
ENUBET

INFN

Enhanced NeUtrino BEams from kaon Tagging

A. Longhin (INFN-PD) Padova, 8 June 2016

ERC-Consolidator Grant-2015, nº 681647 (PE2)

Da INFN "What Next" a fine 2014 a un "caso di successo" oggi ... !

Sempre passando per quest'aula (con qualche tappa intermedia tra Frascati e Bruxelles)

Tagged v_{e} beams, a novel technique to measure $\sigma(v_{e})$ What Next. Oscillazioni di neutrino

Padova, 1-2 Dicembre 2014

NFN Servizio Fondi Esterni Sezione di Padova Inparticuanto di Foice a Referencenta (palitan fualitati

European Research Council

ERC in Sezione: due casi di successo

Mercoledì 8 giugno 2016, ore 15.00 Aula "Rostagni"

Recentemente sono stati avviati a Padova due progetti ERC Consolidator in cui la Sezione INFN 6 comode, e ando come host institution, nell'altro come partner dell'Università di Padova. I vincitori, Andrea Longhin 6 Paro Galdado, presenteranno nel corso dell'incontro i loro progetti, descrivendone sia gli obiettivi scientifici che Impetto de essi potranno avere per la Sezione, il Dipartimento e il contesto scientifico e tecnologico italiano. Seguira una discusso sulle prospettive per l'INFN del programma ERC, introdotta da alcuni aggiornamenti forniti dal Servizio Fond Essene il vincitori metteranno a disposizione indicazioni utili, tratte dalla loro esperienza diretta, di quanti intendono sedescene o promuovere la partecipazione ai prossimi bandi.

what

8 May 2016, Padova

The ENUBET physics case

A FUNDAMENTAL QUESTION

The role of neutrinos in the dominance of **matter over antimatter** in our universe

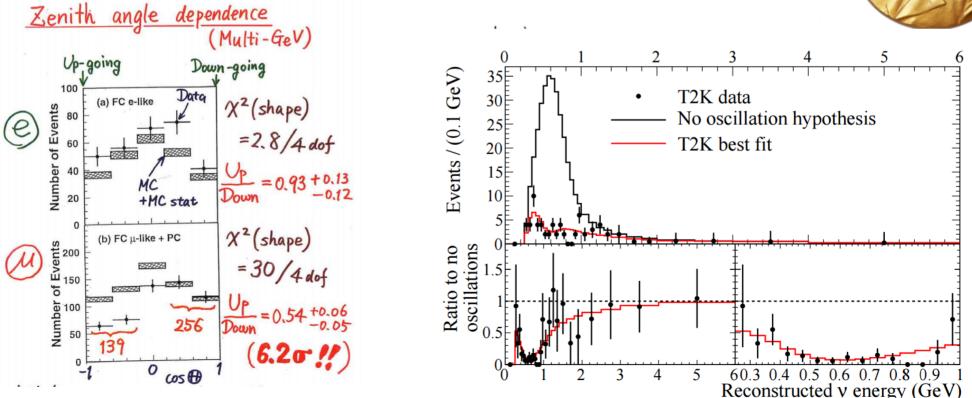
THE MEASUREMENT

Find experimental evidence of **CP violation** in the leptonic sector

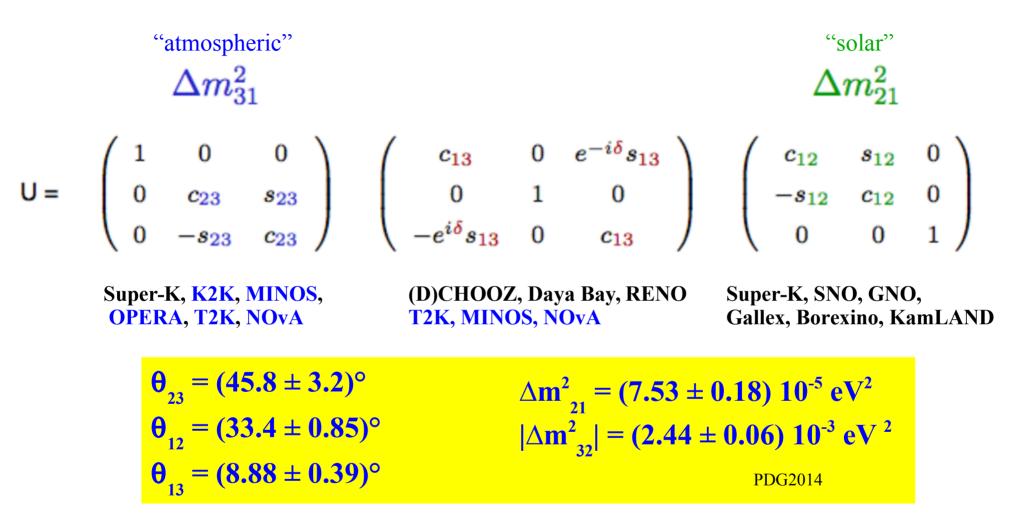
$$(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e}) \neq (\bar{\mathbf{v}}_{\mu} \rightarrow \bar{\mathbf{v}}_{e})$$
?

CP violating effects are small: we need a nearly perfect knowledge of the interactions of v_{r} with matter

THE OBSTACLE conventional v_e beams are flawed by O(10%) uncertainties "The instrinsic limit": initial neutrino flux is not known well

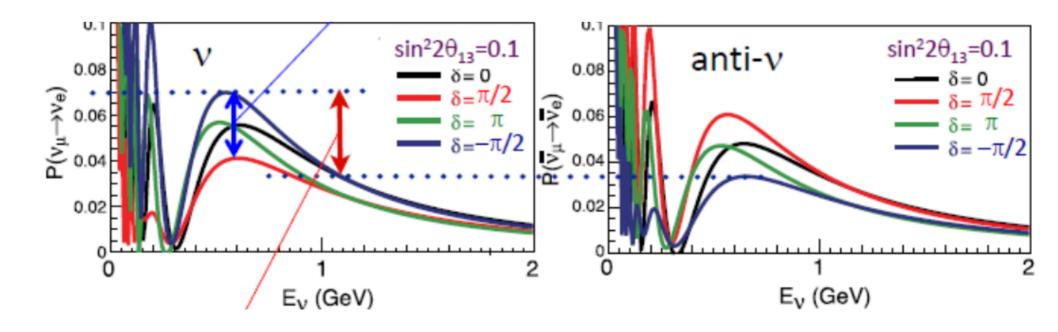

ENUBET, A. Longhin

Neutrino oscillations


"The discovery that neutrinos can convert from one flavour to another and therefore have nonzero masses is a major milestone for elementary particle physics. It represents compelling experimental evidence for the incompleteness of the Standard Model as a description of nature... Neutrino oscillations and the connected issues of the nature of the neutrino, neutrino masses and possible CP violation among leptons are today major research topics in particle physics."

A lot of progress and still a lot of interesting (and challenging!) physics

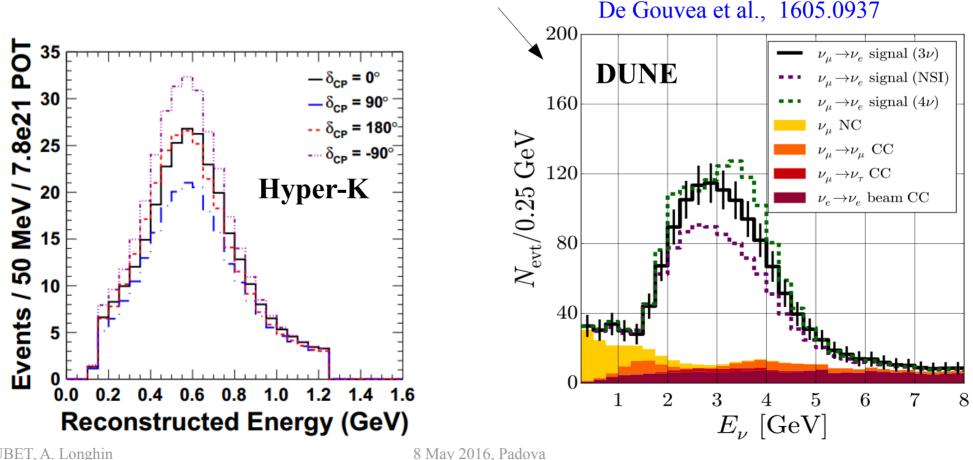
The "precision era" of v physics



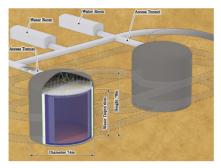
Open questions:

CP violation? mass hierarchy $(m_{1,2} \le m_3)$? $\theta_{23} = 45^{\circ}$? Symmetries ? Relation with CKM ? Leptogenesis and BAU ? Majorana/Dirac $(0\nu\beta\beta)$?

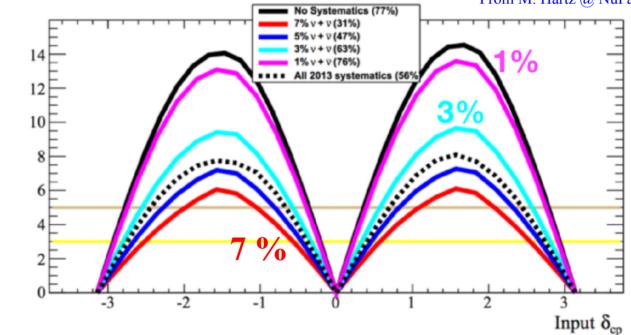
Learning a lot from (precisely!) measuring $v_{\mu} \rightarrow v_{e}$


- $P(v_{\mu} \rightarrow v_{e}) = 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31}$ dominant term +8 $c_{13}^{2}s_{12}s_{13}s_{23}(c_{12}c_{23}\cos\delta_{CP} - s_{12}s_{13}s_{23})\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21}$ -8 $c_{13}^{2}c_{12}c_{23}s_{12}s_{13}s_{23}\frac{\sin\delta_{CP}}{\sin\Delta_{32}}\sin\Delta_{31}\sin\Delta_{21}$ CP violation +4 $s_{12}^{2}c_{13}^{2}(c_{12}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta_{CP})\sin^{2}\Delta_{21}$ matter -8 $c_{13}^{2}s_{13}^{2}s_{23}^{2}\frac{aL}{4E_{v}}(1-2s_{13}^{2})\cos\Delta_{32}\sin\Delta_{31}+8c_{13}^{2}s_{13}^{2}s_{23}^{2}\frac{a}{\Delta m_{31}^{2}}(1-2s_{13}^{2})\sin^{2}\Delta_{31}$
- **θ**₁₃
- CP violation,
- mass hierarchy
 - matter effects at large L
- the octant of $\theta_{_{23}}$
- δ_{CP} affects the $v_{\mu} \rightarrow v_{e}$ and $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ oscillation in opposite directions: exploit both!
- At the first oscillation maximum the effect is mainly a **change in normalization**

Why measuring $\sigma(v)$


- Leptonic CP violation, mass hierarchy, θ_{13} : P($v_{\mu} \rightarrow v_{e}$) and P($\overline{v}_{\mu} \rightarrow \overline{v}_{e}$)
- But we measure interaction rates of electron neutrinos •
 - knowing well the v_{a} cross section crucial for future experiments (HyperK, DUNE).
 - Moreover a perfect knowledge of $\sigma(v_{e})$ vs E is a must to unravel 3-flavour CP • violation from more exotic scenarios (sterile neutrinos, non-standard interaction -NSI- models). A similar phenomenology!

