

Catalina Curceanu, LNF-INFN On behalf of the SIDDHARTA-2 Collaboration LNF-INFN, SC, 23rd May2016

Silicon Drift Detector for Hadronic Atom Research by Timing Applications

- LNF- INFN, Frascati, Italy
 - SMI- ÖAW, Vienna, Austria
- IFIN HH, Bucharest, Romania
- Politecnico, Milano, Italy
- TUM, Muenchen, Germany
- RIKEN, Japan
- Univ. Tokyo, Japan
- Victoria Univ., Canada
- Univ. Zagreb, Croatia
- Helmholtz Inst. Mainz, Germany

Study of Strongly Interacting Matter

HadronPhysicsHorizon HP2020

Content

- SIDDHARTA & AMADEUS recent results (->publications)
- Status of the SIDDHARTA-2 experiment
- Monte Carlo simulations
- Interaction with DA *Φ*NE (start planning)
- Requests to the SC-LNF
- Future perspectives

ARTICLE IN PRESS

Available online at www.sciencedirect.com

ScienceDirect

www.elsevier.com/locate/nuclphysa

K-series X-ray yield measurement of kaonic hydrogen atoms in a gaseous target

M. Bazzi^a, G. Beer^b, G. Bellotti^{c,d}, C. Berucci^{e,a}, A.M. Bragadireanu^{f,a},
D. Bosnar^g, M. Cargnelli^e, C. Curceanu^a, A.D. Butt^{c,d}, A. d'Uffizi^a,
C. Fiorini^{c,d}, F. Ghio^h, C. Guaraldo^a, R.S. Hayanoⁱ, M. Iliescu^a,
T. Ishiwatari^e, M. Iwasaki^j, P. Levi Sandri^a, J. Marton^e, S. Okada^j,
D. Pietreanu^{f,a}, K. Piscicchia^{a,k}, A. Romero Vidal¹, E. Sbardella^a,
A. Scordo^a, H. Shi^{a,*}, D.L. Sirghi^{a,f}, F. Sirghi^{a,f}, H. Tatsuno^{m,n},
O. Vazquez Doce^o, E. Widmann^e, J. Zmeskal^e

DOI: 10.1016/j.nuclphysa.2016.03.047

Fig. 5. The results on the yields of K^-p X-rays from two experiments using a gaseous target: this work (filled dots) and the KpX experiment [6] (hollow dots). The theoretical curves are from the cascade calculation by Jensen and others [16,17], using different 2p widths as an input parameter. The horizontal scale is density as a fraction of liquid hydrogen density.

DOI: 10.1016/j.nuclphysa.2016.03.047

AMADEUS-related papers

(in collaboration with members of KLOE2):

\mathbf{K}^- absorption on two nucleons and $\mathbf{pp}\mathbf{K}^-$ bound state search in the $\Sigma^0\mathbf{p}$ final state

O. Vázquez Doce^{1,2}, L. Fabbietti^{1,2}, M. Cargnelli³, C. Curceanu⁴, J. Marton³, K. Piscicchia^{4,5}, A. Scordo⁴, D. Sirghi⁴, I. Tucakovic⁴, S. Wycech⁶, J. Zmeskal³, A. Anastasi^{4,7}, F. Curciarello^{7,8,9}, E. Czerwinski¹⁰, W. Krzemien⁶, G. Mandaglio^{7,11}, M. Martini^{4,12}, P. Moskal¹⁰, V. Patera^{13,14}, E. Pérez del Rio⁴ and M. Silarski⁴.

Accepted for pub. in Phys. Lett. B; DOI: 10.1016/j.physletb.2016.05.001

On the $K^- {}^{4}\text{He} \rightarrow \Lambda \pi^- {}^{3}\text{He}$ resonant and non-resonant processes

K. Piscicchia¹

S. Wycech²

C. $Curceanu^3$

Accepted for pub. in Nucl. Phys. A

Status of the

SIDDHARTA-2 experiment

The scientific aim of SIDDHARTA & SIDDHARTA-2

To perform precision measurements of kaonic atoms X-ray transitions -> unique info about the <u>QCD in non-perturbative</u> regime in the strangeness sector <u>not obtainable otherwise</u> Precision *measurement of the shift* and *of the width*

