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Plan

the Analogue Gravity Program: a qualitative intro.

Scattering of water waves in sub-critical flows,
how do they relate to those in trans-critical flows ?
which parameters fix their properties ?

Experiments in Vancouver and Pprime-Poitiers.
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Analogue Gravity.

1981. W. Unruh, PRL "Experimental BH evaporation ?"
- Sound waves in a flowing gaz obey �φ(t , x) = 0 in a curved 4D metric.

- Hence, a statio. transonic flow should steadily emit Hawking radiation.

- One might conceive experiments testing this prediction.

”completed” by incorporating short distance physics.

1991. T. Jacobson, PRD "Ultra-high frequencies in BH radiation".
- Short distance physics induces UV dispersion,
- this might cure the “trans-Planckian” problem, → “Horava gravity”

1995. W. Unruh, PRD "Dumb holes and the effects of high freq. ..."

Curved metric (IR effects) and dispersion (UV effects) combined
in a single wave equation.
Numerically showed the “robustness” of Hawking radiation
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The program: testing Hawking’s 1974 predictions

What can be tested ?
Which fluid should be used ?
Which accuracy can be reached ?

NB.
Neither the Schwinger effect: |β|2 ∝ e−πm2/eE ,
nor the Unruh effect: |βω|2 ∝ e−2πω/a,
has been tested so far.

Because |β|2 � 1 in usual/accessible circumstances.
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Hawking’s predictions

Solving �φ(t , x) = 0 in the near vicinity of a BH horizon, one gets Hawking ’74

I. The mean number of spontaneously emitted quanta of freq. ω is

nω = 1/(e2πω/κ − 1),

where the freq. κ = 1/4M is the “surface gravity”.

II. These are maxim. entangled to inside partners with neg. energy:

|0〉incoming =
∏
ω>0

(
ezωa†ωa†−ω

)
|0〉outgoing ⊗ |0〉inside

(product of) 2-mode squeezed states

Both predictions directly follow from a mode analysis:

φincoming
ω = αω φ

outgoing
ω + βω (φinside partner

−ω )∗

where

|βω|2 = nω, |βω/αω|2 = |zω|2 = e−2πω/κ < 1,
and |αω|2− |βω|2 = 1, hence U(1, 1): anomalous scattering
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What could be observed ?

A. in the stimulated (classical) channel:
I. spectral properties, i.e., |βω|2, arg(βω/αω), ....

using classical waves,
norm/phases of (the anomalous) scattering coefficients
can be observed as fctions of ω and of the flow parameters fixing κ

Remember |βHawking
ω |2 = 1/(e2πω/κ − 1) for 0 < ω <∞.

B. in the spontaneous (quantum) channel (ultra low temp.):
II. coherence (2-mode entanglement, non-separability).

There exist observables distinguishing quantum and class. correlations.

NB. Even in classical settings, the coherence can be probed.
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What has been/is being/ done

“ab initio” calculations of the coeff. of the S-matrix
in different settings
to predict the properties of the emitted radiation
by the anomalous scattering |βω|2: "analog Hawking radiation".

since 2008, experiments

in water tanks, Nice ’08, Vancouver ’11, Poitiers ’14-’16, Nottingham > 2016,

in atomic BEC, Technion ’11, ’13 (BH-Laser), ’15 + Institut d’Optique,

in glass, in polariton systems Marcoussis, in air Le Mans,...

theoretically BEC is the neatest/simplest case, ...
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Analogue Gravity with shallow water waves

2002. R. Schutzhold and W. Unruh, PRD "Gravity wave analogues of BHs"
showed that the blocking of shallow water waves (long wave length)
is analogous to light propagation in a White Hole metric

2008. G. Rousseaux et al, NJP. "Observation of ... "
Observation of NEW (negative energy waves).

2011. S. Weintfurtner et al, PRL "Measurement of stim. HR ..." observed

the linear mode conversion giving rise to NEW,
φin
ω → αωφout

ω + βω(φ
part
−ω)∗ + ...

that Rω = |βω|2/|αω|2 ∼ e−ω/ωc follows a Boltzmann law.

yet, the flow was sub-critical, i.e. (v/c)|max ∼ 0.7,
no horizon→ how to understand this observation ?
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Aims: Long term program

I. Understand the scattering of surface waves
in the absence of a "sonic" horizon, i.e., |(v/c)|max < 1.
To this end, study and numerically solve the linear wave eq.

