 GeV \div 3 GeV with CW)

α_{c} < 0 at DA Φ NE

Properties of a lattice with negative momentum compaction:

• shorter bunch as a result of the focusing wake potential

lower β_y^*

- smaller Piwinski angle Φ for a given crossing angle θ
- beam-beam less harmful
 - longer lifetime
 - reduced transverse beam sizes blow-up
- can mitigate coherent and incoherent longitudinal instabilities
- can move the microwave instability threshold due to the vacuum chamber coupling impedance toward higher values
- single bunch head-tail instability occurs with positive chromaticity values

It's possible operate the collider without sextupoles

α_{c} < 0 at DA Φ NE

Bunch Shortening in the Positron Ring

Bunch Shortening in the Electron Ring

Summary of Results

- 1. Flexible DA Φ NE optics with α_c from +0.034 to -0.036.
- 2. Bunches shorten as predicted by numerical simulations.
- It was possible to store high bunch current (~40 mA) with large negative chromaticity
- 4. Stable multibunch beams with currents -> 1 A
- 5. Specific luminosity gain of about 25% till 300 mA per beam
- 6. Higher current beam-beam collisions failed due to e- vertical size blow up above the microwave instability threshold

Ring Impedance

The ring impedance has been estimated relying on bunch length measurements as a function of bunch current.

Numerical fits based on potential well as well as microwave regime converge to a ring coupling impedance of 0.3 Ω

Results show a bunch lengthening reduction of the order of 10% at a current of 20 mA with respect to the values attained during the test run with the SIDDHARTA detector. Measurements taken on the positron ring exhibit the same behaviour. Bunch length is neither affected by the insertion of the beam collimators nor, on the positron ring, by the presence of the new electrodes for electron clearing

Lower impedance thanks to: Improved vacuum chamber and injection kickers design New bellows Removed Ion Clearing Electrodes in Mre Modified collimators

e-Cloud in DA Φ NE

The worst case:

- 1. Aluminium vacuum chamber
- 2. Shortest bunch separation of 2.7 ns

Solenoids Off 28/05/20122

Clearing electrodes for e-cloud suppression

DAΦNE is the first collider operating routinely with long electrodes, for e-cloud mitigation. Electrodes let more stable operation with the positron beam, and allowed unique measurements such as: e-cloud instabilities' growth rate, transverse beam size variation, and tune shifts along the bunch train, demonstrating their effectiveness in restraining e-cloud induced effects. (D. Alesini et al, Phys. Rev. Lett. 110, 124801 (2013)

Electron Clearing Electrodes

To mitigate the e-cloud instability copper electrodes have been inserted in all dipole and wiggler chambers of the machine and have been connected to external dc voltage generators.

The dipole electrodes have a length of 1.4 or 1.6 m depending on the considered arc, while the wiggler ones are 1.4 m long.

Effectiveness of Electron Cloud Clearing Electrodes

e-cloud density build-up

Measured absorbed e-cloud current

 \mathbf{V}

With a maximum voltage of 250 V the electrodes are effective till a positron current of the order of 800-900 mA . For higher beam currents higher voltages are required

Non Linearity in the Wiggler Field

Measurement of tune shift as a function of beam displacement inside DAFNE wigglers exhibits a strong third order non linearity

Wiggler poles modification (2002)

Additional plates glued on wiggler poles

(M. Preger)

-1.4 B(T) -1.5 new -1.6 flat pole -1.7 new normalized -1.8 original x(m) -0.08 -0.04 0.04 0.08 0

Field at pole center

A factor 2 is gained in terms of energy acceptance

Wiggling wiggler

Motivation:

Build wiggler poles symmetric with respect to the beam orbit

Wiggler measurement

The non-linear components of the WIGEL101 field are evaluated by measuring the beam tune shift dependence on the horizontal displacement bump at its place after switching off the sextupoles in that sector

- Δv_x and Δv_y exhibit an evident linear behaviour excluding the presence of any octupole-like or higher component in the magnetic field
- A small sextupole-like dependence is observed in Δv_y only, probably originated in the nearby dipoles included in the bump

K ³ [m ⁻³]	Year
800	2001
360	2004
0	2011

Long Range Beam-Beam Interaction at DA Φ NE

In the DAΦNE original configuration e⁺ and e⁻ stored in **105 - 111 bunches** 25 [mrad] crossing angle 2.7 [nsec] bunch spacing !!!! 5 [m] long common IR ε 2.5 10⁻⁶ [m] 24 LRBB interactions

