Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and th hadronic fracta dimension

Conclusions

Tsallis statistics in HEP

Airton Deppman

Frascati - July 05, 2016

Airton Deppman

Fractals in nature

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

1 Fractals in nature

2 Fractals in HEP

3 Non extensivity and fractality

4 NESCT

5 Experimental verification of nonextensivity in HEP

6 NESCT and the hadronic fractal dimension

7 Conclusions

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

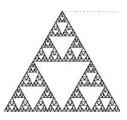
NESCT

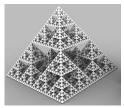
Experimental verification of nonextensivity in HEP

NESCT and the hadronic fracta dimension

Conclusions

What are fractals?





Airton Deppman

Fractals in HEP

R Hwa

Intermittency

Normalized Moments: $\begin{aligned} &C_q = \sum_{k_0}^{\infty} k^q P_k / \left(\sum_{k_0}^{\infty} k P_k \right)^q = \delta^{\tau(q)} \\ &P_k^q = (Q_k / N)^q = \delta^{\alpha_q} \end{aligned}$ PRD41 (1990) 1456 Q_k = number of events with k particles in the bin with width δ

N =total number of events

$$\tau(q) = q\alpha_q - f(\alpha_q) = (q-1)D_q$$

Airton Deppman

Fractals in HEP

$\begin{aligned} &C_q = \sum_{k_0}^{\infty} k^q P_k / \left(\sum_{k_0}^{\infty} k P_k \right)^q = \delta^{\tau(q)} \\ &P_k^q = (Q_k / N)^q = \delta^{\alpha_q} \end{aligned}$ Normalized Moments: PRD41 (1990) 1456 Q_k = number of events with k particles in the bin with width δ N =total number of events

fractal spectrum

R Hwa

$$au({m q})={m q}lpha_{m q}-f(lpha_{m q})=({m q}-1)D_{m q}$$
 fractal dimension

Airton Deppman

Fractals in HEP

Normalized Moments: $\begin{aligned} &C_q = \sum_{k_0}^{\infty} k^q P_k / \left(\sum_{k_0}^{\infty} k P_k \right)^q = \delta^{\tau(q)} \\ &P_k^q = (Q_k / N)^q = \delta^{\alpha_q} \end{aligned}$ PRD41 (1990) 1456 Q_k = number of events with k particles in the bin with width δ N = total number of events $au(q) = q lpha_q - f(lpha_q) = (q-1) D_q$ fractal dimension fractal spectrum

Intermittency

Self-similarity \rightarrow N.G. Antoniou et al PRC93, 014908 (2016)

R Hwa

Intermittency Exponential growth of cummulants (integrated correlation)

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCT

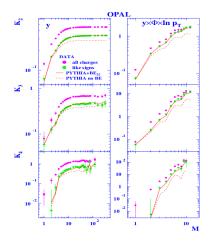
Experimental verification of nonextensivity in HEP

NESCT and the hadronic fracta dimension

Conclusions

Intermittency data analysis

E. Sarkisyan: arXiv: hep-ex/0209079



Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivit and fractality

NESCT

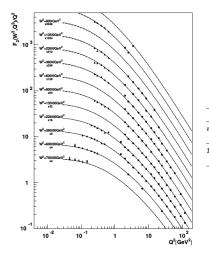
Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Parton Distribution Function

T. Lastovicka EPJC 24(2002) 529



	\mathcal{D}_0	\mathcal{D}_1	\mathcal{D}_2	\mathcal{D}_3	$Q_0^2 \; [\text{GeV}^2]$
all fit	0.339	0.073	1.013	-1.287	0.062
	± 0.145	± 0.001	± 0.01	± 0.01	± 0.01
D_2 fixed	0.523	0.074	1	-1.282	0.051
	± 0.014	± 0.001	const.	± 0.01	± 0.002

 $log f_i(x, Q^2) = D_1 log(1/x) log(1 + Q^2/Q_o^2) + D_2 log(1/x) + D_3 log(1 + Q^2/Q_o^2) + D_o^i$

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fracta dimension

Conclusions

Fireball and hadron definitions

Hagedorn's defintion for firebal

A fireball is:

 \longrightarrow a statistical equilibrium (hadronic black-body radiation) of an undetermined number of all kinds of fireballs, each of which, in turn, is considered to be —

The model we wish to focus on in this paper is the *bootstrap model of hadrons*, in which the hadrons are assumed to be compounds of hadrons. The model can be represented schematically by

Frautischi's defintion for hadrons:

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fracta dimension

Conclusions

Thermofractal - definition

1 The total energy is given by

 $U=F+E\,,$

The number of subsystem in N for all thermofractals.