II. Interpret experiments, e.g. behavior of RVanc.
ω ,

and propose "improved" experiments.

- study and numerically solve the non-linear eq.
to design the obstacle determining the background flow

- optimize the extraction of scattering coefficients from data

NB. a source of difficulty: Rω is significative only
for very low ω ∼ 0.2Hz→ very long wave lengths ∼ 10m.
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Experimental settings: counter flow

– Counter-propagating statio. waves δhω(t , x) emitted by wave maker
are blocked near the top of the obstacle, and reflected/blue shifted

– Free surface fluct. δh(t , x) illuminated by a laser sheet,
photographed by cameras, analyzed in double Fourier space→ δ̃h(ω, k).

Renaud Parentani Scattering of gravity waves in subcritical flows over an obstacle



Scattering of counter-propag. modes

I

R

T

H

B
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h

In brown the ’designed’ obstacle, in red the observed (time-average) surface.
There is a zero-frequency modulation: an undulation.
Vertical lines show the region used to analyzed the mode amplit. δ̃h(ω, k).

The incoming mode I and the four scattered modes T ,R,B,H,

φ←ω → Tω φ←ω + Rω φ→ω + αω φ
→,d
ω + βω (φ→,d−ω )∗

|Rω|2 + |Tω|2 + |αω|2− |βω|2 = 1, hence U(1, 3)

B and H are dispersive modes, H carries a negative energy (NEW).
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Dispersion relation and power spectrum

HRI
B
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ω Dispersion relation (ω vs k )

Ω2 = (ω − vk)2 = gk tanh(kh)

At fixed ω, there are 4 roots ka
ω ,

I, R are hydro: k ∝ ω
B and H are dispersive: k ∝ 1/h
the H-root has ωΩ < 0,→ a NEW.

In dashed-dotted, transverse modes

Obs. power spectrum of noise:

P(ω, k) =
〈〈 |δh(ω, k)|2 〉〉
|gk tanh(kh)|1/2

,

Typical amplitude: 0.1 mm, δh/h ∼ 10−3.

Ensemble average over 80 realizations,

NEW are present in the spectrum.
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I. Linear wave equation

Hypotheses:
- inviscid, incompressible, ideal fluid,
- 2D irrotational flow,
- gravity is the only external force, neglect capillary effects.

Non-linear equations:
~∇× ~v = 0→ ~v = ~∇φ;

continuity equation: ∆2D φ = 0;

unpenetrable bottom: (vy − vx∂x yb)y=yb
= 0;

free surface: (vy − vx∂x ys)y=ys
= 0;

Bernouilli equation (continuity of pressure):

(~v)2

2
+ gy = cst . at y = ys(x) = h(x).

Linear perturbations: φ(t , x , y) = φ0(x , y) + δφ(t , x , y).
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I. Wave equation

One finds that linear surface waves (approxim.) obey Unruh 2012

[(∂t + ∂xv) (∂t + v∂x )− ig∂x tanh (−ih(x)∂x )] δφ(t , x) = 0, (1)

- a 1+1D PDE of infinite order,
- v(x) is the horizontal component of the bckrd flow velocity,
- h(x) = ys(x), the background flow height.

The 1 + 1D dispersion relation is thus

(ω − vk)2 = gk tanh(hk). (2)

δφ is related to the observable: the linear variation of h(x) by

δh(t , x) = −1
g

(∂t + v∂x ) δφ. (3)

Very similar eqs apply to density perturbations in BEC and gazes. (These eqs. have an Hamiltonian structure)
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Quartic dispersion relation

In stationary flows, work with (complex) stationary waves
e−iωtφω(x) with fixed lab. frequency ω.

expand to 3rd order in h∂x :[
(−iω + ∂xv) (−iω + v∂x )− g∂xh∂x −

g
3
∂x (h∂x )3

]
φω = 0. (4)

preserving the ordering of h(x) and ∂x .

