XIPE GPD BEE

Massimo Minuti INFN Pisa massimo.minuti@pi.infn.it

The matrix is made up of 105K active pixels. Each pixel is equipped with its own shaping chain, a Peak-Hold circuit can be triggered either from external trigger signal or internally by an auxiliary faster chain. A test charge can be injected in each pixel individually through its own on-chip

Once the signal peak has been captured, Pixels charge "content" can be retrieved in the

ReadOut sequence. During RO the Pixels amplifier outputs are "serially" connected to drive a differential output driver. All the readout signal must be driven from outside (BEE).

🟸 --- 🏓 Xipe

Pixel:

shaping time: 3-10us (externally adjustable)
full-scale linear range: FS = 5fC (30ke-)
line/column addressing
electrical stimulation for test purposes

Matrix organization: 300 (width=300x50um=15mm) x 352 (height=352x43.3=15.24mm) pixels 16 clusters of 300 x 22 = 6600 pixels each or 8 clusters of 300 x 44 = 13200 pixels each

Trigger:

user-selectable internal/external

Internal trigger functionality: every 4 pixels (1 mini-cluster) contribute to a local trigger with a dedicated shaping amplifier each pixel includes a masking function to disable its contribution to the trigger function

each of the 16 clusters' trigger level is defined independently to accommodate possible "region" offset the event is localized in a rectangle containing all triggered mini-clusters plus a user-selectable margin of 10 or 20 pixels (0.5mm or 1.0mm) the chip calculates the resulting area of interest defined with coordinates (Xmin,Ymin) & (Xmax,Ymax) corresponding to the upper-left & lower-right corners, respectively.

Readout:

Read mode 0 (direct addressing): the pixel is selected with its (X,Y) coordinates by entering its column (X) & line (Y) index binary code. This is the preferred readout mode during the electrical test of a single pixel.

Read modes 1 & 2 (standard readout): sequential within each cluster (line-by-line from top left down to bottom right), all 8 (mode 1) or 16 clusters (mode 2) read out in parallel (1 buffer amplifier per cluster).

Read mode 3 (advanced readout): sequential within the area of interest defined by coordinates (Xmin, Ymin) & (Xmax, Ymax).

Masking function:

the trigger contribution of any pixel can be disabled by direct addressing (the pixel address is entered with **Read mode 0 & Write mode 0**)

the masking bits are to be set at each power-up of the circuit

Analog outputs:

balanced output buffer (+/-1V) compatible with TI ADC ADS572x.

read mode 1, respectively 2 & 3 uses 8, respectively 16 & 1 analog buffer(s)

unused buffers are disabled to minimize power consumption

Digital controls:

a common TTL-compatible serial interface is used both to configure the chip and enter any (X,Y) address and to read out the impact rectangle coordinates (Xmin,Ymin) & (Xmax,Ymax)

external digital controls to be applied within the analog data acquisition timeframe (Write, TrigWindow, MaxHold) or analog readout process (Read, CK) use LVDS interfaces

A first implementation of the GPD DAQ has been developed.

The EGSE ver. 0.0 is made up of two stacked boards (~10 cm X 10cm):

- Power Supply distribution Unit; mostly Linear Low drop-out voltage regulators;
- Sequencer Logic, Memories, AD conversions and references are nonspace-qualified devices;

An FPGA is the core of the whole EGSE 0.0

It contains the logic to synchronize the XPOL readout sequence and A/D conversion. DACs

Are provided to set the discriminating thresholds levels. Additional functions for on-line pedestal subtraction are provided.

An on board 1MB SRAM memory is used for event buffering.

A 12 bit 20 Msps ADC is used for XPOL

putput A/D conversion.

Link	Туре	Function	Wire
			counts
Spec 1	USB 2.0 High Speed	PC Link	4
Spec 2	LVTTL IO	High Speed Parallel Port	20
Spec 2	LVTTL IO	SPI	8
Spec 3	LVTTL IO	address, data & control	74
		BUS	
Spec 4	LVTTL IO	DAC Controls	5
Spec 5,7	LVTTL IO	XPOL Interface	13
Spec 5	LVDS	XPOL Interface	14
Spec 6	LVDS	ADC dig. output	20
Spec 6	LVTTL	ADC controls	5
Spec 8	Analog differential (Vcm=1.5)	XPOL analog output	16

The EGSE 0.0 interfaces the world through a USB 2.0 High Speed interface, providing a 12MB/s data tranfer rate.

