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Università La Sapienza e INFN, Roma, Italy

“Probability is the very guide of life” (Digest of Cicero’s thought)

“Probability is good sense reduced to a calculus” (S. Laplace)

“All models are wrong but some are useful” (G. Box)
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Outline

◮ “Science and hypothesis” (Poincaré)

◮ Uncertainty, probability, decision.

◮ Causes←→Effects
“The essential problem of the experimental method” (Poincaré).

◮ A toy model and its physics analogy: the six box game
“Probability is either referred to real cases or it is nothing” (de Finetti).

◮ Probabilistic approach [ but . . .What is probability?]

◮ Basic rules of probability and Bayes rule.

◮ Bayesian inference and its graphical representation:
⇒ Bayesian networks

◮ From ball and boxes to real measurements

◮ Conclusions
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What is measurement?
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What is measurement?

Higgs → γγ
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What is measurement?

ATLAS Experiment at LHC
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What is measurement?

ATLAS Experiment at LHC [ length: 46m; � 25m ]

≈ 3000 km cables

≈ 7000 tonnes ≈ 100millions electronic channels
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What is measurement?
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What is measurement?

Higgs → γγ

⇒

{

Mass
Production rate
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What is measurement?

Higgs → γγ

⇒

{

Mass
Production rate

Quite indirect measurements of something we do not “see”!
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Can we “see” physics quantities?

But, can we see our mass?
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Can we “see” physics quantities?

. . . or a voltage?
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Can we “see” physics quantities?

. . . or our blood pressure?
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Can we “see” physics quantities?

Certainly not!
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Can we “see” physics quantities?

Certainly not!

. . . although for some quantities we can have

a ‘vivid impression’ (in the David Hume’s sense)
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Measuring a mass on a balance

Equilibrium:

mg − k∆x = 0

∆x → θ → scale reading

From the reading to the value of the mass:

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘g ’: g
?
=

GM♁

R2
♁
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘g ’: g
?
=

GM♁

R2
♁

◮ Position is usually not at “R♁” from the Earth center;

◮ Earth not spherical. . .

◮ . . . not even ellipsoidal. . .

◮ . . . and not even homogenous.

◮ Moreover we have to consider centrifugal effects

◮ . . . and even the effect from the Moon
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘g ’: g
?
=

GM♁

R2
♁

◮ Position is usually not at “R♁” from the Earth center;

◮ Earth not spherical. . .

◮ . . . not even ellipsoidal. . .

◮ . . . and not even homogenous.

◮ Moreover we have to consider centrifugal effects

◮ . . . and even the effect from the Moon

Certainly not to watch our weight
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘g ’: g
?
=

GM♁

R2
♁

◮ Position is usually not at “R♁” from the Earth center;

◮ Earth not spherical. . .

◮ . . . not even ellipsoidal. . .

◮ . . . and not even homogenous.

◮ Moreover we have to consider centrifugal effects

◮ . . . and even the effect from the Moon

Certainly not to watch our weight
But think about it!
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘k’:

◮ temperature

◮ non linearity

◮ . . .
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘k’:

◮ temperature

◮ non linearity

◮ . . .

∆x→ θ → scale reading:

◮ left to your imagination. . .

c© G. D’Agostini, Bayesian Reasoning (Bologna, 28 April 2016) 7/59



Measuring a mass on a balance

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘k’:

◮ temperature

◮ non linearity

◮ . . .

∆x→ θ → scale reading:

◮ left to your imagination. . .

+ randomic effects:

◮ stopping position of damped oscillation;

◮ variability of all quantities of influence (in the ISO-GUM
sense);

◮ reading of analog scale.
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘k’:

◮ temperature

◮ non linearity

◮ . . .

∆x→ θ → scale reading:

◮ left to your imagination. . .

+ randomic effects:

◮ stopping position of damped oscillation;

◮ variability of all quantities of influence (in the ISO-GUM
sense);

◮ reading of analog scale.
⇒ m ??
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Sources of uncertainties (from ISO GUM)

1 incomplete definition of the measurand;†

→ g
→where?

→inertial effects subtracted?

2 imperfect realization of the definition of the measurand;

→ scattering on neutron

→how to realize a neutron target?

3 non-representative sampling — the sample measured may not
represent the measurand;

4 inadequate knowledge of the effects of environmental
conditions on the measurement, or imperfect measurement of
environmental conditions;

5 personal bias in reading analogue instruments;
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Sources of uncertainties (from ISO GUM)

6 finite instrument resolution or discrimination threshold;

7 inexact values of measurement standards and reference
materials;

8 inexact values of constants and other parameters obtained
from external sources and used in the data-reduction
algorithm;

9 approximations and assumptions incorporated in the
measurement method and procedure;

10 variations in repeated observations of the measurand under
apparently identical conditions.

→ “statistical errors”

Note
◮ Sources not necessarily independent

◮ In particular, sources 1-9 may contribute to 10
(e.g. not-monitored electric fluctuations)
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Pure empirical information?

A number, outside a contest, and denuted of all information the
physicist or engineer has about its ‘production’ provides little (or
zero) information: it is not a measurement.
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Pure empirical information?

A number, outside a contest, and denuted of all information the
physicist or engineer has about its ‘production’ provides little (or
zero) information: it is not a measurement.

mistrust the

Dogma of the Immaculate Observation!
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Comparing hypotheses

We do measurements not only to ‘estimate’ the numeric value of a
quantity.