The assoc. quartic dispersion relation is

(ω − v kω)2 = c2 k2
ω

(
1− h2 k2

ω

3

)
, (5)

c2 = gh(x): the (local) group (velocity)2 for low kω waves in fluide frame.

h(x) gives the x-dep. dispersive length (the "Planck" length)
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Hydrodynamics, and black (white) hole metric

In the hydrodynamical approximation, one neglects (hk)2 � 1.
Using, c2(x) = gh(x), the wave eq.[

(−iω + ∂x v) (−iω + v∂x )− g∂x h(x)∂x−
g
3
∂x (h(x)∂x )3

]
φω = 0

is a (dim. reduced) Klein-Gordon in a 2D space-time metric

ds2 = −c(x)2dt2 + (dx − v(x)dt)2,

There is a Killing horiz. when v(x) crosses c(x).

In fact, the wave-energy (the hamiltonian) is no longer positive def.
→ the spectrum of statio modes (generically) contains NEWs.

if v increases (decreases) along v , one gets a black (white) horizon,

i.e., a decrease (increase) of kω for counter-prop. waves
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II. Background flow profiles

In experim., the bckd. flow is fixed by the obstacle: hB(x).

mathem., fully described by the water depth h(x), since

v(x) = J/h(x), c(x) =
√

g h(x). (6)

Monotonic flows can be parameterized by

h(x) = h0 + D tanh
(σx

D

)
. (7)

Non-monotonic flows by

hnon−m(x) = h0 + D tanh(
σ1

D
(x + L)) tanh(

σ2

D
(x − L)), (8)

2L gives the spatial extension of the flat minimum of h.
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Trans-critical versus sub-critical flows

the trans-critical character fixed by "Froude number" F ≡ v/c

When Fmax > 1: the flow is transcritical.

A “Killing horizon” (exactly) corresponds to v = c, i.e., F = 1.

The surface gravity κG = |∂x (c − v)|v=c is (exactly)

κG = |∂xF |F=1 ∝ σ. (9)
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4 types of WH flows

velocity v(x) > 0 (flow to the right) (plain), and speed c(x) (dashed)
————————————————————————————
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————————————————————————————-
To test Hawking predict. the best case is the first, but the "realized" flows belong to the last case
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III. Mode analysis

the scattering coeffs. are defined in the asymptotic (right) sub-critical region.
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The 3 + 1 stationary modes (ABM)
In a sub-critical flow, the 3 + 1 stationary modes are

φ→,dω is dispersive and right-moving in the lab frame; the blue-shifted mode

φ←ω is hydrodynamic, and left-moving; the incoming mode

φ→ω is hydrodynamic, and right-moving; the reflected mode

(φ→,d−ω )∗ is dispersive, and right-moving. the "created" mode

NB.1 The last one (the NEW) has a negative (Klein-Gordon) norm.
(the corresponding root lives on the negative Ω

.
= ω − vk branch.)

NB.2. There is a crit. freq. ωmax above which the first 2 roots no longer exist.
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Asymptotically sub-critical flows

4-mode mixing: (below ωmax)

φ←,inω → αω φ
→,d,out
ω + βω (φ→,d,out

−ω )∗ + Aω φ→,out
ω + Ãω φ←,out

ω , (10)

and "unitarity" (i.e., conservation of the norm) gives

|αω|2− |βω|2 + |Aω|2 +
∣∣∣Ãω∣∣∣2 = 1. (11)

———————————————————————-

Michel-RP ’14, precursors: RP-Finazzi ’10, Scott R. review ’12, Finazzi-Carusotto ’12
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The 4× 4 S-matrix

Considering the four incoming modes, one has


φ←,inω

φ→,d,inω(
φ→,d,in−ω

)∗
φ→,inω

 =


Ãω αω βω A(v)

ω

ᾱω Aω Bω α
(v)
ω

β̄ω B̄ω Āω β
(v)
ω

Ā(v)
ω ᾱ

(v)
ω β̄

(v)
ω A(vv)

ω




φ←,out
ω

φ→,d,out
ω(

φ→,d,out
−ω

)∗
φ→,out
ω

 . (12)

NB1. The (v)-mode φ→,out
ω is co-propagating and plays no signif. role.