-> of the 1s level of kaonic hydrogen (SIDDHARTA) and

-> the *first measurement* of **kaonic deuterium** (SIDDHARTA-2)

to extract the antikaon-nucleon isospin dependent scattering lengths (-> low-energy QCD – see also Annex of Gal & Colangelo 42nd SC – 2011)

TECHNICAL REPORT

SIDDHARTA-2 – kaonic deuterium measurement

May 2016

The SIDDHARTA-2 Collaboration:

LNF- INFN, Frascati, Italy; SMI- ÖAW, Vienna, Austria; IFIN – HH, Bucharest, Romania; Politecnico and INFN, Milano, Italy; TUM Muenchen, Germany; RIKEN, Japan; Univ. Tokyo, Japan; Victoria Univ., Canada; Univ. Zagreb, Croatia

Contents

Preface	
I. Introd	uction3
II. The SII	DDHARTA-2 setup
II.1 SII DAΦNE	DDHARTA-2 setup with SIDDHARTA-SDD detectors (can be installed on starting with end of 2016)
II.1.1	The new vacuum chamber5
II.1.2	X-ray detector and cryogenic target6
II.1.3	The kaon monitor/trigger (trigger 1)7
II.1.4	The K ⁺ - K ⁻ discriminator
II.1.5	Veto counter - active anticoincidence (trigger 2)8
II.2 The	SIDDHARTA-2 setup with new SDD detectors
II.2.1	The new Silicon Drift Detectors for kaonic deuterium spectroscopy11
II.2.2	The new SDD-chip11
II.2.3	The CUBE preamplifier
II.2.4	SDD mounting strategy
II.2.5	Readout ASIC – the SFERA chip15
II.2.6	SDD - SFERA chip arrangement
II.2.7	SDD cryogenic target arrangement17
III. SIDDH	IARTA-2: kaonic deuterium – Monte Carlo simulations results
IV. Conch	usions and outlook21
References	5
ANNEX 1	

The SIDDHARTA-2 setup

- new target cell
- new vacuum chamber
- new cooling system
- new kaon monitor/trigger
- two veto systems
- K⁺ induced backg. discriminator
- new shielding structure
- new SDD detectors

(support of INFN – letter of referees + other institutes)

SIDDHARTA-2 setup

Z • • X

SIDDHARTA-2 target and SDD detectors (detail)

SIDDHARTA-2 SDD unit (2 SDD arrays) - detail

SIDDHARTA-2 veto2 system

SIDDHARTA-2 target, SDD detectors, vacuum chamber, veto (detail)

SIDDHARTA-2 setup (detail)

SIDDHARTA-2 – detail with veto system

SIDDHARTA-2 setup

• Vacuum chamber ready and tested

Cryogenic target
 tests were successful

A multi – reflection Scintillator for the VETO system of the SIDDHARTA experiment

Readv and tested

Jinst

PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB

RECEIVED: September 6, 2013 ACCEPTED: November 1, 2013 PUBLISHED: November 15, 2013

TECHNICAL REPORT

Characterization of the SIDDHARTA-2 second level trigger detector prototype based on scintillators coupled to a prism reflector light guide

SIDDHARTA-2 new SDD detectors

Upgrade the apparatus with new SDD detectors

Study on the temperature dependence of the SDD drift time and energy resolution BTF 16~21 June 2015

Test Setup on the BTF-LNF beam line (thanks BTF and DAFNE staff!)

Test Setup on the BTF-LNF beam line

Energy calibration

sdd1-11-2015_02_19_29.txt

- 165 °C

FWHM @ 6 keV: 131 eV

Temperature dependence of timing resolution

2015 BTF

Figure 16: SFERA chip arrangement

Readout electronics: the SFERA ASIC

SFERA (Silicon-Drift-Detectors Front-End Readout ASIC)

- 16 analog channels
- Shaper with selectable gain and peaking times (9th order complex poles)
- Fast shaper (9th order complex poles)

- Pile-up rejector
- Integrated 12-bit ADC
- SPI programming
- Polling and sparse MUX options

Experimental results of SFERA

⁵⁵Fe source spectra with 10mm² SDD at - 35 °C coupled with SFERA (4 μ s peaking time).