Wires for LRBB compensation at $\mathsf{DA}\Phi\mathsf{NE}$

LRBB were causing

- Orbit distortion
- Beam lifetime reduction both during inject and coasting resulting in a limitation on maximum storable current peak and integrated *L*

$$\Delta r' = \frac{2Nr_0}{\gamma r}$$
 LRBB deflection

- Wires were installed outside the vacuum chamber using a short section in IR1, just before the splitters, where the vacuum pipes were separated.
- The wires carried a tuneable DC current, and produced a stationary magnetic field (1/r) with a shape similar to the one created by the opposite beam

Wires have beed used for beam-beam parasitic crossing compensation

- ✓ Switching on and off the wires we obtain the same luminosity while colliding the same beam currents.
- ✓ The positron lifetime is on average higher when wires are on, while the electron one is almost unaffected.
- ✓ The beam blow-up occurring from time to time at the end of beam injection, corresponding to a sharp increase in the beam lifetime, almost disappear.
- ✓ It is possible to deliver the same integrated luminosity injecting the beam two times only instead of three in the same time integral, or to increase the integrated luminosity by the same factor keeping the same injection rate.
- ✓ A highert means less background on the experimental detector.
- ✓ It is possible to optimize the collision at maximum current

Rationale for the Upgrade

 $L_{\text{peak}} \sim 1.6 \ 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ was the maximum luminosity achievable in the original DA Φ NE configuration due to:

- $\beta_y^* \sim \sigma_z$ to avoid hourglass effect
- Long-range beam-beam interactions causing $\tau^+ \tau^-$ reduction limiting $I^+_{MAX} I^-_{MAX}$ and consequently L_{peak} and L_{j}
- Transverse size enlargements due to the beam-beam interaction

A new conceptual approach was necessary to reach $L \sim 10^{33}$ Collision scheme based on Large Piwinski angle and Crab-Waist

Crab-Waist Collision Scheme

Rationale for the Upgrade

 $L_{\text{peak}} \sim 1.6 \ 10^{32} \ \text{cm}^{-2} \ \text{s}^{-1}$ was the maximum luminosity achievable in the original DA Φ NE configuration due to:

- $\beta_{y}^{*} \sim \sigma_{z}$ to avoid hourglass effect
- Long-range beam-beam interactions causing τ⁺ τ⁻ reduction limiting I⁺_{MAX} I⁻_{MAX} and consequently L_{peak} and L_j
- Transverse size enlargements due to the beam-beam interaction

A new conceptual approach was necessary to reach $L \sim 10^{33}$ Collision scheme based on Large Piwinski angle and Crab-Waist

Large Piwinski angle

Large Piwinski angle Φ obtained by:

$\Phi \sim \frac{\sigma_z}{\theta}$	larger θ
$\Psi \approx \frac{1}{\sigma_x^*} \frac{1}{2}$	smaller σ_{x}

 $\sqrt{2}$

$$\xi_y \propto \frac{N\sqrt{\beta_y^*}}{\sigma_z \theta}$$

$$\zeta_x \propto \frac{N}{(\sigma_z \theta)}$$

$$L \propto \frac{N\zeta_y}{\beta_y^*}$$

- $\bullet \text{ low } \xi_{x}$
- L_{geometric} gain
- no parasitic crossing

New IR magnetic layout

- Splitter magnets and compensator solenoids removed
- New low- β
- Sector dipols around IP rotated
- large collision angle ~ 50 mrd
- Four C type corrector dipoles used to mach the vacuum chamber in the arc

Lower β_v^* possible

Small β_v^* in fact the bunch overlap lenght Σ is:

L_{geometric} gain

- low ξ_y Vertical synchro-betatron resonances suppression

New low-β section •low-beta section based on PM QUADs:

 $K_{QD} = -29.2 [T/m]$ $K_{OF} = 12.6 [T/m]$

•e⁺ e⁻ vacuum chambers separate after Q_D

Crab-Waist compensation

Collision with large Φ is not a new idea

Crab-Waist transformation is !

L_{geometric} gain

x-y synchro-betatron and betatron resonance suppression

P. Raimondi et al., arXiV:physics/0702033 C. Milardi et al., Int.J.Mod.Phys.A24, 2009 M. Zobov et al., Phys. Rev. Lett. 104, 2010

Crab-Waist Compensation

Collision with large Φ is not a new idea

Crab-Waist transformation is !