A register R/W access oriented interface allows interactions between a standard PC and the FGSE

julp Adv					(E.)(34)
ReadDut node	F Stuff Loops Reheah 10 2	References (SPOL Viel0 0 0 0 0 0 0 0 0 0 0 0 0 0	and five-hold 0 Bounde 0 B 0 1 0 2 0 3 0 4 0 5 0 4 0 7 0 7	Baha D S D S D S D S D S D S D S D S D S D S D S D S D S D S D S D S	ah 0.8 0.9 0.10 0.11 0.12 0.13 0.14, 15 Viest
Module Disconnected Module Disconnected Module Disconnected	Tue Oct 1307 53 A Tue Oct 1307 53 Tue Oct 1307 53 Tue Oct 1307 53 V	Messages	DAG R	eret	Ent

🧀 🛶 🍨 Xip

EGSE 0.0 successfully accompanied the GPD through all the Environmental test performed so far: Thermal cycles, Thermo-Vacuum (10-6 mbar), Heavy-Ions survival test...

Electrical Interfaces

Electrical Interfaces

- -) 2 X SpaceWire (Science DL + TCM Link)-) OBT
- -) Power Supplies (+/-15V, +/-5V)

- -) HKP (Temperature Sensors + Peltier Driving)
- -) FW driving + Position Sensors (Hall + optical)

- -) GPD Science Data Interface
- -) GPD Configuration
- -) GPD Bias (Gas Cell)
- -) GPD LV Power Supplies

Thermal interfaces.

BEE - HVPS

-) generates VTop, VBottom, VDrift;

-) hardware constraining of Vtop, (VTop -VBottom) to have inherent limits for the High Voltages;

-) Current Voltages Monitors

- -) manages ramping up/down
- -) manages S/C survival modes

Location: 2 uPCI slots in BEEU

Responsibility: Space Research Centre of Polish Academy of Sciences (Poland) Typical Output Voltage V_{drift} = -2670 V V_{bottom} = -400 V ΔV_{t-b} = -470 V

Ranges

 V_{drift} = -2000 / -3500 V V_{bottom} = -100 / -600 V ΔV_{t-b} = -300 / -550 V (TBV)

BEE - LVPS

-) generates the BEEU supply low voltages from the ICU regulated +/-15, +-/5V;

-) [current monitors]

-) [manages S/C survival modes]

Location: 1 uPCI slot in BEEU;

Responsibility: INFN-Pisa

BEE - DAQ

- -)ICU communication management;
- -)Science data management;
- -)House-Keeping data management;
- -)GPD configuration, biasing and monitoring;

Location: 1 uPCI slot in BEEU

Responsibility: INFN-Pisa

BEE - Functions Break Down

BEE - DAQ

BEE - DAQ

INFN PISA Activities

Site Visit (NASA) (Oct2016) goal:

- -) GPD Assembly
- -) DAQ software Update
- -) GPD verification & tests

Further Goals (Nov2016):

- -) FM BEE DAQ FPGA VHDL design and verification;
- -) BEE DAQ schematics with SQ components;
- -) BEE LVPS schematics with SQ components;
- -) DU GPD RO board schematics with SQ components (Harnesses);
- -) prototyping;

ReadDut node I full fame (peels) Windows (ten) Windows (ten) W	E Stuff Loops Releach 10 2	Bitescot ad fieldd; P00, Vall P10 and d Balesch 000 00 00 00 000 00 00 00 00 000 00 00 00 00 00 000 02 02 010 011 00 011 00 011 00 011 00 011 00 011 00 011 00 011 00 011 00 011 00 011 00 011 00 011 00 011 00 011 00 011 00 011 00 011 00 011 00 01 00 01
Module Disconnected Module Disconnected Module Disconnected	Tue 0x 130753 A Tue 0x 130753 A Tue 0x 130753 A Tue 0x 130753 A	DilQ Recet Exit

Conclusions

THANKS