Impact of $\sigma(v_e)$, $\sigma(v_e)$ at Hyper-K

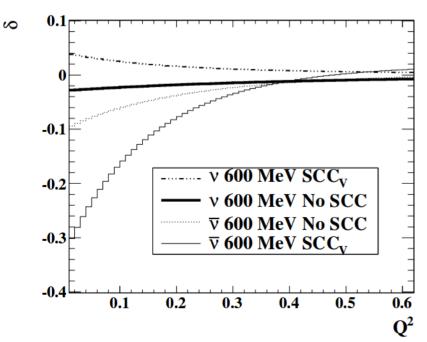


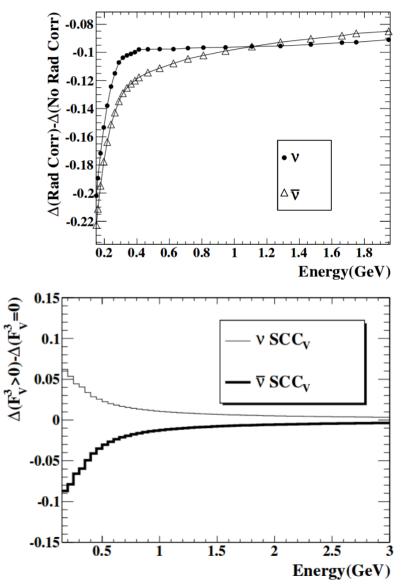
Sensitivity study for the discovery of CP violation $\sigma(v_e)$ and $\sigma(v_e)$: uncorrelated normalization systematics parameters Uncertainty on the normalization parameters: {0, 1, 3, 5, 7 %}

From M. Hartz @ NuFact 2015

 $δ_{CP}$ values for which the curves are above N σ are those for which it is possible to discover CP violation (sin $δ_{CP}$!= 0) with N σ confidence.

The systematic uncertainty should be controlled to < 1-2% to **minimize the impact** on the CPV discovery sensitivity \rightarrow probe smaller and smaller values of sin δ_{CP}


Infer $\sigma(v_e)$ from $\sigma(v_{\mu})$?



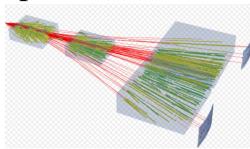
- No...0) also $\sigma(v_{\mu})$ is poorly known (and ENUBET will contribute also in that direction)
- 1) Differences in quasi-elastic cross sections of μ and *e* neutrinos. Phys. Rev. D86 (2012) 052003

8 May 2016, Padova

- Lepton universality in weak interactions is not the full story:
- Uncertainties from the interplay of
 - radiative corrections
 - uncertainties on nucleon for factors
 - $\sim F_{\rm P}, F_{\rm V}^{-1,2}, F_{\rm A}$, second class currents
 - alteration of kinematics due to mass
- Differences (Δ, δ) can be
 - Significant (10-20%) espec. at low-E, Q²
 - different for neutrinos and anti-neutrinos!

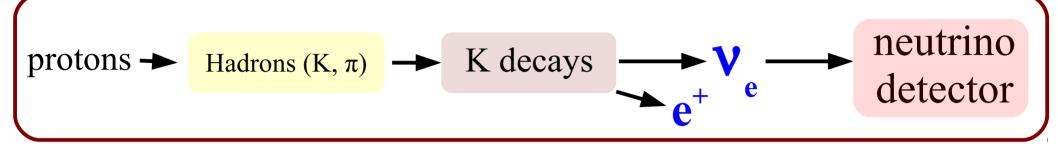
9

The ENUBET approach


In the last ten years, our knowledge of v cross sections has improved enormously. Vigorous experimental programme (MINERVA, T2K, SCIBooNE, MiniBooNE etc.) motivated by the needs of the precision oscillation physics. Still:

- no absolute cross section with precision better than $\sim 10\%$
 - <u>Mitigation (in place)</u>: hadro-production experiments. (SPY, HARP, NA61)
 - Use **interactions with electrons** as a standard candle process to determine the flux ? tiny cross section
- v_e cross sections are sparse (Gargamelle, T2K, NovA), from v_e contamination
 - we do not have intense sources of v_e in the GeV energy range
 - <u>(ideal) solution</u>: i.e. beams from decay in flight of stored muons (NUSTORM) Neutrino Beam Muon Decay Ring

ENUBET approach: build a **pure source of** v_e employing **conventional technologies** reaching a **precision on the initial flux** < 1%


Target

226 m

Tagged electron neutrino beams

The problem of predicting the v_{e} flux at the neutrino detector

A traditional beam

- Passive decay region
- v_e flux relies on ab-initio
 simulations of the full chain
- **large uncertainties** from hadro-production

The tagged beam

• Fully instrumented decay region

$$\mathbf{K}^+ \rightarrow \mathbf{e}^+ \mathbf{v}_{\mathbf{e}} \pi^0 \rightarrow \text{large angle } \mathbf{e}^+$$

• v_e flux prediction = e^+ counting

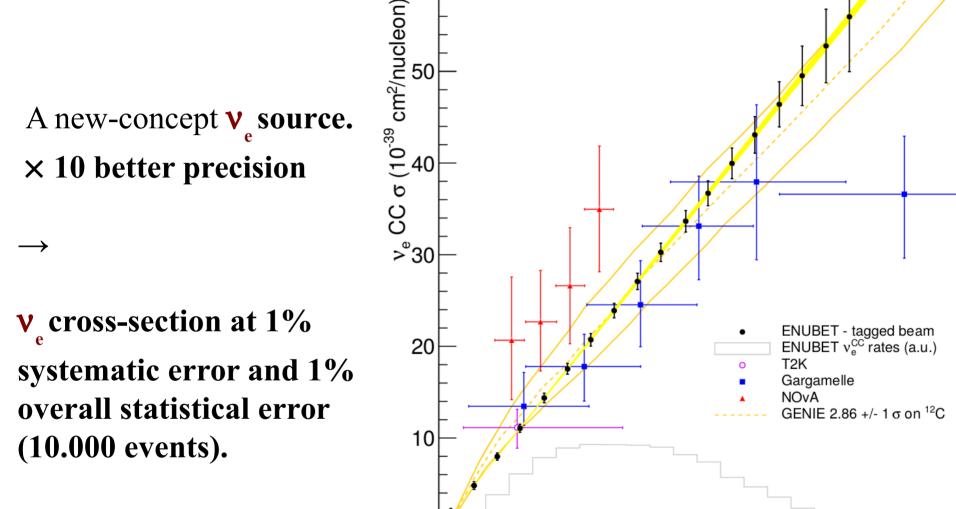
Tagged neutrino beams: the origins

The "forbidden dream" of neutrino physicists:

The possibility of using tagged-neutrino beams in high-energy experiments must have occurred to many people. In tagged-neutrino experiments it should be required that the observed event due to the interaction of the neutrino in the neutrino detector would properly coincide in time with the act of neutrino creation $(\pi \rightarrow \mu\nu, K \rightarrow \mu\nu, B. Pontecorvo, Lett. Nuovo Cimento, 25 (1979) 257$

Literature:

- L. Hand, 1969, V. Kaftanov, 1979 $(\pi/K \rightarrow \nu_{\mu})$
- G. Vestergombi, 1980, R. Bernstein, 1989 ($K \rightarrow v_{\rho}$)
- S. Denisov, 1981, R. Bernstein, 1989 (K_{e3})


- L. Ludovici, P. Zucchelli, hep-ex/9701007 (K₂₃)
- L. Ludovici, F. Terranova, EPJC 69 (2010) 331 (K_{e3})

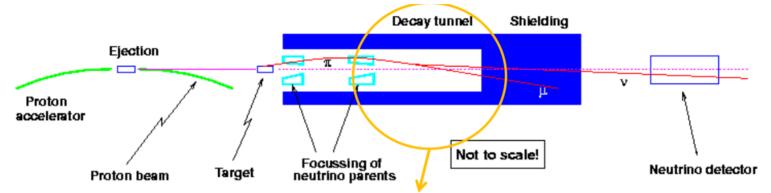
What's new with ENUBET:

- a compelling and new physics case: a beam design optimized for $\sigma(v)$
- taking advantage of the progress in fast, cheap, radiation-hard detectors
- using $\mathbf{K}^+ \to \mathbf{e}^+ \pi^0 \mathbf{v}_{\mathbf{e}} (\mathbf{K}^+_{\mathbf{e}3} \text{ decays})$

The ENUBET breakthrough

NB. no measurements for $\sigma(\bar{\nu}_e)!$

E_v (GeV)


OK, but ...

Inside a neutrino beam tunnel

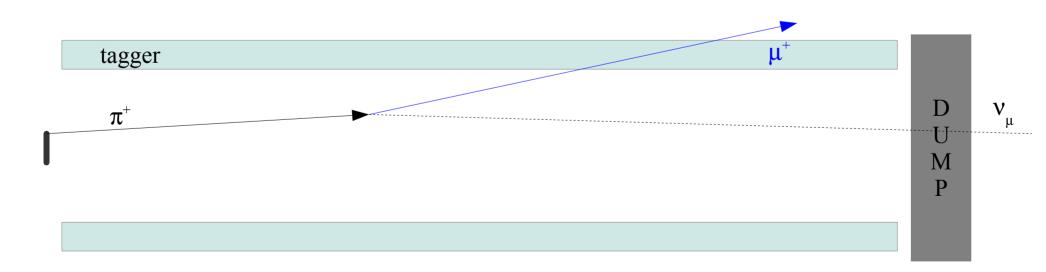
en,, bet

A traditional neutrino beam:

Consider a beam of collimated pions and kaons selected in sign and momentum

 $p = 8.5 \text{ GeV} \pm 20 \%$, 3 mrad in 10 × 10 cm² window [$\varepsilon_{xx'} = \varepsilon_{yy'} = 0.15 \text{ mm} \times \text{rad}$] (see below)

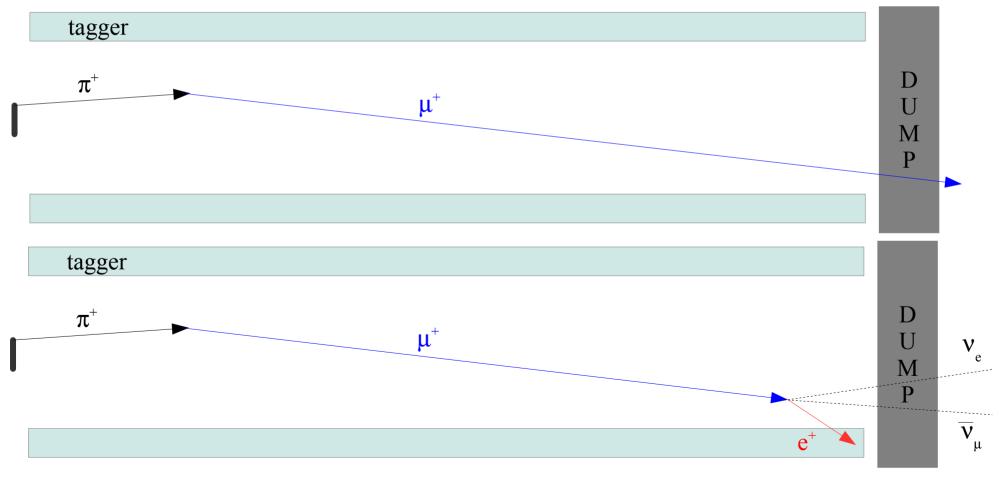
Collimation allows having only decay products in the tagger. Not decaying primaries are absorbed in the dump. This allows **tolerable rates** and good S/N (**not true** in conventional beams \rightarrow **crucial role of the hadron beamline**)