⁵⁵Fe source spectra with 3x3 SDD array ($8\times8mm^2$ area single unit) at -35 °C (4 μ s peaking time).

SDD arrays delivery and qualification (FBK)

- Wafers are diced in FBK to get single arrays
- Isolated arrays are delivered in gel-pak (vacuum release) chip trays
- Classification of SDD arrays by means of I/V measurements

Wafer	Matrix	Q-index	Batch	Wafer	Matrix	Q-index
W01	1,2	8.080	SIDDHARTA1b	W03	1,4	8.080
W01	2,1	8.080	SIDDHARTA1b	W03	1,1	8.620
W01	3,2	8.080	SIDDHARTA1b	W04	3,2	8.260
W01	3,3	8.530	SIDDHARTA1b	W04	2,1	8.611
W02	1,4	8.161	SIDDHARTA1b	W04	1,2	8.710
W02	3,1	8.800	SIDDHARTA1b	W05	3,4	8.710
W02	3,3	8.530	SIDDHARTA1d	W14	3,1	8.080
W12	2,1	8.440	SIDDHARTA1d	W14	3,2	8.440
W17	1,1	8.080	SIDDHARTA1d	W14	2,1	8.521
Q-index: N DGS				W14	3,3	8.620
f functionin	na chan	nels	SIDDHARTA1d	W15	3,4	8.170
ith J <	2nA/ci	m ²)	SIDDHARTA1d	W15	3,1	8.251
f "diamond	" chanr	nels	SIDDHARTA1d	W15	3,3	8.260
ith J <	80nA/	cm^2)	SIDDHARTA1d	W15	2,1	8.440
f "gold" ch	annels	,	SIDDHARTA1d	W19	1,2	8.260
ith James <	250nA	(cm^2)	SIDDHARTA1d	W19	3,1	8.260
f "silver" ch	annels		SIDDHARTA1d	W19	1,1	8.350
ith J	(cm^2)	SIDDHARTA1d	W19	1,4	8.350	
	Wafer W01 W01 W01 W02 W02 W02 W12 W17 SS f functioning ith Janode f "gold" chaith Janode ith Janode f "silver" chaith Janode ith Janode	Wafer Matrix W01 1,2 W01 2,1 W01 3,2 W01 3,3 W02 1,4 W02 3,1 W02 3,3 W12 2,1 W17 1,1 SS f functioning channels ith $J_{anode} < 2nA/crist$	Wafer Matrix Q-index W01 1,2 8.080 W01 2,1 8.080 W01 3,2 8.080 W01 3,2 8.080 W01 3,2 8.080 W01 3,3 8.530 W02 1,4 8.161 W02 3,1 8.800 W02 3,3 8.530 W12 2,1 8.440 W17 1,1 8.080 SS f functioning channels ith J _{anode} < 2nA/cm ²) f "diamond" channels ith J _{anode} < 80pA/cm ²) f "gold" channels ith J _{anode} < 250pA/cm ²) f "silver" channels ith J _{anode} < 600pA/cm ²) f "silver" channels	WaferMatrixQ-indexBatchW011,2 8.080 SIDDHARTA1bW012,1 8.080 SIDDHARTA1bW013,2 8.080 SIDDHARTA1bW013,3 8.530 SIDDHARTA1bW013,3 8.530 SIDDHARTA1bW021,4 8.161 SIDDHARTA1bW023,1 8.800 SIDDHARTA1bW023,3 8.530 SIDDHARTA1dW023,3 8.530 SIDDHARTA1dW122,1 8.440 SIDDHARTA1dW171,1 8.080 SIDDHARTA1dSSiDDHARTA1dSIDDHARTA1dSSiDDHARTA1dSIDDHARTA1dSSiDDHARTA1dSIDDHARTA1dSiDDHARTA1dSIDDHARTA1dSiDDHARTA1dSIDDHARTA1dSiDDHARTA1dSIDDHARTA1dSiDDHARTA1dSIDDHARTA1dSiDDHARTA1dSIDDHARTA1dSiDDHARTA1dSIDDHARTA1dSiDDHARTA1dSIDDHARTA1dSiDDHARTA1dSIDDHARTA1dSiDDHARTA1dSIDDHARTA1dSiDDHARTA1dSIDDHARTA1dSiDDHARTA1dSIDDHARTA1dSiDDHARTA1dSIDDHARTA1d	Wafer W01Matrix 1,2Q-index 8.080BatchWaferW011,28.080SIDDHARTA1bW03W012,18.080SIDDHARTA1bW03W013,28.080SIDDHARTA1bW04W013,38.530SIDDHARTA1bW04W021,48.161SIDDHARTA1bW04W023,18.800SIDDHARTA1bW05W023,38.530SIDDHARTA1dW14W122,18.440SIDDHARTA1dW14W171,18.080SIDDHARTA1dW14SSSIDDHARTA1dW14SIDDHARTA1dW14SSSIDDHARTA1dW14SIDDHARTA1dW15f functioning channels ith $J_{anode} < 2nA/cm^2$)SIDDHARTA1dW15f "diamond" channels ith $J_{anode} < 250pA/cm^2$)SIDDHARTA1dW19f "gold" channels ith $J_{anode} < 250pA/cm^2$)SIDDHARTA1dW19f "silver" channels ith $J_{anode} < 600pA/cm^2$)SIDDHARTA1dW19SIDDHARTA1dW19SIDDHARTA1dW19	WaferMatrixQ-indexBatchWaferMatrixW011,28.080SIDDHARTA1bW031,4W012,18.080SIDDHARTA1bW031,1W013,28.080SIDDHARTA1bW043,2W013,38.530SIDDHARTA1bW042,1W021,48.161SIDDHARTA1bW041,2W023,18.800SIDDHARTA1bW053,4W023,38.530SIDDHARTA1dW143,1W122,18.440SIDDHARTA1dW143,2W171,18.080SIDDHARTA1dW143,3SSIDDHARTA1dW143,33,4SSIDDHARTA1dW143,33,3f functioning channelsSIDDHARTA1dW153,4ith $J_{anode} < 2nA/cm^2$)SIDDHARTA1dW153,1f "gold" channelsSIDDHARTA1dW153,1ith $J_{anode} < 250pA/cm^2$)SIDDHARTA1dW191,2SIDDHARTA1dW191,1SIDDHARTA1dW191,1SIDDHARTA1dW191,1SIDDHARTA1dW191,1SIDDHARTA1dW191,1SIDDHARTA1dW191,1

