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Intermittency

Normalized Moments:
Cq =

∑∞
k0

kqPk/

(∑∞
k0

kPk

)q

= δτ(q)

Pq
k = (Qk/N)q = δαq

Qk = number of events with k particles in the bin

with width δ

N = total number of events

τ(q) = qαq − f (αq) = (q − 1)Dq

R.Hwa

PRD41 (1990) 1456
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= δτ(q)

Pq
k = (Qk/N)q = δαq

Qk = number of events with k particles in the bin

with width δ

N = total number of events

τ(q) = qαq − f (αq) = (q − 1)Dq

R.Hwa

PRD41 (1990) 1456

fractal spectrum fractal dimension

Self-similarity →
Intermittency

Exponential growth of cummulants
(integrated correlation)

N.G. Antoniou et al.
PRC93, 014908 (2016)
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Intermittency data analysis

E. Sarkisyan: arXiv: hep-ex/0209079
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Parton Distribution Function

logfi (x ,Q
2) = D1log(1/x)log(1 + Q2/Q2

o ) + D2log(1/x)+

D3log(1 + Q2/Q2
o ) + D i

o

T. Lastovicka EPJC 24(2002) 529
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Fireball and hadron definitions

Hagedorn’s defintion for firebal

Frautischi’s defintion for hadrons:
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Thermofractal - definition

1 The total energy is given by

U = F + E ,

The number of subsystem in N for all thermofractals.

2 〈E 〉/〈F 〉 is constant for all the subsystems. E/F → P(E/F ).

3 At some point n of the hierarchy of subsystems the phase space
is so narrow that one can consider

P(En)d En = ρdEn ,

with ρ being independent of the energy En.
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Thermofractal - Thermodynamics
For an ideal gas of elementary particles (Landau):

P(U)dU = (kT )−
3N
2 U

3N
2 −1 exp

(
− U

kT

)
dU ,

Define for a thermofractal:

P(U)dU = A exp(−αF/kT )DFDE

with
α = 1 +

ε

NkT

and

ε =
E

F
kT .

DF = F
3N
2 −1dF

and for the internal energy it is possible to write

DE = P̃(E )dE ,
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Thermofractal - Thermodynamical
potential

The thermodynamical potential is given by

Ω =

∫ ∞
0

∫ ∞
0

AF
3N
2 −1 exp

(
− αF

kT

)
dF P̃(ε)dε .

which, after integration on F results in

Ω = A

∫ ∞
0

[
1 +

ε

NkT

]−3N/2

P̃(ε)dε .

Second property of thermofractals (self-affine solution):

lnP(U) ∝: ln P̃(ε)

P(ε) = A

[
1 +

ε

NkT

]−3Nn/2
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Thermofractal and Tsallis
Second property of thermofractals (self-similar solution):

Ω =

∫ ∞
0

∫ ∞
0

AF
3N
2 −1 exp

(
− αF

kT

)
dF [P̃(ε)]νdε .

P(U) := P̃(ε)

P(ε) = A

[
1 +

ε

NkT

]− 3N
2

1
1−ν

Introducing the index q by

q − 1 =
2

3N
(1− ν)

and the effective temperature

τ =
2(1− ν)

3
T

P(ε) = A

[
1 + (q − 1)

ε

Nkτ

]− 1
q−1

,

For an ideal gas of thermofractals Tsallis statistics must be used! 13 / 27
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Nonextensive self-consistent theory

Zq(Vo ,T ) =

∫ ∞
0

σ(E )[1 + (q − 1)βE ]−
q

(q−1) dE

and

ln[1 + Zq(Vo ,T )] =
Vo

2π2

∞∑
n=1

1

n

∫ ∞
0

dm

∫ ∞
0

dp p2ρ(n;m)

× [1 + (q − 1)β
√
p2 + m2]−

nq
(q−1) ,

Self-consistency principle:

Zq(Vo ,T ) =

∫ ∞
0

σ(E )[1 + (q − 1)βE ]−
q

(q−1) dE

= exp

{
Vo

2π2β3/2

∫ ∞
0

dmm3/2ρ(m)[1 + (q − 1)βm]−
1

q−1

}
− 1

Weak constraint:
ln[σ(E )] = ln[ρ(m)]
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Self-consistency solution

Self-consistency is obtained if

ρ(m) =
γ

m5/2
[1 + (qo − 1)βom]

1
qo−1

and
σ(E ) = bE a

[
1 + (qo − 1)βoE

] 1
qo−1

Partition function:

Zq(Vo ,T )→ bΓ(a + 1)

(
1

β − βo

)a+1

with

a + 1 = α =
γVo

2π2β3/2

Limiting temperature: βo and entropic index: qo .
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Fireball and hadron definitions

D = 1 + log N′

log R

R = (q−1)N/N′

3−2q+(q−1)N

N = 1
(q−1)

τ
T

N ′ = N + 2/3
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Hadronic Fractal Dimension

q = 1.14 and τ/T = 0.32

N = 2.3 and N ′ = 1.7

R = 0.104 and D = 0.69

Intermittency in rapidity distribution for pp: D = 0.43 − 0.65
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Microscopic origins of Sq

Ω =

∫ ∞
0

∫ ∞
0

AF
3N
2 exp

(
− F

kT

)
dF

[
1 + (q − 1)

ε

kτ

]ν/(q−1)

dε

ν

q − 1
=

1

q − 1
− 3N

2

Ω =

∫ ∞
0

∫ ∞
0

AF
3N
2 −1 exp

(
− F

kT

)
dF

[
1 + (q − 1)

ε

kτ

]1/(q−1)

dε

Ωo =

∫ ∞
0

∫ ∞
0

exp

(
− F

kT

)
F 3N/2dF

Ω =Ωo −
∫ ∞

0

A exp

(
− F

kT

)
F

3N
2 −1×[

1−
∫ ∞

0

exp

(
− (q − 1)

ε

Nkτ

F

kT

)
[1 + (q − 1)

ε

kτ

]−ν/(q−1)

dε

]
dF
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Microscopic origins of Sq

Dashen, Ma, Bernstein (PR 187 1969):

Ω = Ωo −
1

4πβi

∫ ∞
0

exp(−E/kT )

(
TrS−1

↔
∂

∂E
S

)
C

Therefore:(
TrS−1 ∂

∂E
S

)
C

= 1−
∫ ∞

0

exp

(
− (q − 1)ε

Nkτ

F

kT

)[
1+(q−1)

ε

kτ

]− ν
q−1

dε
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Next steps

• Determine the PDF corresponding to the thermofractalstructure
proposed, and compare with Lastovicika parametrization.

• Extend NESCT to nucleus-nucleus collisions.

• Study possible relations between the fractal structure and non
perturbative QCD (fractal diagram).

• Study the relation between the scattering matrix S and q.
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Conclusions

1) Thermofractal structure + NESCT → unified description of pT
distribution, hadron mass spectrum, intermittency.

2) The parameters To and qo are the only free parameters that
needs to be obtained from experimental data.

3) It is possible that Parton Distribution Functions can be
connected with the thermodynamical theory as well.

4) Contribution to the understanding of nonperturbative QCD
through S-matrix connection.

Grazie
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