ENUBET, A. Longhin

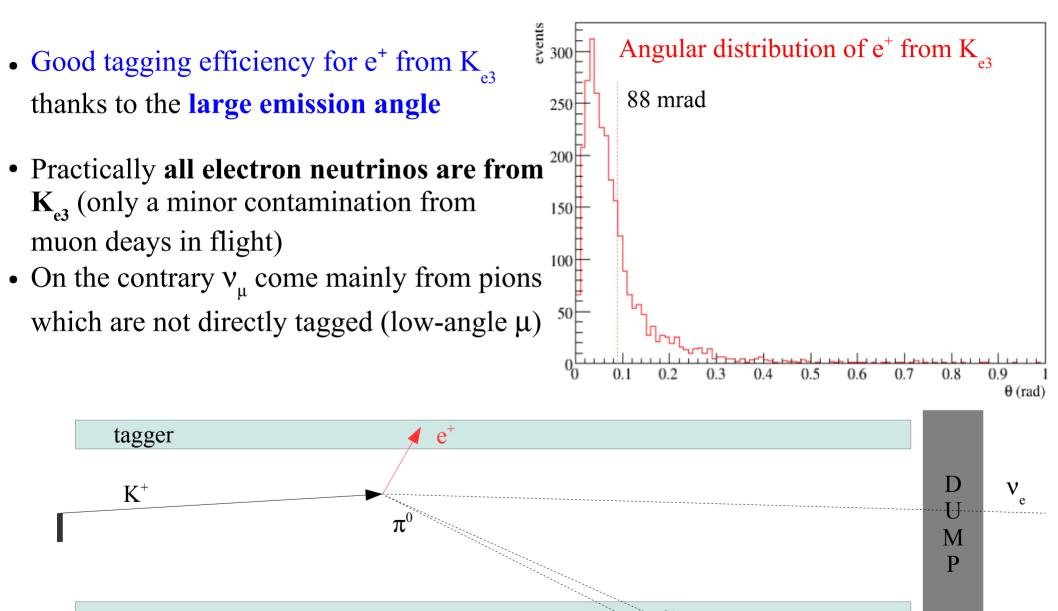
Inside a neutrino beam tunnel: $\pi^+ \rightarrow \mu^{\pm} \nu$

- Mostly pions (~95% @ 400 GeV protons) with a ~100% BR to muons
- Creates the bulk of v_{μ}
- 2-body decay kinematics, $m_{\mu} \sim m_{\pi}$

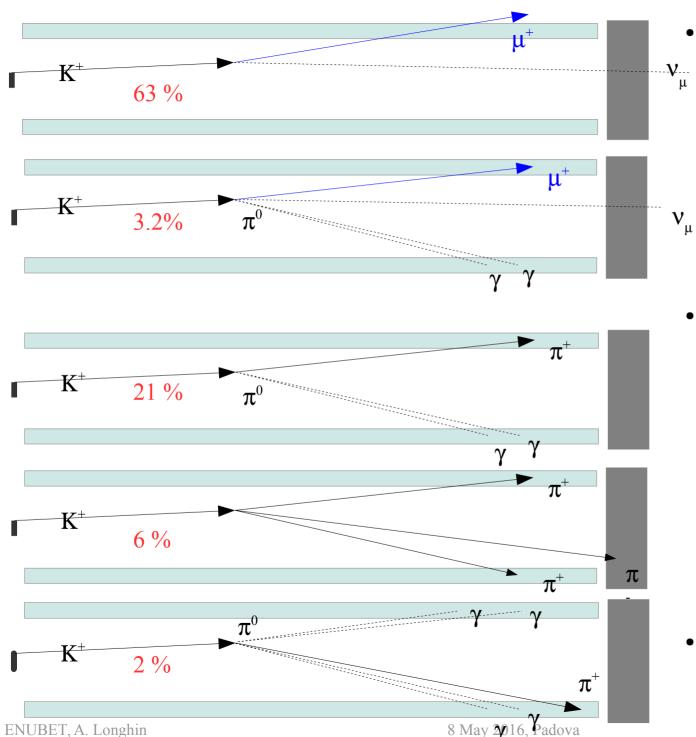
$$\frac{\Phi_{\nu_e}}{\Phi_{\nu_{\mu}}} = 1.8 \% (\nu_e \text{ from } K_{e3})$$


- $\mu^+ \sim 4 \text{ mrad}$ (low acceptance in the tagger)
- μ^+/e^+ discrimination relatively easy

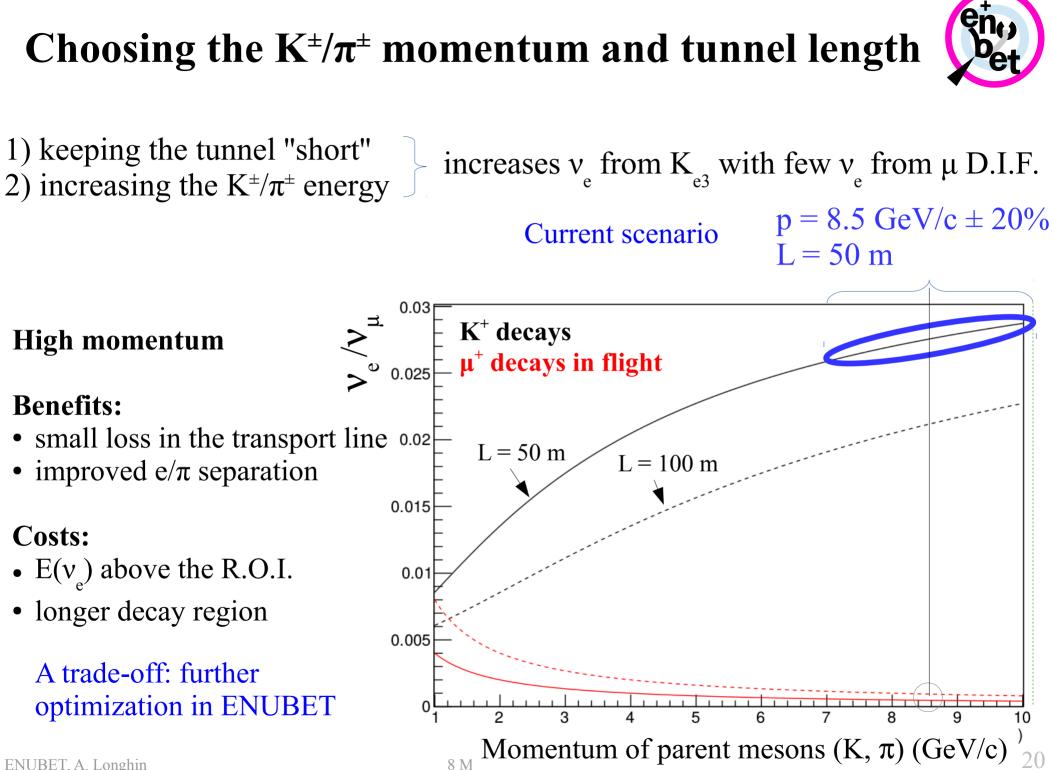
Inside a ν beam tunnel: decays in flight of μ



- 3-body decay kinematics but $m_{\mu} \sim 0.2 m_{K}$
 - $e^+_{DIF} \sim 28 \text{ mrad } (e^+_{Ke3} \sim 88 \text{ mrad})$
- Produce v_{e} and anti- v_{u} in the neutrino detector
- Suppressed by long μ decay path (see later): $v_{e}^{CC,DIF} \sim 3.3\%$



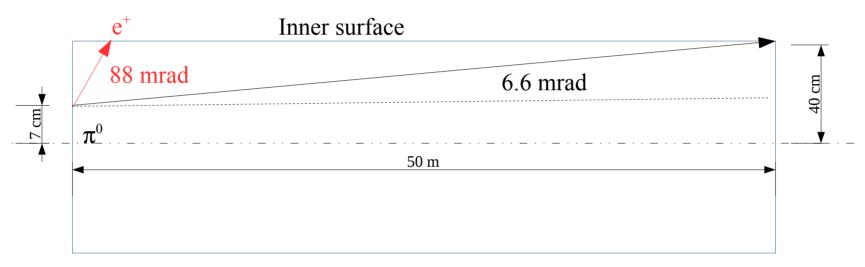
$A \nu_e$ source based on $K^+ \rightarrow \pi^0 e^+ \nu_e$



Inside a v beam tunnel: other K decays

- $\pi^{+/0}$ can mimick an e⁺ signal \rightarrow must be **discriminated** ! 1) rejection in the tagger + 2) vertexing with timing $\sigma_t O(100 \text{ ps}) \sim \sigma_{zVTX} O(1m)$ vetoing π^+ from the decay vertex rejects fake e⁺ from $K^+ \rightarrow \pi^+ \pi^- \pi^+$ and $K^+ \rightarrow \pi^+ \pi^0$
- NB. K decays are the only pion source in the tagger → not simply a "background": a π "control sample" can be used with the K_{e3} "golden sample" to infer the ν_e flux

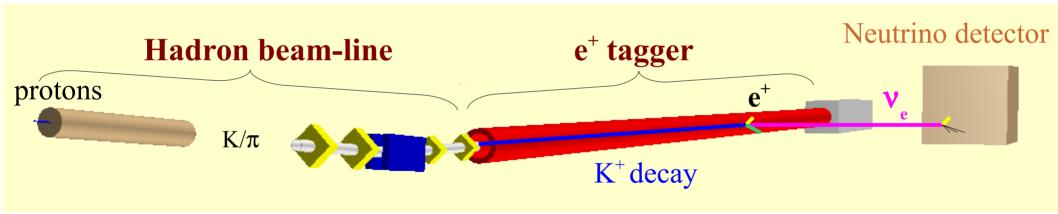
 φ(ν_e) ~ N(e⁺)/BR_{Ke3}
 φ(ν_e) ~ N(π⁺)/BR_{K→πX}
- Will be fully investigated in ENUBET WP5



ENUBET, A. Longhin

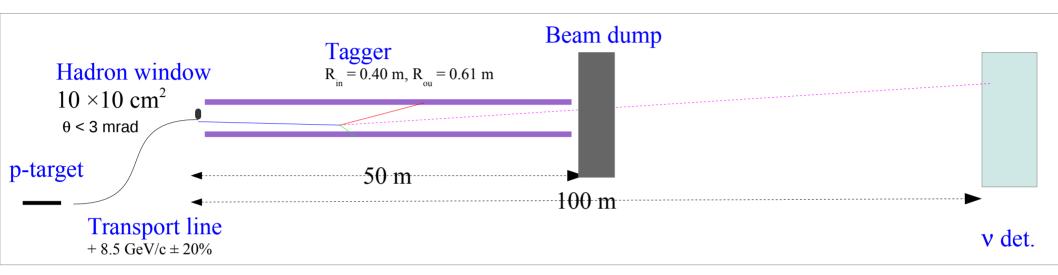
Final dimensioning of the tagger

• Determined by **realistic requirements in the hadron beam emittance** combined with the **need to keep primary mesons away from the tagger**