Table 1: Q-index classification based on anode leakage current density

X-ray tests on 2x4 array

Fig. 4. Experimental setup employing thermoelectric (Peltier) cooling stage to characterize Siddharta-II arrays at a temperature of -30 °C.

Fig. 5. Eight X-ray spectra acquired by irradiating a 2×4 SDD array with an un-collimated ^{55}Fe X-ray source at a temperature of -30 °C with 3 μs shaping time using.

Fig. 6. Best X-ray spectrum acquired using 2×4 SDD array and SFERA. An energy resolution of ~130 eV FWHM measured for Mn-Kα peak at -27 °C with 6 µs shaping time.

SDDHARTA-2 setup status and plans:

•The vacuum chamber was built and tested and is ready for use

The two subgroups of the active anticoincidence detector are realized, tested and ready for use

•A prototype of the target cell was built and successfully tested; the final target cell (once decided the setup should be installed on DA Φ NE) can be built in 2 months

SDDHARTA-2 setup status and plans:

- •The new SDDs will be ready by Summer 2016 (27 arrays already delivered)
- Mounting and bonding of the new SDDs: end of 2016
- New readout electronics will be ready by end of 2016
- Assembly and test of new SDDs: by Spring 2017
- The new veto system (veto-2) will be ready by Spring 2017

SDDHARTA-2 setup status and plans:

•SIDDHARTA-2 setup with new SDDs will be mounted and tested by Summer 2017

•SIDDHARTA-2 setup ready to be installed on DAΦNE in Summer 2017.