2 $\langle E \rangle / \langle F \rangle$ is constant for all the subsystems. $E/F \rightarrow P(E/F)$.

3 At some point *n* of the hierarchy of subsystems the phase space is so narrow that one can consider

$$P(E_n)dE_n = \rho dE_n,$$

with ρ being independent of the energy E_n .

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Thermofractal - Thermodynamics

For an ideal gas of elementary particles (Landau):

$$P(U)dU = (kT)^{-\frac{3N}{2}}U^{\frac{3N}{2}-1}\exp\left(-\frac{U}{kT}\right)dU,$$

Define for a thermofractal:

$$P(U)dU = A \exp(-lpha F/kT)DFDE$$

with

$$\alpha = 1 + \frac{\varepsilon}{NkT}$$

and

$$\varepsilon = \frac{E}{F}kT$$
.

$$DF = F^{\frac{3N}{2}-1}dF$$

and for the internal energy it is possible to write

$$DE = \tilde{P}(E)dE$$
,

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and th hadronic fracta dimension

Conclusions

Thermofractal - Thermodynamical potential

The thermodynamical potential is given by

$$\Omega = \int_0^\infty \int_0^\infty AF^{\frac{3N}{2}-1} \exp\left(-\frac{\alpha F}{kT}\right) dF \tilde{P}(\varepsilon) d\varepsilon \,.$$

which, after integration on F results in

$$\Omega = A \int_0^\infty \left[1 + \frac{\varepsilon}{NkT} \right]^{-3N/2} \tilde{P}(\varepsilon) d\varepsilon \,.$$

Second property of thermofractals (self-affine solution):

 $\ln P(U) \propto: \ln \tilde{P}(\varepsilon)$

$$P(\varepsilon) = A \left[1 + \frac{\varepsilon}{NkT} \right]^{-3Nn/2}$$

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fracta dimension

Conclusions

Thermofractal and Tsallis

Second property of thermofractals (self-similar solution):

$$\Omega = \int_0^\infty \int_0^\infty AF^{\frac{3N}{2}-1} \exp\left(-\frac{\alpha F}{kT}\right) dF[\tilde{P}(\varepsilon)]^\nu d\varepsilon.$$
$$P(U) := \tilde{P}(\varepsilon)$$

$$P(\varepsilon) = A \left[1 + \frac{\varepsilon}{NkT} \right]^{-\frac{3N}{2}\frac{1}{1-\nu}}$$

Introducing the index q by

$$q-1=\frac{2}{3N}(1-\nu)$$

and the effective temperature

$$\tau = \frac{2(1-\nu)}{3}T$$

$$P(\varepsilon) = A igg[1 + (q-1) rac{arepsilon}{Nk au} igg]^{-rac{1}{q-1}},$$

For an ideal gas of thermofractals Tsallis statistics must be used! 13/2

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and th hadronic fracta dimension

Conclusions

Nonextensive self-consistent theory

$$Z_q(V_o,T) = \int_0^\infty \sigma(E) [1+(q-1)\beta E]^{-\frac{q}{(q-1)}} dE$$

and

$$\begin{aligned} \ln[1+Z_q(V_o,T)] = & \frac{V_o}{2\pi^2} \sum_{n=1}^{\infty} \frac{1}{n} \int_0^{\infty} dm \int_0^{\infty} dp \, p^2 \rho(n;m) \\ & \times [1+(q-1)\beta \sqrt{p^2+m^2}]^{-\frac{nq}{(q-1)}} \,, \end{aligned}$$

Self-consistency principle:

$$Z_{q}(V_{o}, T) = \int_{0}^{\infty} \sigma(E) [1 + (q - 1)\beta E]^{-\frac{q}{(q-1)}} dE$$
$$= \exp\left\{\frac{V_{o}}{2\pi^{2}\beta^{3/2}} \int_{0}^{\infty} dm \, m^{3/2} \rho(m) [1 + (q - 1)\beta m]^{-\frac{1}{q-1}}\right\} - 1$$

Weak constraint:

 $\ln[\sigma(E)] = \ln[\rho(m)]$

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivit and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fracta dimension

Conclusions

Self-consistency solution

Self-consistency is obtained if

$$\rho(m) = \frac{\gamma}{m^{5/2}} [1 + (q_o - 1)\beta_o m]^{\frac{1}{q_o - 1}}$$

and

$$\sigma(E) = bE^{a} \left[1 + (q_{o} - 1)\beta_{o}E \right]^{\frac{1}{q_{o}-1}}$$

Partition function:

$$Z_q(V_o,T)
ightarrow b\Gamma(a+1) igg(rac{1}{eta-eta_o}igg)^{a+1}$$

with

$$a+1 = \alpha = \frac{\gamma V_o}{2\pi^2 \beta^{3/2}}$$

Limiting temperature: β_o and entropic index: q_o .