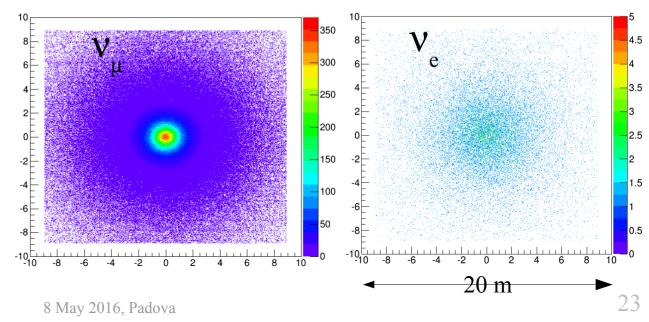
• The radial depth (~ 20 cm) is detemined by requiring full hadronic containment of the highly "inclined" pions

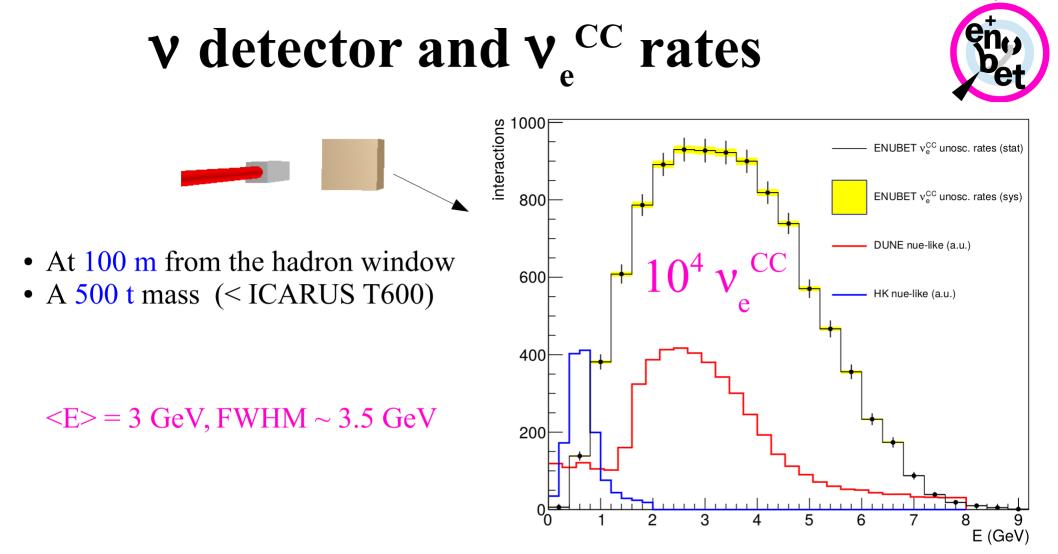
Towards the first tagged v_{e} beam



A specific setup to implement this idea proposed in: <u>A. Longhin, F. Terranova, L. Ludovici</u> Eur. Phys. J. C (2015) 75:155

- Hadron beam-line: collects, focuses, transports K⁺ to the e⁺ tagger
- e⁺ tagger: real-time, "inclusive" monitoring of produced e⁺


Full layout and neutrino yield



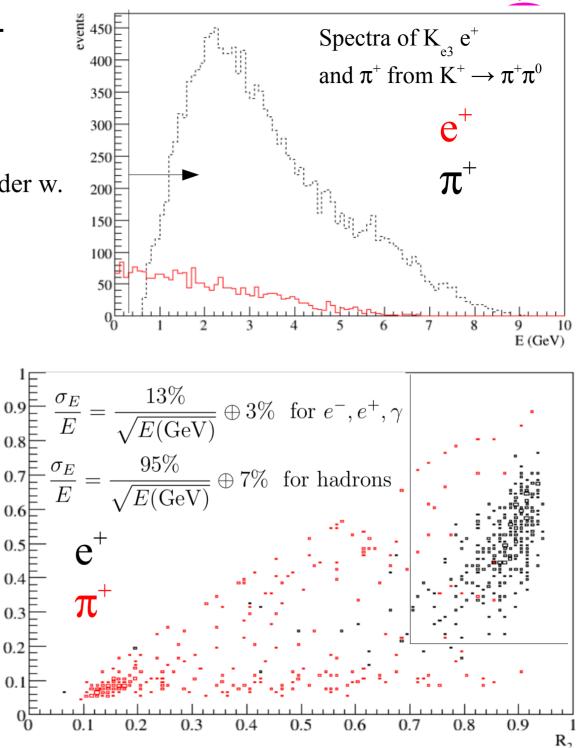
Radial profiles at the v detector (z = 100 m)

- tagger geometrical acceptance: 85% of v_e at detector with a tagged e⁺ (forward "hole")
- $M = 500 t \rightarrow$

 $1.95 \times 10^{13} \text{ K}^+/\nu_e^{\text{CC}}$

- Interesting region of long baseline future projects is covered
- Further tuning foreseen within ENUBET to go even lower in energy preserving an acceptable positron purity

Calorimetric e^+/π^+ separation



- $r = 2R_{Moliere}$ (3.2 cm for Cu)
- h = 5 and 10 X_0 (7.2 and 14.4 cm)

Selection:

- $E_{tot} > 300 \text{ MeV}$
- $\mathbf{R}_{1} = \mathbf{E}_{1} / \mathbf{E}_{tot} > 0.2$
- $R_2 = E_2 / E_{tot} > 0.7$

Cut	Efficiency
K_{e3} decay	100%
e^+ in calorimeter	85%
R_1, R_2 cuts	67%
$E_{tot} > 300 \text{ MeV}$	59%

0.1

Ŗ

Preliminary background budget

- $\varepsilon(\mu^+ \rightarrow e^+) \sim 10^{-3}$
- $\varepsilon(\pi^+ \rightarrow e^+) = 2.2 \% \rightarrow 18 \%$ of fake e^+
- $\varepsilon(\pi^0 \rightarrow e^+)$ tagger in vacuum (as for NA62 LAV). Conversions in the γ veto.

	Source	BR	Misid	$\epsilon_{X \to e^+}$	Contamination
	$\pi^+ \to \mu^+ \nu_\mu$	100%	$\mu \to e$ misid.	< 0.1%	neglig. (outside acceptance)
	$\mu^+ \to e^+ \bar{\nu}_\mu \nu_\mu$	DIF	genuine e^+	< 0.1%	neglig. (outside acceptance)
_	$K^+ \to \mu^+ \nu_\mu$	63.5%	$\mu \to e$ misid.	< 0.1%	negligible
	$K^+ \to \pi^+ \pi^0$	20.7%	$\pi \to e$ misid.	2.2%	13%
	$K^+ \to \pi^+ \pi^+ \pi^-$	5.6%	$\pi \to e$ misid.	3.8%	5%
	$K^+ \to \pi^0 \mu^+ \nu_\mu$	3.3%	$\mu \to e$ misid.	< 0.1%	negligible
	$K^+ \to \pi^+ \pi^0 \pi^0$	1.7%	$\pi \to e$ misid.	0.5%	negligible

Additional improvements from exploitation of vertexing with timing not included

Systematics on the v_e flux

The positron tagging eliminates the most important source of systematics but can we get to 1%? Very likely, to be demonstrated by ENUBET

Sources	Size
Statistical error	< 1 %
K production yield	Irrelevant (e ⁺ tag)
Secondary transport efficiency	Irrelevant (e ⁺ tag)
Integrated PoT	Irrelevant (e ⁺ tag)
Geometrical efficiency and fiducial mass	< 0.5%. PRL 108 (2012) 171803 [Daya Bay]
3-body kinematics and mass	< 0.1%. Chin. Phys. C38 (2014) 090001 [PDG]
Branching ratios	< 0.1%. Irrelevant (e ⁺ tag) except for bckg. estim.
e/π separation	To be checked directly at test beam
Detector backg. From NC π^0 events	< 1%. EPJ C73 (2013) 2345 [ICARUS]
Detector efficiency	< 1%. Irrelevant for CPV if the target is the same as for the long baseline experiment

The ENUBET program

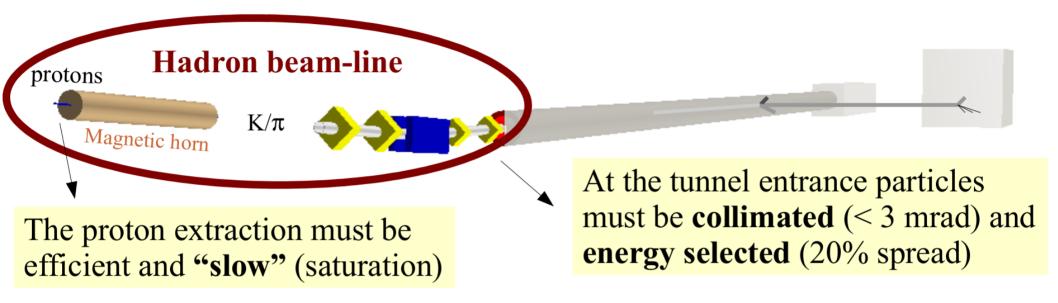
ENUBET aims at demonstrating that the outlined program is feasible in practical terms

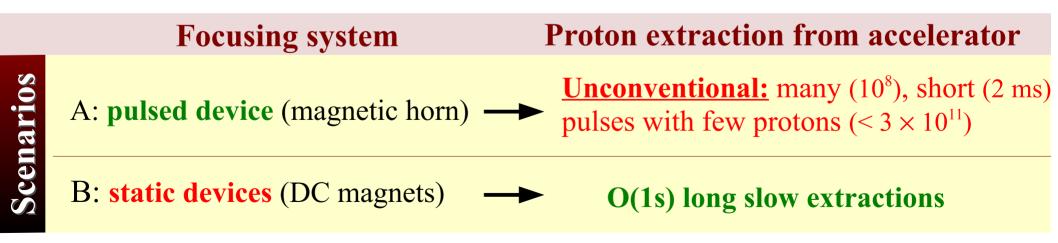
Two pillars:

- 1) **e**⁺ **tagger** proto. validated with **particle beams**
- 2) a detailed design for the **hadron beam-line**

The complete picture to move forward

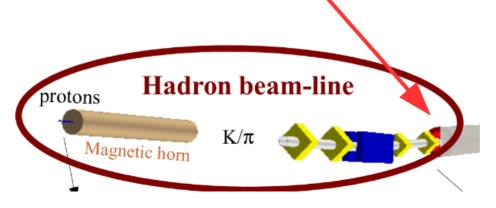
By-products:


- **calorimetry** \rightarrow new low-cost, ultra-compact detectors
- accelerator physics solutions → novel proton extraction schemes for fixed-target and beam-dump experiments