NB2. In trans-critical monotonous flows,
it reduces to a 3× 3 because there is no transmitted mode φ←,out

ω .

NB3. In trans-critical non-monotonous which are asympt. sub-crit. flows,
it is again 4× 4.
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The typical behavior in a transcritical flow
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The typical behavior in a transcritical flow
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Fmax = 1.4, L = has (short obs.), σR/Lhas ∼ 2 (reasonable slopes).

1. Some norms are� 100→ large amplification ! - quite unusual !
2. The co-propagating v -mode φ→,out

ω essentially decouples, as announced.
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Link with Hawking radiation

φ←,inω = αωφ
→,d,out
ω + βω

(
φ→,d,out
−ω

)∗
+ A(v)

ω φ→,out
ω + Ãωφ←,out

ω , (13)

10-3 10-2 10-1 1

10-4

10-2

102

- The dashed line is the Planck spectrum at the Hawk. temp. TH = κ/2π.
- In a large frequency domain, excellent agreement. In part. |βω|2 ∼ TH/ω.

- for low freq., |βω|2 ∼ |αω|2 ∼ ω/σβ for ω → 0.
This is due to transmission across the obstacle: The transm. coefficient (in red) reaches 1: total transm.
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Verification

To study the Hawkingness, plot of the effective temp. Tω

|βω|2
.

= (eω/Tω − 1)−1, (14)

for three different L = 5 (solid), 7 (dashed), and 10 (dotted)
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ln

Ω

TH

0.2
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TΩ

TH

-15 -10 -5 0

ln

Ω

TH

-5

-4

-3

-2

-1

0

ln H A
2

+A
� 2 L

the constant value of Tω closely agrees with TH = κ/2π.
except at ultra-low freq., no significant change at intermediate freq.

the critical ultra-low freq. ωc ∝ e−2 kdec
ω=0 L � TH is not relevant.

Lesson: in transonic asympt. smooth flows,
|βsurface waves
ω |2 closely agrees with the Hawking prediction.
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Discussion

It is unclear if such flows could be realized.

Main reason:
”wave breaking of the undulation”.

The zero freq. modulation on the
downstream side becomes highly
non-linear.

Plot: its amplitude versus h and J.

Strategy:

conceive obstacles minimizing the undulation amplitude.
(work in progress)

reduce Fmax and study the scattering in sub-critical flows
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The typical behavior in a subcritical flow
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The typical behavior in a subcritical flow

0.05 0.10 0.50
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0.05 0.10 0.50

0.001
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0.100

0.05 0.10 0.50

0.01

0.05

0.10

0.50

Fmax = 0.8, L = 2has (short obs.), σR/Lhas ∼ 2 (reasonable slopes).

Although |βω|2 6= 0, there is→ no large amplification .
Because there is a critical freq. ωmin below which transmission dominates.
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sub-critical flows, the critical freq. ωmin

Fmax < 1 defines the critical freq.

ωmin ∼
c

3h
(Fmax−1)3/2, for Fmax → 1,

given by the double root of the
disp. rel. for F = Fmax

for ω > ωmin, "wave blocking":
there is a turning point (WKB) as in transcritical flows,
hence, little transmission : |Ãω| � 1.

for ω < ωmin, "transmission":
there is no turning point, hence, large transmission |Ãω| ∼ 1,
and little wave blocking and thus little amplification |βω|2 � 1,

In brief, because of transmission, sub-critical flows are less unstable.
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Study of the properties when reducing Fmax
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The ’evolution’ of |βω|2 when reducing Fmax

5 10-12 10-110-15 10-2

101

10-1

10-2

10-3

In a log scale, |βω|2 for a fixed Fas and 7 values of Fmax from 1.2 to 0.8
The green dashed curve separates the 3 trans and the 3 subcritical flows.