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivit and fractality

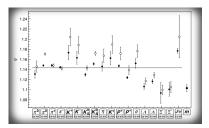
NESCT

Experimental verification of nonextensivity in HEP

NESCT and th hadronic fracta dimension

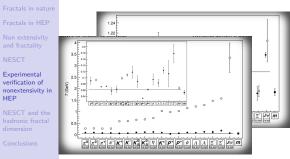
Conclusions

Experimental analyses



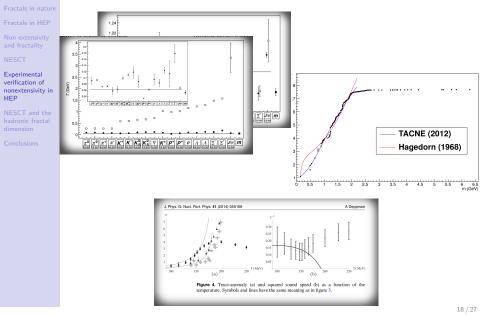
Airton Deppman

Experimental analyses



Airton Deppman

Experimental analyses



Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivit and fractality

NESCT

Experimental verification of nonextensivity in HEP

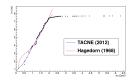
NESCT and the hadronic fractal dimension

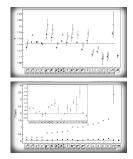
Conclusions

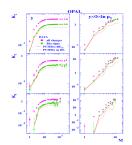
Fireball and hadron definitions

$$D = 1 + rac{\log N'}{\log R}$$
 $N = rac{1}{(q-1)} rac{\tau}{T}$

$$R = \frac{(q-1)N/N'}{3-2q+(q-1)N}$$
 $N' = N + 2/3$







Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Partition function for a <u>nonextensive</u> ideal gas

Nonextensive thermodynamics for hadronic matter with finite chemical potentials

Eugenio Megica, Debrar P. Mencecs, ^{3,3} and Antron Deppman⁴ ¹Grap de Fisica Toricia and IFE, Depretament de Fisica, Universidat Autónoma de Barchena, Beldetrera E-68/39 Barchona, Spain ² Departamento de Fisica, CFM, Universidade Polerati de Santa Catarina, CP 476, CEP 880,0900 Fenancipolis - SC - Barchona ³ Departamento de Fisica Aplicada, Universidad e Advante, Ap. Correus 99, E-63060, Alteante, Spain ⁴ Instituto de Fisica

The momentum event the momentum of an initial gas composed by bosons and/or fermions is derived from its partition function for systems with finite chemical potentials. It is shown that the thermodynamical quantities derived in the present work are in agreement with those obtained in previous works when $\mu \leq m$. Mosever some incomissions of previous references are corrected when $\mu > m$. A discontinuity in the first derivatives of the partition function and its directs are 2005 than that myorked by the first direction.

PACS numbers: 05.70.Ce,95.30.Tg,26.60.-c

Airton Deppman

Fractals in nature

Fractals in HEF

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Partition function for a <u>nonextensive</u> ideal gas

Nonextensive thermodynamics for hadronic matter with finite chemical potentials

Eugenio Megias,¹ Debrors P. Menezes,^{2,3} and Airton Deppman⁴ ¹Grup de Fisica Toriera and IPAE. Department de Fisica, Universitat Autónoma de Bærchema, Bellaterre E 61693 Barchema, Spain ²Departamento de Fásica, CFM, Universidade Felderal de Smala Catarna, CP 476, CEP 88,049-00 Fornanofision, S. P. Brail ³Departamento de Fásica, Pickouda, Universidade de Alicente, Ap. Correns 99, E-03080, Alicante, Spain ⁴Instituto de Fásica, Pickouda, Universidade de Alicente, Ap. ⁴Instituto de Fásica, Pickouda de Alicente, Ap. ⁴Instituto de Fásica, CHA, Marchevente, Sio Paulo - Brasil R Nr.187 CEP 05508-090 Cladek Universidira, Sio Paulo - Brasil

$$\log \Xi_q(V,T,\mu) = -\xi V \int \frac{d^3p}{(2\pi)^3} \sum_{r=\pm} \Theta(rx) \log_q^{(-r)} \left(\frac{c_q^{(r)}(x)-\xi}{c_q^{(r)}(x)}\right),$$