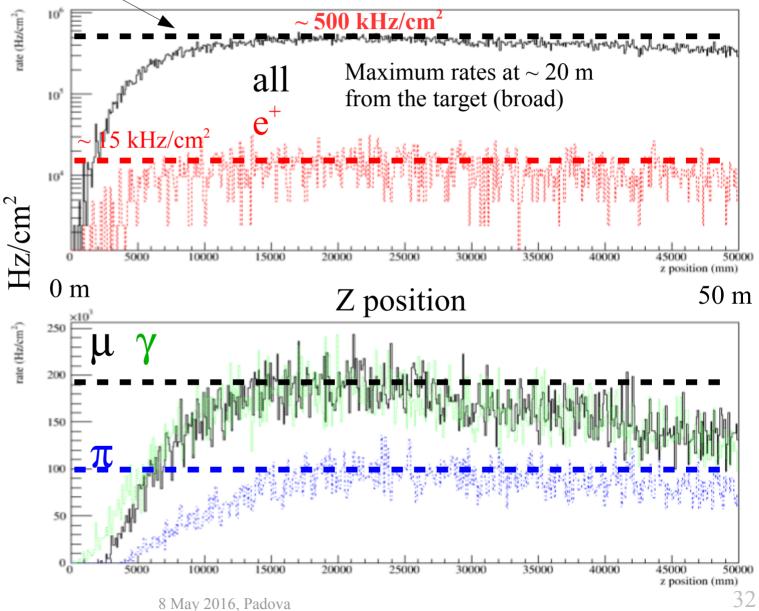
1) The hadron beam-line

The hadron beam-line challenge



Requirements in terms of collimation and momentum selection

- Secondary K⁺ and π⁺ have to be captured, sign-selected and ("quickly") transported into the e⁺ tagger
 - Beam-line length: ~10 m induces a 16% loss from early decays
 - 8.5 GeV/c \pm 20 % momentum bite (previous slide)
- We want only decay products in the tagger (to cope with tagger rates)
 - particles distributed over a 10×10 cm² window
 - $dN/d\theta$ uniform in [0, 3] mrad

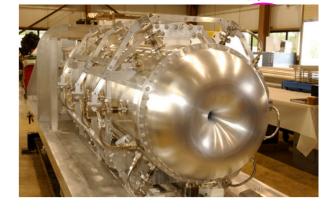

Particle rates in the tagger

Injecting $10^{10}\pi^+$ in a 2 ms spill at the tunnel entrance (hadron window) the peak rate hits 500 kHz/cm²


	Max rate (kHz/cm ²)
$\mu^{\!+}$	190
γ	190
$\pi^{\scriptscriptstyle +}$	100
e^+	20
all	500

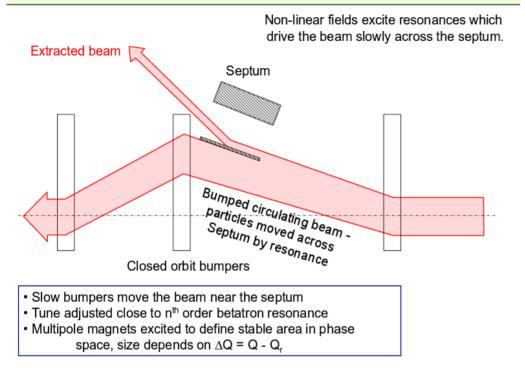
Manageable with a proper choice of the detector technology

Hadron beam-line: scenario A

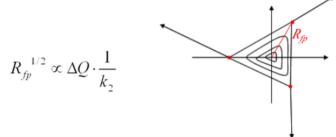

- Magnetic horns. Good collection. Pulsed devices.
- $T_{impulse} < 10 \text{ ms}$ (Joule heating, I ~ O(100) kA)
- Can give $10^{10} \pi^+$ in 2 ms (~ tagger rate limit) \rightarrow

• Given $1.94 \times 10^{13} \text{ K}^+ / v_e^{\text{CC}} \rightarrow \text{How many spills to get } 10^4 v_e^{\text{CC}} (= 1\% \text{ stat.})?$

E (GeV)	π^+/PoT	K^+/PoT	PoT for a $10^{10} \pi^+$	PoT for $10^4 \nu_e \text{ CC}$
	(10^{-3})	(10^{-3})	spill (10^{12})	(10^{20})
30	4.0	0.39	2.5	5.0
50	9.0	0.84	1.1	2.4
60	10.6	0.97	Simple 0.94 Simp	ole 2.0
70	12.0	1.10	0.00	$\frac{1}{12}$ ersion 1.76
120	16.6	1.69	0.60	$D^{13} \mathrm{K}^{+} / \nu_{\mathrm{e}}^{ \mathrm{CC}} = 1.16$
450	33.5	3.73	0.30	0.52


- Needed integrated PoT: in the range of present acc. performances*
- Number of needed spills: $\sim 2 \times 10^8$. More challenging:
 - needs R&D on multi-Hz slow resonant extraction \rightarrow

Scenario A: multi-Hz resonant multi-turn extraction



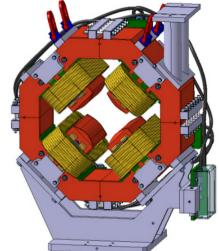
Resonant multi-turn extraction

Resonant multi-turn extraction

- 3rd order resonances Lecture from O.B.
 - Sextupole fields distort the circular normalised phase space particle trajectories.
 - Stable area defined, delimited by unstable Fixed Points.

- Sextupoles families arranged to produce suitable phase space orientation of the stable triangle at thin electrostatic septum
- Stable area can be reduced by increasing the sextupole strength, or (easier) by approaching machine tune Q_h to resonant 1/3 integer tune
- Reducing ∆Q with main machine quadrupoles can be augmented with a 'servo' quadrupole, which can modulate ∆Q in a servo loop, acting on a measurement of the spill intensity

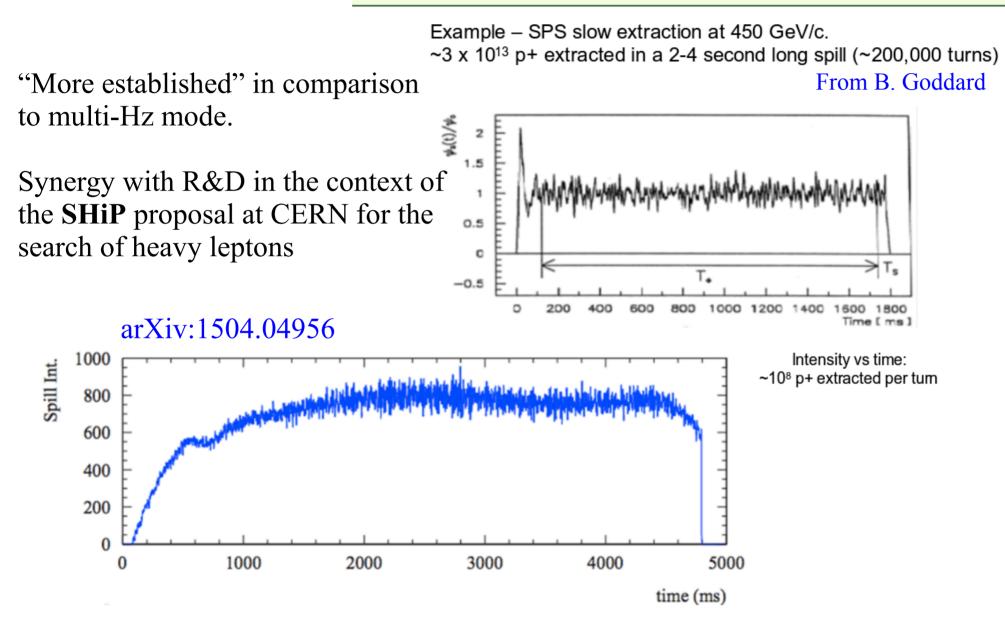
Within ENUBET the possibility to excite the resonance with a multi-Hz frequency will be studied and tested in cooperation with CERN collaborators. Machine studies with the CERN-SPS.


This would allow having an efficient horn-based focusing with tolerable event rates and enough v_e^{CC} (thanks to multi-Hz repetition)

Hadron beam-line: scenario B

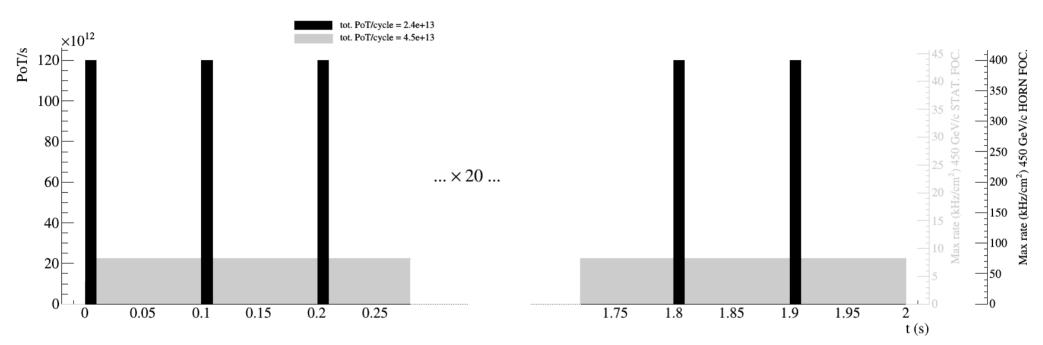
- Static focusing: large aperture rad-hard quadrupoles.
- Disadvantage: loss of acceptance. Assume focusing π , K in the p-bite and a 80 mSr forward cone \rightarrow need × 10 (more PoT/v) resulting in longer data taking or larger detectors wrt the baseline (500 t + 5 years)
- needs R&D on focusing beam-line

			-
	74		
200	100000		
			14
			ALT AL
2			
		\$ \$	3
6 0.00		0.1	
		L.	
		Э́П	
		•//	
<u>}</u>			
	0		


E (GeV)	π^+/PoT	,	PoT for a $10^{10} \pi^+$	PoT for $10^4 \nu_e$ CC
	(10^{-3})	(10^{-3})	spill (10^{13})	(10^{21}) -
30	0.24	0.027	4.2	7.2
50	0.58	0.069	1.7	2.8
60	0.73	0.091	1.4	2.2
70	0.80	0.095	1.3	2.0
120	1.25	0.16	0.80	1.22
450	3.65	0.43	0.27	0.46