Crab-Waist Sextupole Parameters

CW-Sextupoles are high strength magnets

Luminosity (arbitrary unit) and *Beam tails versus waist rotation* χ

RING CROSSING REGION LAYOUT

- Second crossing region symmetric with respect to first one
- "Half Moon" chamber allows complete beam separation (no 2nd IP)

$DA \Phi NE Upgrade Parameters$

	DAΦNE KOE	DAΦNE Upgrade
θ _{cross} /2 (mrad)	12.5	25
ε _x (mmxmrad)	0.34	0.26
β _x * (cm)	160	26
σ _x * (mm)	0.70	0.26
$\Phi_{Piwinski}$	0.6	1.9
β _y * (cm)	1.80	0.85
σ _y * (μm) low current	5.4	3.1
Coupling, %	0.5	0.5
I _{bunch} (mA)	13	13
σ _z (mm)	25	20
N _{bunch}	110	110
L (cm ⁻² s ⁻¹) x10 ³²	1.6	5

- In 2007 the DA Φ NE accelerator complex has been upgraded in order to implement a new collision scheme based on **large Piwinski angle**, **low–6** and **Crab-Waist compensation** of the synchro-betatron resonances
- The upgrade took ~ *five months*
- Since May 2008 DA Φ NE is delivering luminosity to the SIDDHARTA experiment.

Ring Optics model

•In 2007 the DA Φ NE accelerator complex has been upgraded in order to implement a new collision scheme based on **large Piwinski angle**, **low–** β and **Crab-Waist compensation** of the synchrobetatron resonances

•The upgrade took ~ five months

•Since May 2008 $DA \Phi NE$ is delivering luminosity to the SIDDHARTA experiment

SIDDHARTA run ended by mid November 2009

Crab-Waist collision scheme and SIDDHARTA

- Large crossing angle and Crab-Waist scheme proved to be effective in increasing luminosity, a factor 3 higher than in the past
- •The DAΦNE collider, based on a new collision scheme including Large Piwinski angle and Crab-Waist, has been successfully commissioned and has delivered:

 $L_{peak} = 4.5 * 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ $L_{\int 1 \text{ day}} = 15.0 \text{ pb}^{-1}$ $L_{\int 1 \text{ hour}} = 1.033 \text{ pb}^{-1}$ $L_{\int run} \sim 2.8 \text{ fb}^{-1} \text{ (SIDDHARTA detector)}$

Crab-Waist Compensation First Experimental Evidence

Transverse sizes (left) and **luminosity** (right) dependence on the *CW-Sextupole* excitation in the e⁻ ring

Peak Luminosity

$\mathsf{DA}\Phi\mathsf{NE}$ Luminosity and Tune Shift

	KLOE (Spt 2005)	FINUDA (Apr 2007)	SIDDHARTA <i>CW</i> (Jun 2009)
Luminosity [10 ³² cm ⁻² s ⁻¹]	1.53	1.6	4.53 (5.0)
l(ele) [A]	1.38	1.50	1.52
l(pos) [A]	1.18	1.1	1
n _b	111	106	105
ϵ_x [mm mrad]	0.34	0.34	0.28
β _x [m]	1.5	2.	0.25
β _y [cm]	1.8	1.9	0.9
ξ	0.0245	0.0291	0.0443 (0.074)

Weak-Strong Tune Shift

Crab-Waist compensation works in weak-strong regime also, and measured luminosity is in good agreement with *Lifetrack* code (D. Shatilov) predictions

Strong-Strong Beam-Beam Simulations

Crab-Waist Collision Scheme & Luminosity

20% L reduction at high currents because of bunch lengthening due to the ring impedance. L \propto 1/ σ_z in Large Piwinski Angle & Crab-Waist regime.

A factor 3 higher luminosity achieved without increasing beam currents

No evidence of vertical BB saturation with *CW-Sextupoles* on ($\xi_y = 0.044$)

LRBB interaction cancelled

KLOE-2 run

Integrating the high luminosity collision scheme with a large experimental detector introduces new challenges in terms of: IR layout optics beam acceptance coupling correction

Crucial Points: IR optics complying with: Low-β Crab-Waist collision scheme Coupling compensation Beam trajectory control IR mechanical design allowing: Large crossing angle Early vacuum pipe separation after IP inside the detector

Beam Trajectory in the new IR

• The beam trajectory in the IR is an order of magnitude larger than in the past KLOE run due to:

EUCARD

larger crossing angle stronger first low- β quadrupoles (PMQD) experimental solenoidal field

• A **Permanent Magnet Dipole** is used to keep under control the vertical beam trajectory.