Lesson: there is a smooth transition from trans- to sub-. which
describes the reduction of the mode amplification.
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The ’evolution’ of |αω|2 when reducing Fmax

5 10-12 10-110-15 10-2

101

10-1

10-2

5 10-12 10-110-15 10-2

101

10-1

10-2

10-3

In a log scale, |αω|2 for a fixed Fas and 7 values of Fmax from 1.2 to 0.8
The green dashed curve separates the 3 trans and the 3 subcritical flows.

Lesson: In sub-critical flows, for ω < ωmin,

|βω|2 ∼ |αω|2 ∼ ω,

Remember in Hawking case: |αω|2 = 1 + |βω|2.

Remember that the Vancouver group used |βω|2/|αω|2 to check "thermality".
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IV. Interpreting the spectra

Since the Hawking spectrum is (ex.) Planckian, |βω|2 = 1/(eω/TH − 1)
deviations are well characterized by an effective temperature T eff

ω .

Two temperatures have been used:

ln
|βω|2

1 + |βω|2
= − ω

T eff
ω

. (15)

Constancy of T eff
ω is equivalent to |βω|2 following the Planck law.

The second one is defined by

ln
∣∣∣∣βωαω

∣∣∣∣2 = − ω

T V
ω

. (16)

It has been used by the Vancouver group in their PRL.

They coincide iff |αω|2 − |βω|2 = 1.
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IV. Interpreting the spectra

5 10-12 10-110-15 10-2

0.05

0.1

0.15

0.2

5 10-12 10-110-15 10-2

0.05

0.1

0.15

T eff
ω (left) and T V

ω (right) for a fixed Fas and 7 values of Fmax from 1.2 to 0.8

For the 3 transcritical flows, they agree and are near constant.

For the 3 subcritical flows, T eff
ω monoton. decreases with Fas (and ω).

Instead, for low ω, T V
ω increases when Fas decreases,

This is because |αω |2 decreases faster than |βω |2.

In brief, it is clear that the spectrum is no longer approx. Planckian,
it is also rather clear that several parameters are relevant.
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V. Subcritical flows: the three regimes.

Because of transmission for ω < ωmin,
the spectrum in subcritical flows splits into 3 separate regimes:

I. the simplest, most robust one is the transition in a narrow band
centered on ωmin, where |Ãω|2 goes from ∼ 1 to ∼ 0.

II. a low frequency regime where

|βω|2 ∼ |αω|2 ∼ ω/σβ ,

hence fully governed by the freq. σβ .

III. a high freq. regime, where there is blocking, as in trans- flows.
In this regime, one could expect to recover the Hawking prediction.
In general, however, this is not the case.

NB. These properties should be observed/validated in future experiments.
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I. The transitional regime around ωmin

nothing special to notice about transmission

as expected, |Ãω=ωmin |2 ∼ 0.5 for not too long obstacles.

as expected, the slope

S ≡ − d |Ãω|2

d (lnω)

∣∣∣∣∣
ωmin

= −ωmin
d |Ãω|2

dω

∣∣∣∣∣
ωmin

. (17)

increases when increasing the length 2L of the obstacle:
there is a sharper transition for longer obstacles.
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II. The low frequency regime, ω < ωmin

Study of the freq. σβ entering in |βω|2 ∼ |αω|2 ∼ ω/σβ .

The most relevant parameters are Fmax, and the length 2L.

0.2 0.4 0.6 0.8 1.0

ΚR

Ωmax
10-7

10-5

0.001

0.1

10

1000

105

Σ Β

Ωmax

4 values of Fmax: 0.6 (solid), 0.8 (dashed), 1 (dot-dashed) and 1.2 (dotted).

NB. the behavior in trans-crit. flows can be understood from transmission:

σβ ∼ exp {−2kdec
ω=0(Fmax)× (2L)}

kdec
ω=0(Fmax) is the zero-freq. imaginary wave vector

in the trans-critical flow evaluated on top of the obstacle.
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III. The high frequency regime

0.2 0.4 0.6 0.8 1.0

ΚR

Ωmax

0.0

0.5

1.0

1.5

2.0

2.5

TΩ
eff

HΚR �2 ΠL

0.2 0.4 0.6 0.8 1.0
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Ωmax

0.0

0.5

1.0

1.5

2.0

2.5

3.0

TΩ
eff

HΚR �2 ΠL

Effective temperature T eff
ω at the midpoint (ωmin + ωmax)/2 of the high-freq. regime.