Scenario B: resonant slow extraction

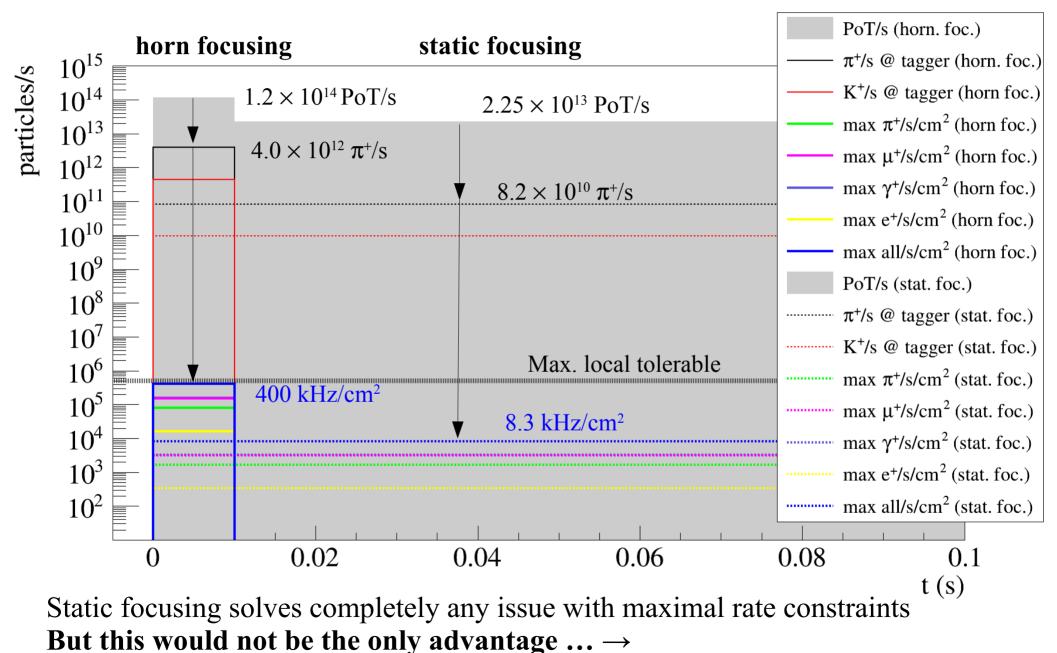
Third-order resonant extraction



ENUBET, A. Longhin

Baseline options for the extraction

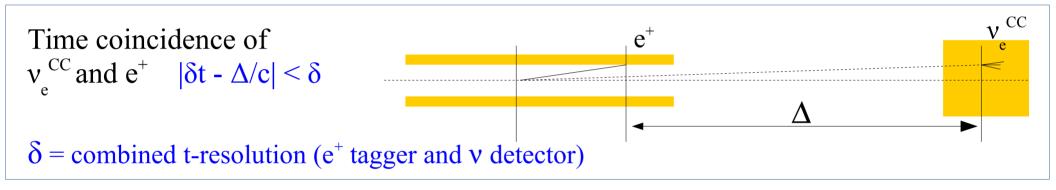
A specific example of a concrete realisation of the two schemes:



Take 2s out of the 15 s SPS super-cycle $(4.5 \times 10^{13} \text{ protons at } 400 \text{ GeV})$. Slow resonant extraction on the third integer.

Scenario A: Multi-Hz. 10 Hz switch of the lattice resonance for 10 ms every 100 ms for 20 times. 1.2×10^{12} protons/cycle (50% of SPS emptied). Scenario B: continuous. Could use 4.5×10^{13} protons/super-cycle (full SPS) in 2 s without hitting rate contraints. See more \rightarrow

Proton injection schemes and peak particle rates



Scenario B: "time tagging" !

- Event time dilution → **Time-tagging**
- Associating a single neutrino interaction to a tagged e⁺ with a small "accidental coincidence" probability through **time coincidences**

Accidental tag probability:

 $A \sim 2 \times 10^7 \, \delta/T_{extr}$

 $T_{extr} = 1s \ (\sim 1 \text{ obs. } e^+ / 30 \text{ ns}), \ \delta = 1 \text{ ns gives } A = 2 \% \longrightarrow OK !!!$

N.B. if $T_{extr} = 2 \text{ ms} (1 \text{ e}^+ / 70 \text{ ps})$ even $\delta = 50 \text{ ps}$ gives A = 50%. \rightarrow horn focusing (scenario A) is not viable if we are interested in time-tagging

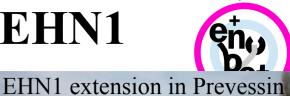
Time-tagging: beyond cross section measurements

 E_v and flavor of the neutrino know "a priori" event by event. Superior purity. Combine E_v from decay with the one deduced from the interaction.

- Proton **extraction** ~ 1s
- σ_{t} of the tagger < 1 ns
- σ_t of the v detector < 1 ns
- Cosmic background × 10
- small K⁺ momentum bite small
 (not to spoil the ν_e energy reco.)
- Tagger-detector time sync. $\ll 1 \text{ ns} \rightarrow \text{OK}$ (direct optical links)

- $\rightarrow Must rely on static systems:$ reduction of acceptance (flux) by x 10
- \rightarrow OK
- \rightarrow Feasible but at the limit of present tech.
- \rightarrow Foresee overburdens
- small K^+ momentum bite small \rightarrow Feasible but can imply flux reduction

Proving a tagged neutrino beam for cross-sections is ENUBET primary goal ("**monitored beam**")


... but in the last phase time synchronization for the "time-tagged beam" could be tested at the EHN1 CERN neutrino platform building linking the ENUBET tagger prototype signals from halo muons with scintillation signals of LAr prototypes (WA105, proto-DUNE) or Water Cherenkov detectors. NB. Other test beam activities are based at the CERN-PS East area

ENUBET, A. Longhin

The CERN neutrino platform @ EHN1

From S. Bertolucci

(a) INFN CSN2

- ✓ PLAFOND : an generic R&D framework
- ✓ WA104 : ICARUS as far detector for SBN
- ✓ WA105 : demonstrator + engineering prototype for a double ph. TPC
- ProtoDUNE : engineering prototype for a single phase TPC
- ✓ Baby MIND : a muon spectrometer for the WAGASCI experiment
- ArgonCube : a modular TPC R&D

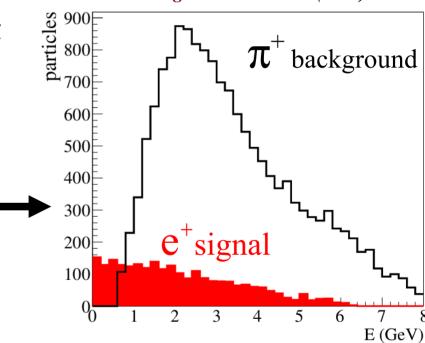
- ✓ *HKK detector components R&D*
- ✓ Darkside 20K
- ✓ ARIADNE
 - ✓ LBNF cryostat and LAr cryogenics
 - ✓ SBND cryostat and LAr cryogenics
 - CERN member of DUNE and SBN
 - CERN member of DUNI

ENUBET, A. Longhin

- The CERN Neutrino Platform represents a gateway for the European Neutrino Community towards a global, organized accelerator neutrino program
- In the short- and medium-term, Europe is helping in getting a Short Baseline operational at FNAL with an agreed physics program ... and later a Long Baseline

2) The positron tagger

The e⁺ tagger challenges



The decay tunnel: a harsh environment

- particle rates: > 200 kHz/cm²
- **backgrounds:** pions from K⁺ decays Need to veto 98-99 % of them

Moreover:

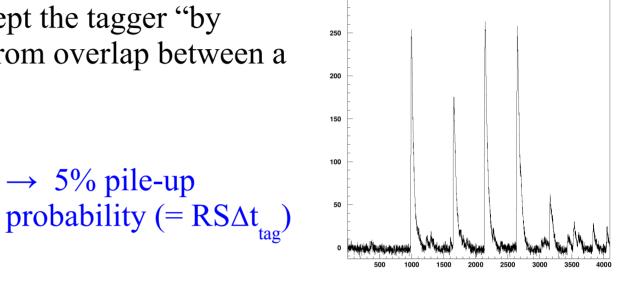
- extended source of ~ 50 m
- grazing incidence
- significant spread in the initial direction

e⁺ tagger: pile-up and radiation

Pile-up

Not decayed π , K do not intercept the tagger "by construction". Pile-up mostly from overlap between a $K_{\mu 2}$ and a candidate e^+

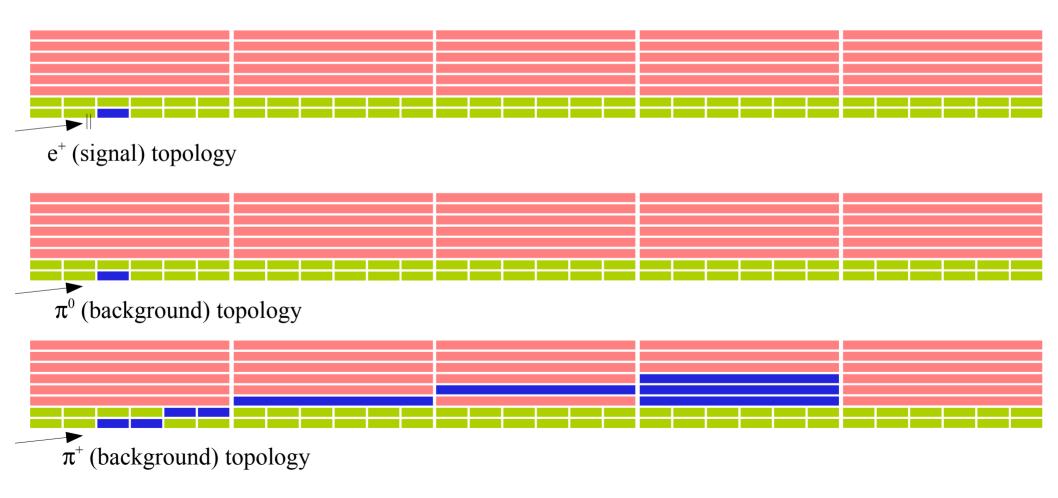
Recovery time, $\Delta t_{tag} = 10$ ns Rate, R = 0.5 MHz/cm² Tile surface, S ~ 10 cm²


Possible mitigation: veto (also offline) mip-like and punch-through particles using the longitudinal segmentation of the tagger + eventually a μ catcher

Radiation

Only contribution comes from K/ π decay products. Thanks to bending of the secondaries, non-interacting protons or neutrons are not dumped in the tagger. Livetime integrated dose < 1.3 kGy (~100 kGy for CMS forward ECAL)

Both issues not critical


e⁺ tagger: background rejection

Key point:

Hadronic modules Electro-magnetic modules Hit modules

- longitudinal sampling
- perfect homogeneity \rightarrow integrated light-readout

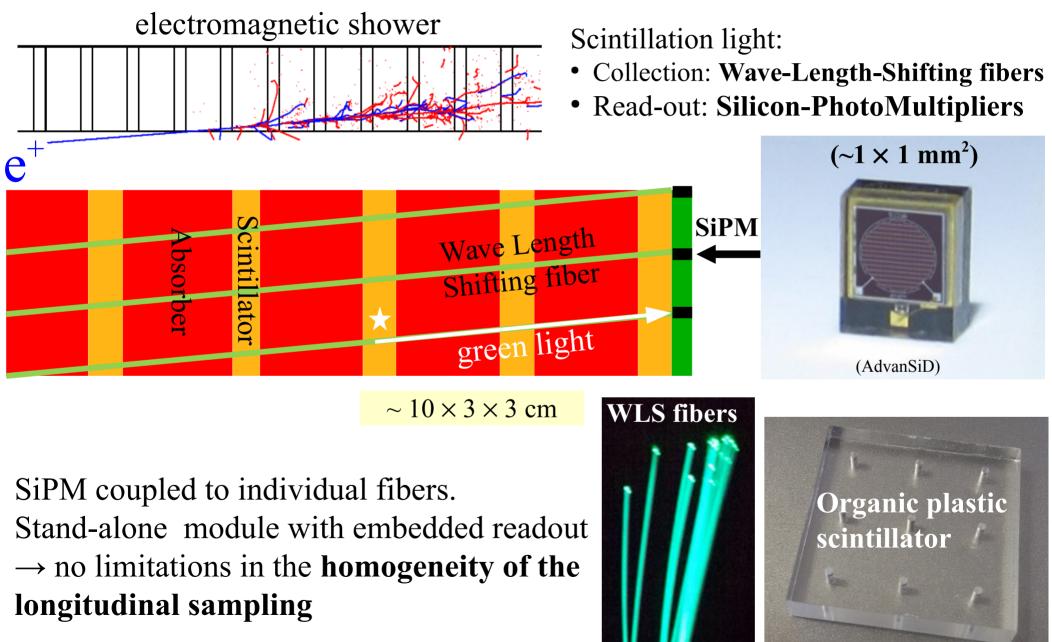
e⁺ tagger design

Conventional beam-pipe replaced by active instrumentation \rightarrow

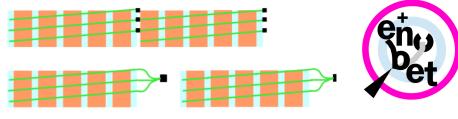
1) compact calorimeter with longitudinal segmentation 2) integrated γ -veto UCM 1) Calorimeter ("shashlik") $\rightarrow \pi^{\pm}$ rejection • Ultra-Compact Module (UCM) Detector **R&D**