SIDDHARTA 2 (GEANT4 MC, M. Iliescu & C. Berucci)

SIDDHARTA2 setup

Setup detail

SIDDHARTA 2 (GEANT4 MC, M. Iliescu & C. Berucci) Tested on SIDDHARTA – we have full control on simulation

	signal	hadronic	machine	S/B	Kα
		BG	BG		events
SIDDHARTA	1.00	1.00	1.00	1:40	
IP - target	1.38	1.33		1:11	
3% LHD	1.64	1.08			6075
geometry	1.25	0.56	0.25		
Trigger 1	0.71	0.48		1:7.6	4320
Trigger 2	0.79	0.59	0.33	1:5.7	3415
Trigger 3	0.98	0.73		1:4.2	3350
K+ discrimination	0.70	0.78		1:3.3	2345
drift time 400ns			0.49	1:3.0	2345
SIDDHARTA-2	1.09	0.12	0.04	1:3	2345

Table 2: The main results of the GEANT4 MC simulation for the SIDDHARTA-2 setup

Figure 21: The simulated spectrum of K⁻d for SIDDHARTA-2 for 800 pb⁻¹ (the K_a line is at 7 keV, while from 8 to 10 keV there is the K-complex)

$\Delta \varepsilon(1s) = 30 \text{ eV} \text{ and } \Delta \Gamma(1s) = 70 \text{ eV}$

DAFNE – SIDDHARTA-2 meeting

- installation of the SIDDHARTA-2 in the actual KLOE region (same as SIDDHARTA)
- DAFNE team will check the existence of beam pipe elements and of platform of SIDDHARTA
- beam pipe: explore possibility to realise a new beam pipe (carbon fiber)
- study feasibility of rolling out KLOE2 as a block new quadrupole magnets
- other technical items , including 3D SDDHARTA-2 setup -> DAFNE team

SIDDHARTA-2 - Kd request:

We require an integrated luminosity of <u>900 pb⁻¹ (100 for</u> tuning of the apparatus) to perform the first measurement of the strong interaction induced parameters - the energy displacement and the width - for the kaonic deuterium ground state, which is a fundamental measurement in low-energy strangeness physics (QCD). We are ready to install starting with second half of 2017. We request a *clear schedule for the installation and run*.

Together with the results of the kaonic hydrogen measurement performed by SIDDHARTA, the kaonic deuterium measurement will allow to extract for the first time the isospin-dependent antikaonnucleon scattering lengths, fundamental quantities to understand low-energy QCD in the strangeness sector, which in turn is important for studies in particle and nuclear physics, as well as in astrophysics, including the emergent sector of gravitational waves emitted by binary (neutron) stars and the dark matter (primordial strongly inter. DM)

ONE DAY MEETING Strangeness, Gravitational waves and neutron stars

10 June 2016 INFN-LNF Aula di Direzione (Ed. 1)

Organizers: Catalina Oana Curceanu, Maria Paola Lombardo Speakers include:

Omar Benhar (INFN Sapienza), Ignazio Bombaci (Univ. e INFN Pisa), Alessandro Drago (Univ. e INFN Ferrara, Italy) Viviana Fafone (ToV), Alessandra Feo (Univ. Perugia), Massimo Mannarelli (LNGS), Cristian Piscicchia (LNF-INFN e Centro Fermi, Roma), Jacobus Verbaarschot (SUNY)

http://agenda.infn.it/event/strangeness

SIDDHARTA2 future perspectives

1) Kaonic deuterium measurement - 1st measurement: and R&D for other measurements

2) Kaonic helium transitions to the 1s level – 2nd measurement, R&D

3) Other light kaonic atoms (KO, KC,...) -> HPGe

4) Heavier kaonic atoms measurement (Si, Pb...) -> HPGe

5) Kaon radiative capture – Λ (1405) study

6) Investigate the possibility of the measurement of other types of hadronic exotic atoms (sigmonic hydrogen ?)

7) Kaon mass precision measurement at the level of <7 keV (kaon mass puzzle) – TES, VOXES

Helmholtz Mainz: HPGe detectors Kaonic atoms measurements

Supposed in the second second

Fig. 3 Measured energy spectra of the 1.332 keV line of a 60 Co calibration source taken with two different cooling devices. For the dashed spectrum with a line width of FWHM = 1.97 keV the HPGe crystal was cooled electromechanically, for the solid spectrum with a line width of FWHM = 1.87 keV a liquid nitrogen cooling system was used [5].

well established system!

TES: RIKEN, Japan VOXES: LNF-INFN

Extreme precision meas.: Kaon mass (K-)