EOS than that provided by the Boltzmann-Gibbs statistics

PACS numbers: 05.70.Ce,95.30.Tg,26.60.-c

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

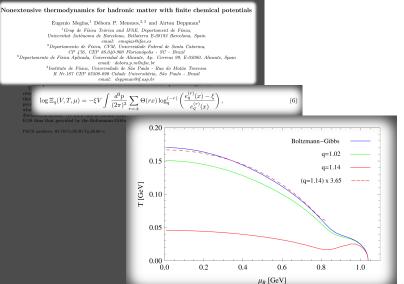
NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Partition function for a <u>nonextensive</u> ideal gas



Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Hadronic Fractal Dimension

$$q = 1.14$$
 and $\tau/T = 0.32$

N = 2.3 and N' = 1.7

R = 0.104 and D = 0.69

Intermittency in rapidity distribution for pp: D = 0.43 - 0.65

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivit and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Microscopic origins of S_q

$$\Omega = \int_0^\infty \int_0^\infty AF^{\frac{3N}{2}} \exp\left(-\frac{F}{kT}\right) dF \left[1 + (q-1)\frac{\varepsilon}{k\tau}\right]^{\nu/(q-1)} d\varepsilon$$
$$\frac{\nu}{q-1} = \frac{1}{q-1} - \frac{3N}{2}$$

$$\Omega = \int_0^\infty \int_0^\infty AF^{\frac{3N}{2}-1} \exp\left(-\frac{F}{kT}\right) dF \left[1 + (q-1)\frac{\varepsilon}{k\tau}\right]^{1/(q-1)} d\varepsilon$$
$$\Omega_o = \int_0^\infty \int_0^\infty \exp\left(-\frac{F}{kT}\right) F^{3N/2} dF$$
$$\Omega = \Omega_o - \int_0^\infty A \exp\left(-\frac{F}{kT}\right) F^{\frac{3N}{2}-1} \times$$
$$\left[1 - \int_0^\infty \exp\left(-(q-1)\frac{\varepsilon}{Nk\tau}\frac{F}{kT}\right) [1 + (q-1)\frac{\varepsilon}{k\tau}\right]^{-\nu/(q-1)} d\varepsilon dF$$

24 / 27

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Microscopic origins of S_q

Dashen, Ma, Bernstein (PR 187 1969):

$$\Omega = \Omega_o - \frac{1}{4\pi\beta i} \int_0^\infty \exp(-E/kT) \left(TrS^{-1} \frac{\overleftrightarrow{\partial}}{\partial E} S \right)_C$$

Therefore:

$$\left(TrS^{-1}\frac{\partial}{\partial E}S\right)_{C} = 1 - \int_{0}^{\infty} \exp\left(-\frac{(q-1)\varepsilon}{Nk\tau}\frac{F}{kT}\right) \left[1 + (q-1)\frac{\varepsilon}{k\tau}\right]^{-\frac{\nu}{q-1}} d\varepsilon$$

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fracta dimension

Conclusions

Next steps

- Determine the PDF corresponding to the thermofractalstructure proposed, and compare with Lastovicika parametrization.
- Extend NESCT to nucleus-nucleus collisions.
- Study possible relations between the fractal structure and non perturbative QCD (fractal diagram).
- Study the relation between the scattering matrix S and q.

Conclusions

- Tsallis statistics in HEP
- Airton Deppman
- Fractals in nature
- Fractals in HEP
- Non extensivity and fractality
- NESCT
- Experimental verification of nonextensivity in HEP
- NESCT and the hadronic fractal dimension
- Conclusions

- 1) Thermofractal structure + NESCT \rightarrow unified description of p_T distribution, hadron mass spectrum, intermittency.
- 2) The parameters T_o and q_o are the only free parameters that needs to be obtained from experimental data.
- 3) It is possible that Parton Distribution Functions can be connected with the thermodynamical theory as well.
- 4) Contribution to the understanding of nonperturbative QCD through *S-matrix* connection.
 - Grazie