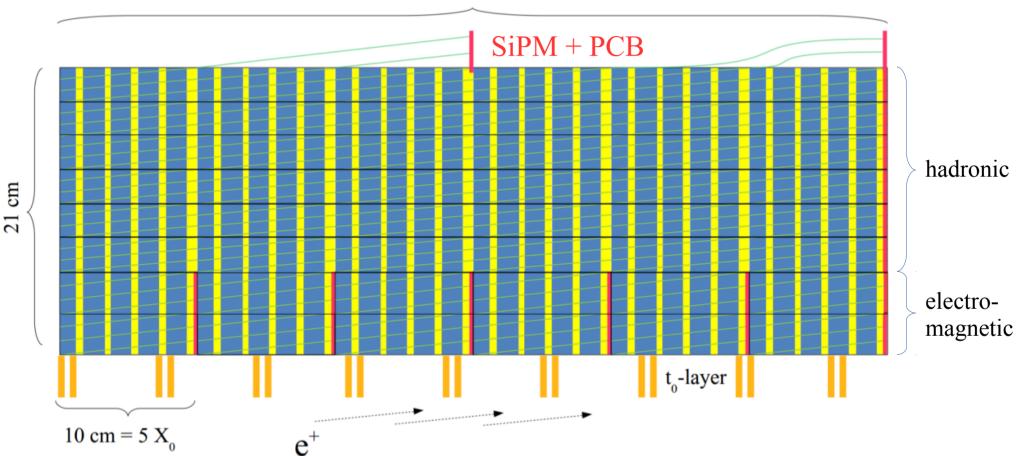
activities

2) Integrated γ -veto

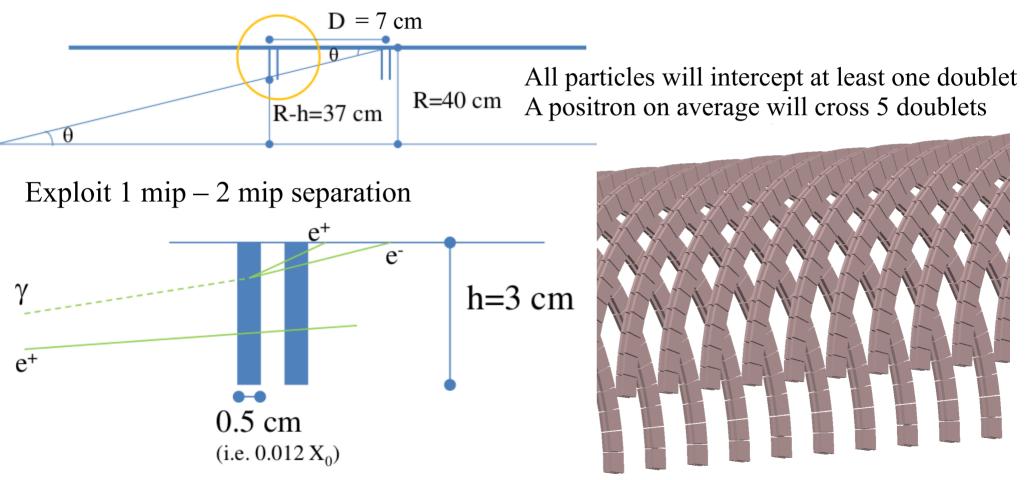

 $\rightarrow \pi^0$ rejection

- plastic scintillators or
- large-area fast avalanche photodiodes


ENUBET, A. Longhin


The Ultra Compact Module (UCM)

The supermodule



60 cm

The two innermost layers ("electromagnetic" are readout every ~10 cm = 4-5 X_0) The six outer layers ("hadronic") are readout with a 60 cm segmentation. SiPM signals are summed in place of light signals \rightarrow very compact longitudinally (no dead regions introduced by WLS fiber bundling)

The photon-veto design

Background from γ conversions from π^0 emitted mainly in K_{ρ_2} decays $(K^+ \rightarrow \pi^+ \pi^0)$

- Possible alternative/attractive solution using fast avalanche photodiode detectors allowing smaller material budget and superior timing.
- Test beam at Frascati BTF: electronics response at high rates and low-E e⁺
- 1 mip 2 mip separation using conversions of bremmstrahlung photons

ENUBET, A. Longhin

8 May 2016, Padova

Tagger detector R&D: SCENTT Shashlik Calorimeters for Electron Neutrino Tagging and Tracing

A. Berra, C. Jollet, A. Longhin, L. Ludovici, L. Patrizii, M. Prest, A. Meregaglia, G. Sirri, F. Terranova, E. Vallazza

- INFN-CSN5 activity on **shashlik calorimetry for neutrino applications** started last year (MiB-Insubria, TS, BO, LNF. R.N. **F. Terranova**)
- First tests at CERN PS-T9 (Aug. 2015) of a shashlik calorimeter with WLS fibers coupled directly to individual SiPMs

	Model	V _{BD}	# of	Cell area	Active	Fill	PDE
		(V)	cells	(μm^2)	Area (mm ²)	factor	
E	ASD-RGB1C-P	~28	673	40×40	1.13	~60%	32.5%
				SHORT FIBERS			

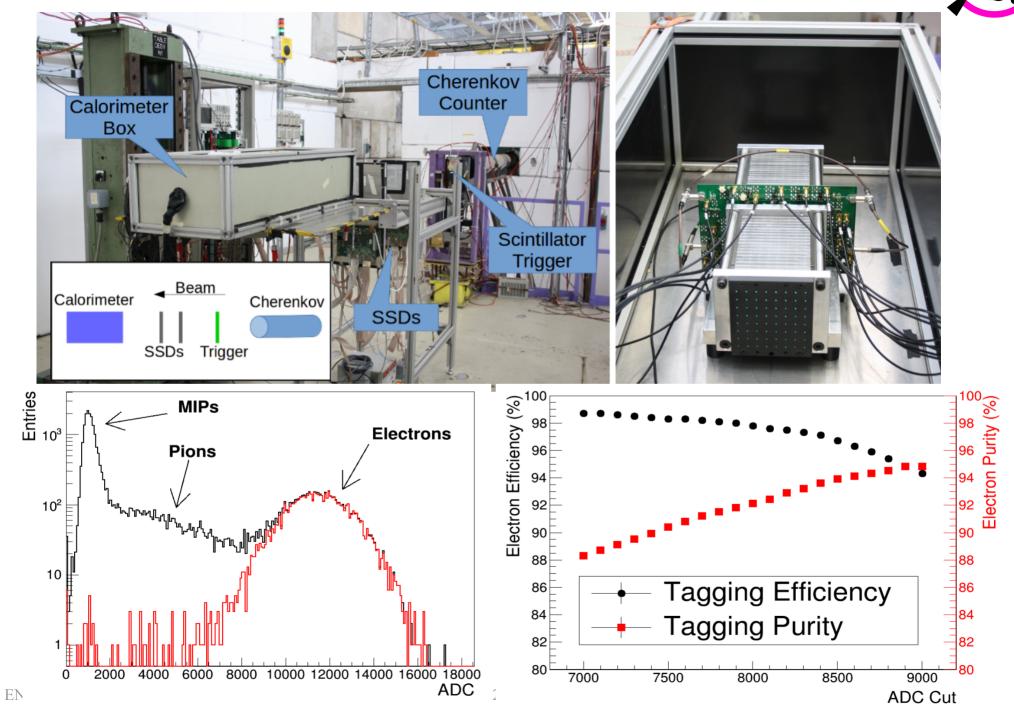
Results recently published in N.I.M. A

A compact light readout system for longitudinally segmented shashlik calorimeters

http://dx.doi.org/10.1016/j.nima.2016.05.123 ArXiv:1605:09630

A. Berra^{a,b,*}, C. Brizzolari^{a,b}, S. Cecchini^c, F. Cindolo^c, C. Jollet^d, A. Longhin^e, L. Ludovici^f, G. Mandrioli^c, N. Mauri^c, A. Meregaglia^d,

A. Longhini, L. Ludovici, G. Manuffoli, N. Mauri, A. Meregagna,


A. Paoloni^e, L. Pasqualini^{c,g}, L. Patrizii^c, M. Pozzato^c, F. Pupilli^e,

8 Ma – M. Prest^{a,b}, G. Sirri^c, F. Terranova^{b,h}, E. Vallazzaⁱ, L. Votano^e

SCENTT, Aug. 2015, PS test beam

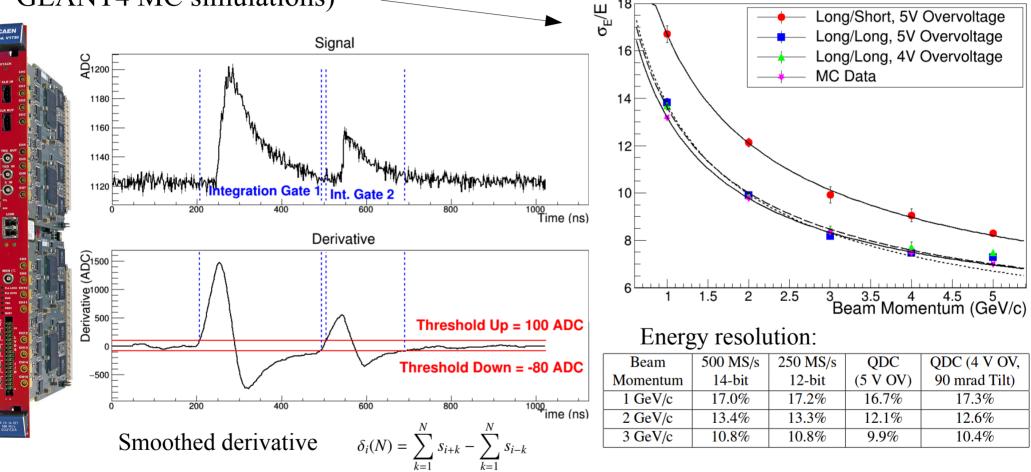
51

August test beam results

An important test to operate the SiPM directly

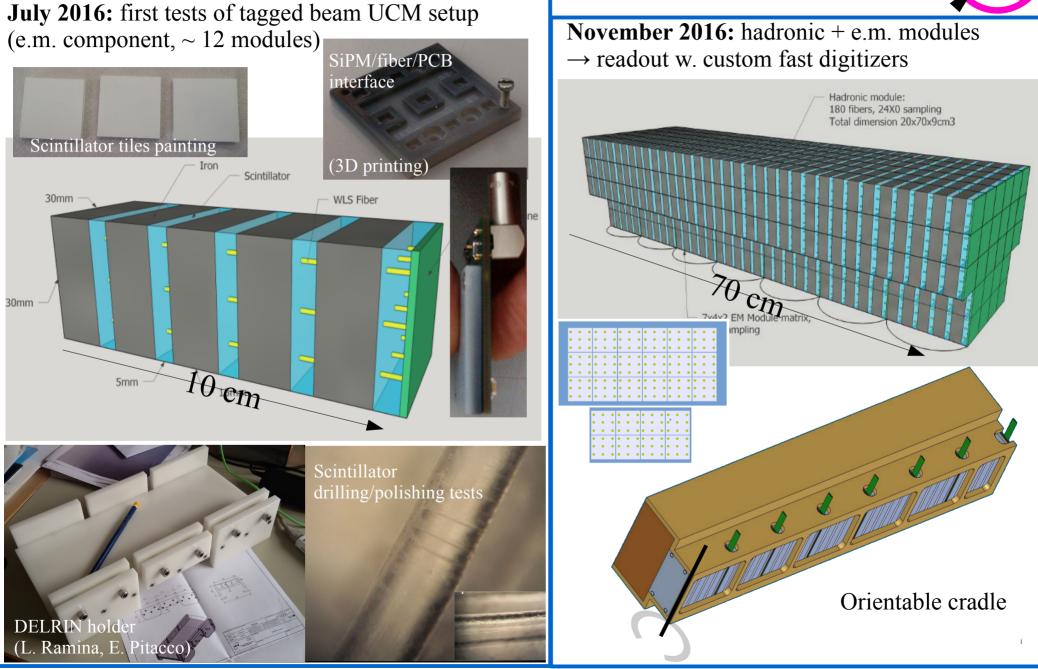
inside the calorimeter: when WLS fibers are