QUADs are centered as much as possible on the beam trajectory to improve beam acceptance. Vacuum chamber design is very much simplified: straight sections and few bellows

Magnetic length (mm) 75 field (T) 0,22933 Good field region radius (mm) 15 Magnet material type SmCo

PMD consists of two halves each of them:

- Magnetic length 75.0 mm
- BL = 0.0168 Tm
- Bx is directed inward and outward in the e+ and
- e-rings respectively
- α_y ~ 10.0 mrad

EUCARD Betatron Coupling correction

$\int_{KLOE} B \cdot dI$ canceled by 2 anti-solenoids for each beam

 $\int_{KLOE} B \cdot dl = 2.048 \qquad [Tm] \quad \rightarrow \quad I_{KLOE} = 2300.[A]$

$$\int_{comp} B \cdot dl = \pm 1.024 \qquad [Tm] \quad \rightarrow \qquad I_{comp} = 86.7[A]$$

In order to have coupling compensation also for off-energy particles

Fixed QUAD rotations κ is expected to be lower than for KLOE past

 $\kappa_{KLOE1} = 0.2 \div 0.3 \%$

	Z from the IP [m]	Quadrupole rotation angles [deg] Anti-solenoid current [A]
PMQDI101	0.415	0.0
PMQFPS01	0.963	-4.48
QSKPS100	2.634	used for fine tuning
QUAPS101	4.438	-13.73
QUAPS102	8.219	0.906
QUAPS103	8.981	-0.906
COMPS001	6.963	72.48 (optimal value 86.7)

C. Milardi et al 2012 JINST 7 T03002.

Crab-Waist Collisions for KLOE-2

Operations with the Crab-Waist collision scheme and the KLOE detector have been organized in four stages:

July 2010 - Dec 2012

- KLOE rolled in and the new IR based on CW Collision Scheme
 installed
- Collision tested despite high fault incidence
- Physics run with a pure C target (100 pb⁻¹)
- Peak instantaneous luminosity 1.52•10³² cm⁻²s⁻¹

Dec 2012 - Jul 2013

- IR extracted mended and modified
- Detector upgrade KLOE -> KLOE-2
- Several component and subsystems replaced, maintained and upgraded

Jul 2013 - Nov 2014

- Infrastructural problems affecting the whole Lab
- Commissioning

Mid Nov 2014

• KLOE-2 systematic data taking

C. Milardi et al ICFA Beam Dynamics No.67

Best Hourly Integrated Luminosity

$$L_{f1h} \sim 0.63 \, pb^{-1}$$

 $L_{f1day} \sim 15.1 \, pb^{-1}$

- •Collisions suitable for KLOE-2 data taking
- •Background compatible with an efficient acquisition
- •L_{f1 hour} is the highest ever measured with the KLOE detector

Best 24 Hours Integrated Luminosity

Peak Luminosity Trend

Energy Scan

On May 16th the c.m. energy of the colliding beams has been changed $\Delta E_{CM} = +.5 \text{ MeV}$ by varying the main ring bending magnets maintaining the same performances in terms of luminosity and background

Total Integrated Luminosity

Maximum Peak Luminosity so far

Still the full potential of the new *CW* collision scheme has not been completely exploited

	DA DNE CW upgrade SIDDHARTA (2009)	DAΦNE CW KLOE-2 (2016)
L _{peak} [10 ³² cm ⁻² s ⁻¹]	4.53 (5.0)	2.13
L _{Jday} [pb ⁻¹]	14.98	14.03
L _{J1 hour} [pb ⁻¹]	1.033	0.62
I- _{MAX} in collision [A]	1.52	1.129
I+ _{MAX} in collision [A]	1.0	0.885
N _{bunches}	105	105

36th MEETING OF THE LNF SCIENTIFIC COMMITTEE

FINDINGS AND RECOMMENDATIONS

 1 THE DAΦNE PROGRAM: STATUS AND RECOMMENDATIONS
 1

 1.1 THE DAΦNE UPGRADE: PERFORMANCE AND OUTLOOK
 1

 1.2 SIDDHARTA
 3

 1.3 KLOE AND KLOE-2
 4

 1.4 FINUDA
 5

 1.5 RECOMMENDATIONS FOR THE NEXT STEPS OF THE DAΦNE EXPERIMENTS
 6

 1.6 THE AMADEUS PROPOSAL
 6

 2 EXTERNAL PROGRAM PRESENTATIONS
 8

 2.1 LARES
 8

 3 FUTURE COLLIDERS AT LNF
 9

A STATUS OF SPARC/SPA A STATUS OF SPARC/SPA

The 36° meeting mainly focused on he status and the outlook of the upgraded DA Φ NE collider and the planning of its experimenta program. Specific recommendations were made on the running and/or installation of three DA NNE experiments: they are recorded in this document.