Four Fmax: 0.6 (solid), 0.8 (dashed), 1.0 (dot-dashed) and 1.2 (dotted).
On the left: κL/ωmax = 0.25 (top), κL/ωmax = 0.75 (bottom).

For sub- flows, is clear that κL matters when it is larger than κR ,
for the present obstacle with 2L/has = 2.5.
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III. Explanation: residual trasmission

0 2 4 6 8

0.4

0.6

0.8

1.0

1.2

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

Left:
2πTeff/κR at ω̄ = (ωmin + ωmax)/2 as a function of L for three values of κL.
The amplitude of the oscillations increases with κL,
while they are exponentially damped for increasing |=(kd

ω)|2L.

Right: |=(kd
ω(0))|has, imaginary part of the decaying wavevector as fct of ω,

for 7 values of Fmax from 1.2 to 0.8.
The significant decrease of |=(kd

ω(0))|has with Fmax < 1 explains why,
for sub-crit flows, the spectrum of reflected modes on the Right side is affected by κL.
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Vancouver experiment.
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Vancouver experiment: I. Background flow

-1.0 -0.5 0.5 1.0 1.5 2.0
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-1.0 -0.5 0.5 1.0 1.5 2.0
x

0.2
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0.4

0.5

0.6

F

On the left, the free surface (plain), and the obstacle (dashed).

On the right, F (x) = v(x)/c(x). The maximum Fmax ' 0.7,
significantly less than 1, hence no Kil. horizon, no white hole.

yet, they report observation of

wave blocking, as if no transmission, and
R = |βω|2/|αω|2 ∼ e−ω/ωV , as if Planck spectrum
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Vanc. exper. II. Numerically comp. scatt. coeffs

-4 -3 -1 0

ln
Ω

Ωmax

HHzL

-12

-10

-8

-6

-4

-2

ln A2 , ln A
� 2 , ln Α

2 , ln Β
2

Log. of |αω|2 (dotted), |βω|2 (dot-dashed), |Ãω|2 (dashed), and |Aω|2 (solid),
as functions of lnω/ωmax numer. computed with quartic DR

NB. ωmax, 4 ' 5Hz, ωmin, 4 ' 2Hz, where ", 4" means "computed with quartic DR" .
for ω < ωmin, 4, there is a severe drop of |αω|2 below 1,
also |βω|2 . e−5 � 1 for all ω.
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Vanc. exper. III. Effective temperatures.

1 2 3 4
Ω HHzL

0.1
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1 2 3 4
Ω HHzL
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ln R, ln HA2
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� 2 L

Left, effective temperature Tω in Hz.
It vanishes for ω → 0. Because |βω|2 → 0, (not reported by the Vanc. team).

Right, solid, ln Rω ≡ ln |βω|2/|αω|2.
- Essentially linear in ω, as if a thermal spectrum. (Vert. line ω = ωmin, 4)
- Observed in Vancouver (slope in agreement of 30%).
- Used by them as a criterion of "thermality".

Renaud Parentani Scattering of gravity waves in subcritical flows over an obstacle



can one conceive improved experiments?
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I. Lowering the amplitude of the undulation

The V. team could not work with Fmax > 0.7 because of the undulation

In principle, its amplitude can vanish:

-1.0 -0.5 0.5 1.0 1.5

0.01
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-1.0 -0.5 0.5 1.0 1.5
x

0.2

0.4

0.6

0.8

1.0

F

Left: Free surface (blue), obstacle (brown);
Right: F (x), flow trans-critical with Fmax ' 1.12.
obtained by solving the non-linear hydro. eq. Unruh-2012, and FM-RP 2014.

NB. the amplitude of the undulation vanishes.