with the pedestal. Nuclear counter effects


removed the signal in the SiPM is compatible

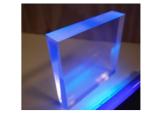
- A possible additional handle for e/π separation from using long/ short fibers alternately (different sampling of the longitudinal shower profile)
- (direct ionization on SiPM) are negligible (pixelization+Geiger mode). Long/short \bigcirc fibers pattern. Circles: short Entries fibers (dimmer) NCE - Electron Events 250 NCE - Pedestal Events Fiber Calo - MIP Events 200 Electron selection region -ong Fibers Signal (ADC) 0009 0008 00000 0000 150 10² 100 50 10 0 500 0 1000 1500 2000 2500 2000 ADC 2000 3000 4000 5000 6000 7000 8000 9000 1000 Short Fibers Signal (ADC)

Results with signal sampling


Energy resolution obtained with signal sampling at 500 MS/s (12 or 14 bit) is comparable with the one obtained with QCD electronics (and consistent with GEANT4 MC simulations)

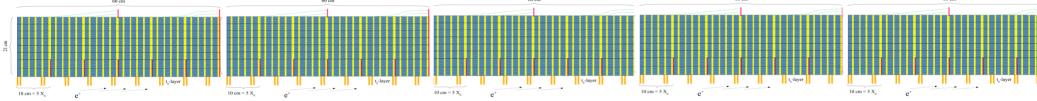
ENUBET: develop **custom waveform digitizers** in place of commercial products sampling the signal every 2 ns for 10 ms (= 5 MS/ch/spill). First tests this Fall.

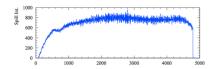
Upcoming test beams at CERN-PS (T9)



ENUBET, A. Longhin

The full prototype


- Dimensions: $3 \text{ m} \times \pi$
- Material: steel, organic scint., fibers, SiPM
- # SiPM: **34000**
- Channels: **3800**
- Weight: $\sim 5 t$
- WLS fiber length: $\sim 10000 \text{ m}$

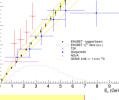

This length (3 m = 5 super-modules)allows the containment of high angle particles in realistic conditions

Final experiment (in its original layout)

ENUBET, A. Longhin

Working packages

WP1: beam-line Precise layout of the hadron beam. Study of the


injection schemes.

WP4: photon veto and timing system

validating the timing accuracy of the tagger and the photon veto e^+/π^0 separation. Vertex reconstruction inside the tunnel. Pave the way to "tagged neutrino beams" (time synchronization studies with existing LAr or water Cherenkov prototypes).

WP5: systematic

assessment. Overall flux

systematics reachable by the exploiting the e^+ rate and the impact on a direct measurement of the $\sigma(v_{e}^{CC})$.

WP2: tagger prototype

Feasibility of tagging under realistic conditions with the desired background and systematics suppression. Radiation hardness.

WP3: electronics and readout testing the readout performances of the front-end electronics for hornbased (< 10 ms proton extraction) or static (1s proton extraction) focusing systems.

ENUBET-WP5: tagger design and reconstruction

- First year will also look for **alternative approaches** in the design developing a solid and parametric simulation of the detector
 - i.e. multiple-stations? How crucial is inclusive monitoring for reducing the systematics ? Needs full simulation/reconstruction/treatment of systematics on the v_e flux

ENUBET proto.

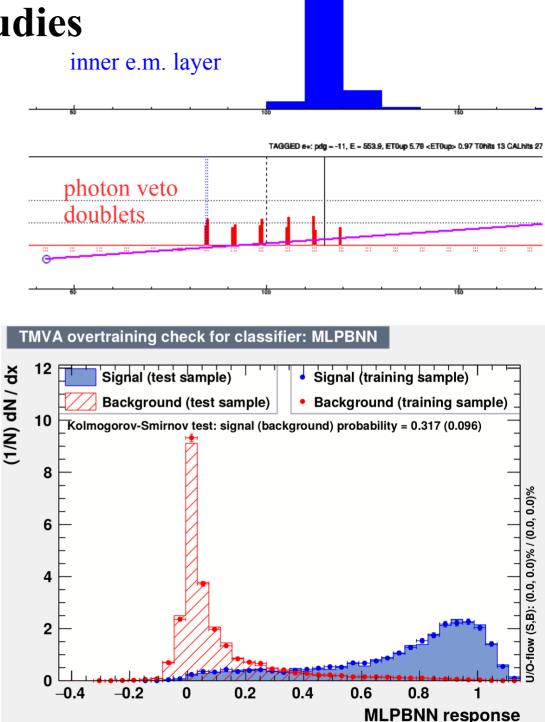
Final experiment in the original implementation

Final experiment in an alternative implementation (to be tested with a full simulation)

- Explore different **detector technologies** (i.e. for photon veto)?
- Powerful multi-variate techniques for e/π separation
 - this activity has already started \rightarrow

Ongoing reconstruction studies

GEANT4 simulation. Reject simultaneously π^+ and π^0


Takes into account **pile-up** related restrictions in the event building.

TMVA multivariate analysis:

- E released in calorimeter
- E in photon-veto doublets (3 layers).
- ΔZ between inner e.m. layer peak and the 1st photon-veto doublet.
- N. photon veto doublets upstream of the inner e.m. layer peak

	E _{geom}	$\epsilon_{_{sel}}$
e ⁺	90.7 %	49.0 %
π^+	85.7 %	2.9 %
π^{0}	95.1 %	1.2 %

Early results confirm previous estimates from parametrizations

Simplified work plan **Design, prototyping, procurement Tests at BTF for photon veto Tests for the tagger at CERN Time-tagging tests** 2016.5 2020.5 2021.5 2017.5 2018.5 2019.5

Critical decisions (●): γ-veto technology (Y1), front-end electronics (Y2)

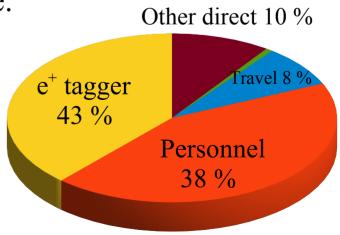
 \rightarrow after moderate investments with laboratory-based prototyping

Flexibility and redundancy

• many handles to promptly react against possible critical issues

- detector granularity, technology options
- base-line/alternative solutions (i.e. hadron beam-line, γ -veto technology)
- complementary beam-lines for tests (Frascati, CERN)

Resources, institutions



Team

- Expertise in calorimetry, accelerator and v physics.
- INFN: PD, MIB-Insubria, RM1, LNF, TS, BO, BA.
- CERN-ABT (beam extraction)/STI (targetry, focusing), IN2P3 Strasbourg.
- Contacts with **Protvino** for scintillators.
- Interest from **FBK** for Si-PM R&D.
- INFN administration: L. Iacono, A. Lombardo
- About **35** people for an EoI, expected to increase.

Budget

- Grant Agreement finalised by end of March
- 2 MEUR assigned

ENUBET is starting!

• T_0 : 1st June 2016 (1 week-old, for 5 years)

- **Kick-off meeting**: PD, 23-24 June 2016, Aula Voci, (introductory part on the 23rd)
- Expression of interest to SPSC in preparation. Enlarge the community, give visibility, allow official commitment of CERN collaborators, support for beam test campaign.
- First year tasks: complete the design of the tagger. Full simulation of detector and systematics. Study of beam-line and photon veto detector options. Test beam activities.
- Outreach and dissemination started: INFN-LNF news, INFN News, INFN focus in monthly newsletter, Frascati Scienza, Radio24. Conferences.
- INFN-CSN2: "sigla tecnica" to cope with specific items not covered by EU

Experience with the ERC

Will be covered in the second part. Some material here: https://agenda.infn.it/getFile.py/access?subContId=2&contribId=3&resId=0&materialId=slides&confId=11394

La mia esperienza con l'ERC-Consolidator Grant 2015 **con ENUBET (G.A. 681647)**

A. Longhin (INFN-PD) LNF, Giornata sui progetti H2020 25 Maggio 2016

erc

ENUBET opportunities

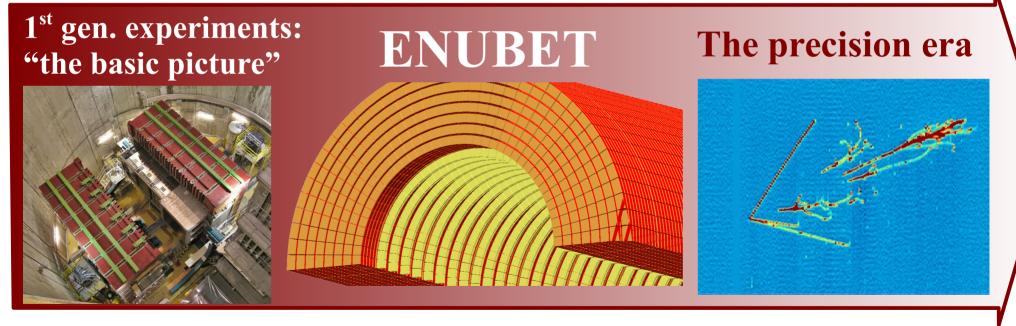
A very diversified program involving:

- Accelerator physics
- Electronics (design and tests)
- Mechanics
- Reconstruction/simulation
- Advanced high-level analysis
- Test beams at CERN, Frascati.
- Visibility in the neutrino community.
- Possibility of thesis work.

http://enubet.pd.infn.it

A good time to join the "adventure"!

ENUBET


Why ERC

A break-through in ν physics

e⁺ monitoring in a decay tunnel is the right tool for v_c cross-section at O(1%)

Why NOW • readiness of detector technology

• timeliness with respect to the needs of the field

A ground-breaking opportunity for v science is within reach