The Committee also reviewed two exte. al activities belonging to the LNF external program: the LARES and the BaBar experiments. A talk by P. Raimondi described the status of the design of a Super B-factory. The status of the SPARC and SPARX projects was discussed in closed session.

The Committee welcomed a new member, C. 1atteuzzi, who joins it as chair of the Beam Test Facility Committee.

1 THE DAΦNE PROGRAM: STATUS ANL RECOMMENDATIONS

1.1 DAØNE UPGRADE: PERFORMANCE AND UTLOOK

DAΦNE has now operated for a few months with the new scheme of colliding beams with large Piwinski angle and crab-waist compensation. The com issioning of the new configuration, with the prototype SIDDHARTHA experiment is about two months behind the expected schedule. While peak luminosities have exceeded previous precords by up to 40%, daily integrated luminosities are not yet up to previous operationa, levels and backgrounds are high. These are grounds for serious concern. On the other hand, and wiss of the present situation (see below) shows that there are also rational grounds for optimism. Not least among these is the fact that the principle of crab-waist compensation has been shown to work; this must be recognised as a major advance in the long history of fighting the beam-beam effect in error colliders. It is also an important step towards validation of the SuperB design concepts.

DA Φ NE and KLOE-2

 $E_{CM} = 1020 \, MeV$

Crab-Waist collision scheme implemented for the first time with a large detector including a strong solenoidal field

Luminosity achieved at DAFNE is 2 order of magnitude higher than the best measured in colliders working at the same E

Conclusions about the CW Collision Scheme

The new collision scheme including Large Piwinski angle and Crab-Waist compensation of the beam-beam interactions has proved to be a viable approach to increase the luminosity of the DA Φ NE collider

- It has been succesfully tested and routinelly used during the SIDDHARTA run when a factor 2.7 higher instantaneous luminosity has been measured
- Crab-Waist collision scheme has also been the leading concept in designing the new IR for the KLOE-2 experiment.. KLOE-2 is currently taking data profiting from a daily integrated luminosity comparable with the best ever measured at DAΦNE, despite the instantaneous luminosity gain is still a factor 2 lower wrt the one measured with the SIDDHARTA optics.
- *The KLOE-2 run has also clearly assessed the Crab-Waist* collision scheme effectiveness even in presence of a large detector including high intensity solenoidal field
- The Crab-Waist collision scheme has been considered to upgrade one of the LHC interaction regions
- The design study of several new circular colliders includes the CW collision scheme as a main design concept.

Crab-Waist Colliders

Colliders	Location	Status
DAΦNE	<mark>Φ-Factory</mark> Frascati, Italy	In operation
SuperKEKB	<mark>B-Factory</mark> Tsukuba, Japan	Commissioning starts in first months of 2016
SuperC-Tau	C-Tau-Factory Novosibirsk, Russia	Russian mega-science project
FCC-ee	Higgs-Factory CERN,Switzerland	100 km, CW baseline design option
CEPC	Higgs-Factory China	54 km, local double ring option with CW
LHC Upgrade	LHC CW Option CERN,Switzerland	LHC with very flat beams (low priority)

Conclusioni

DA Φ NE e' il complesso di acceleratori realizzato per produrre eventi di fisica all'energia di risonanza dei mesoni Φ .

Costituisce una delle più grandi infrastrutture dell'INFN, come tale rappresenta un'opportunità unica in Italia per esperimenti di fisica delle particelle e nucleare.

DAONE ha fornito dati a tre diversi esperimenti KLOE, FINUDA e DEAR-SIDDHARTA migliorando, al tempo stesso, le proprie prestazioni in termini di luminosità mediante un'intensa attività di studi e prove sperimentali.

Questo approccio ha portato a proporre e a realizzare, nel 2007, un nuovo schema di collisione chiamato 'Crab-Waist' che provato con l'esperimento SIDDHARTA ha consentito di triplicare la luminosita' di picco, aprendo la strada ad un'ulteriore fase sperimentale per il rivelatore KLOE, che prenderà dati nei prossimi 3-4 anni.

Gli studi di fisica di acceleratori intrapresi su DAΦNE hanno contribuito in maniera sostanziale alla comprensione e agli sviluppi relativamente a problematiche quali: le nonlinearità delle strutture magnetica, l'interazione dei fasci collidenti, l'ottimizzazione dell'ottica e gli effetti collettivi caratteristici di fasci di particelle ad alta intensita'.

.... let me joke

Thank you for your attention