Renaud Parentani Scattering of gravity waves in subcritical flows over an obstacle



The procedure to design obstacles, Unruh 2012, FM-RP 2014

I. exploit 2D irrotational flow, i.e., use
Bernouilli eq.
velocity potential φ and streamline ψ as coordinates "x , y"
2D Laplace eq. , so that Φ(z) holomorphic,
where Φ = φ+ iψ, z = x + iy .

II. choose the free surface arbitrarily : y = ys(φ), ψ = ψs

III. Solve:
Use Bern. to get xs(φ): 1st ODE,
use holomor. to get xb(φ), yb(φ): the shape of the bottom
from Z (Φ), holom., evaluated at ψ = 0,
from Z (φ+ iψs) = xs(φ) + iys(φ).
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The Orsay-2 obstacle

I

R

T

H

B

-0.5 0.5 1.0 1.5
x

0.02

0.04

0.06

0.08

h

In brown the ’designed’ obstacle, in red the observed (time-average) surface.
The vertical lines show the region used to analyzed the mode content.

Fmax = 0.83± 0.03 vs F Vancouver
max = 0.67± 0.02

More importantly, peak-to-peak amplitude of the undulation 5.0 mm.

A new obstacle O3b is currently being tested.
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II. Extracting the scattering coefficients

in Vancouver, only |βω/αω|2 was measured.

The noise degrades the measurements of the free surface.
Maximal resolution: 0.1mm, close to the typical noise amplitude.

To lower its impact, we use the constructive interferences
between the various waves produced by the wave maker, i.e.,

we study the (norm of the) two-point correlation function

G2(ω; k , k ′) ≡

∣∣∣〈δh̃(ω, k) δh̃(ω, k ′)∗
〉∣∣∣

Sk Sk′ .
(18)

in the k − k ′ plane, Sk is the "structure factor".

this is quite similar to what is done in BEC,
except that we can work at fixed ω.
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The dispersion relation in the k − k ′ plane
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Top: dispersion relation ω vs k .

Right:
ka
ω vs kb

ω for two k ’s with the same ω.

the scattering induces correl. only among
k ’s with the same ω, since flow is statio.

Hence Gobserved
2 (ω; k , k ′) should 6= 0

only along these lines.
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In solid ω > 0, in pale ω < 0.
Auto-correlations are along the diagonal.
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Extracting the scattering coefficients

|βω| =

∣∣∣∣G2(ω, kI , kH)

G2(ω, kI , kI)

∣∣∣∣× ∣∣∣∣ ∂ωkI

∂ωkH

∣∣∣∣1/2

,

where kI is the wv of the Incoming mode, and kH that of the NEW.

Similarly

|αω| =

∣∣∣∣G2(ω, kI , kB)

G2(ω, kI , kI)

∣∣∣∣× ∣∣∣∣ ∂ωkI

∂ωkB

∣∣∣∣1/2

for the ’Blue shifted’ mode with wv kB.
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The measured scattering coefficients
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The norm of the measured scattering coefficients.
|αω| in blue, |βω| in orange, |Ãω| (transmission) in green.

The crossover near ωmin = 0.8 between |αω| and |Ãω| clearly visible.

Unitarity: 1 = |αω|2−|βω|2 + |Aω|2 + |Ãω|2 obeyed within error bars.
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Comparison with numerical simulations

In brief, the observed value of |βω| is about
100 times larger than that numerically computed.

this is (most probably) due to the resonant scattering on the undulation:
although its amplit. ∼ 0.25 mm� 40 mm of δh due to the obs.
resonant anomalous Bragg scattering. (work in progress)

the first experimental task would be to obtain a stable high Fmax flow
with an undulation whose amplitude significantly less than 0.25 mm.
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Conclusions

for smooth and suff. trans-critical flows, Fmax > 1.1,

Hawking’s spectrum is found in a wide domain of frequency.
at the predicted temperature Teff(ω) = κ/2π.

for sub-critical flows, Fmax < 1,

the transmission coef. Ãω → 1 for ω < ωmin,

αω and βω both ∝ ω for ω → 0,

even for ω > ωmin, Teff(ω) is generically non constant,
(because of residual transmission across the obstacle).

the experim. challenge is to obtain a stable high Fmax flow with an
undulation whose amplitude significantly less than 0.25 mm.
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