Experimental observations are also used in order to

◮ “check hypotheses”
(a generic expression that needs clarification. . . )

c© G. D’Agostini, Bayesian Reasoning (Bologna, 28 April 2016) 10/59



Comparing hypotheses

We do measurements not only to ‘estimate’ the numeric value of a
quantity.

Experimental observations are also used in order to

◮ “check hypotheses”
(a generic expression that needs clarification. . . )

◮ make decisions accordingly

c© G. D’Agostini, Bayesian Reasoning (Bologna, 28 April 2016) 10/59
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We do measurements not only to ‘estimate’ the numeric value of a
quantity.

Experimental observations are also used in order to

◮ “check hypotheses”
(a generic expression that needs clarification. . . )

◮ make decisions accordingly

Diagnostics, reliability, etc.
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Comparing hypotheses

We do measurements not only to ‘estimate’ the numeric value of a
quantity.

Experimental observations are also used in order to

◮ “check hypotheses”
(a generic expression that needs clarification. . . )

◮ make decisions accordingly

Diagnostics, reliability, etc.

Diagnostics concerning health helps to clarify the issues ⇒
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AIDS test

An Italian citizen is selected at random
to undergo an AIDS test.
→ Performance of clinical trial is not perfect, as customary:

P(Pos |HIV) = 100%

P(Pos |HIV) = 0.2%

P(Neg |HIV) = 99.8%

H1=’HIV’ (Infected) E1 = Positive

H2=’HIV’ (Healthy) E2 = Negative
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AIDS test

An Italian citizen is selected at random
to undergo an AIDS test.
→ Performance of clinical trial is not perfect, as customary:

P(Pos |HIV) = 100%

P(Pos |HIV) = 0.2%

P(Neg |HIV) = 99.8%

H1=’HIV’ (Infected) E1 = Positive

H2=’HIV’ (Healthy) E2 = Negative

Result: ⇒ Positive

c© G. D’Agostini, Bayesian Reasoning (Bologna, 28 April 2016) 11/59



AIDS test
An Italian citizen is selected at random
to undergo an AIDS test.
→ Performance of clinical trial is not perfect, as customary:

P(Pos |HIV) = 100%

P(Pos |HIV) = 0.2%

P(Neg |HIV) = 99.8%

? H1=’HIV’ (Infected) E1 = Positive

? H2=’HIV’ (Healthy) E2 = Negative

Result: ⇒ Positive
Infected or healthy?
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AIDS test: how to interpret the result?

Being P(Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say?

◮ ”It is practically impossible that the person is healthy,
since it was practically impossible that an healthy person
would result positive”
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AIDS test: how to interpret the result?

Being P(Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say

◮ ”It is practically impossible that the person is healthy,
since it was practically impossible that an healthy person
would result positive”

◮ “There is only 0.2% probability that the person has no HIV”

◮ “We are 99.8% confident that the person is infected?”

◮ “The hypothesis H1=Healthy is ruled out with 99.8% C.L.”

?
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AIDS test: how to interpret the result?

Being P(Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say

◮ ”It is practically impossible that the person is healthy,
since it was practically impossible that an healthy person
would result positive”

◮ “There is only 0.2% probability that the person has no HIV”

◮ “We are 99.8% confident that the person is infected?”

◮ “The hypothesis H1=Healthy is ruled out with 99.8% C.L.”

NO
Instead, P(HIV |Pos, random Italian) ≈ 45%
(We will learn in the sequel how to evaluate it correctly)
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AIDS test: how to interpret the result?

Being P(Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say

◮ ”It is practically impossible that the person is healthy,
since it was practically impossible that an healthy person
would result positive”

◮ “There is only 0.2% probability that the person has no HIV”

◮ “We are 99.8% confident that the person is infected?”

◮ “The hypothesis H1=Healthy is ruled out with 99.8% C.L.”

NO
Instead, P(HIV |Pos, random Italian) ≈ 45%
⇒ Serious mistake! (not just 99.8% instead of 98.3% or so)
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AIDS test

???
Where is the problem?
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AIDS test

???
Where is the problem?

The previous statements, although dealing with probabilistic
issues, are not grround on probability theory
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AIDS test

???
Where is the problem?

The previous statements, although dealing with probabilistic
issues, are not grround on probability theory

. . . and in these issues intuition can be fallacious!

c© G. D’Agostini, Bayesian Reasoning (Bologna, 28 April 2016) 13/59



AIDS test

???
Where is the problem?

The previous statements, although dealing with probabilistic
issues, are not grround on probability theory

. . . and in these issues intuition can be fallacious!

⇒ A sound formal guidance can rescue us
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Learning from data

Observations

Value of
a quantity

Theory
(model)

(*)

Hypotheses discretecontinuous
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Learning from data

Observations

Value of
a quantity

Theory
(model)

(*)

Hypotheses discretecontinuous

(*) A quantity might be meaningful only within a theory/model
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From past to future

Our task:

◮ Describe/understand the physical world

⇒ inference of laws and their parameters

◮ Predict observations

⇒ forecasting
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From past to future

Process

◮ neither automatic

◮ nor purely contemplative

→ ‘scientific method’
→ planned experiments (‘actions’) ⇒ decision.
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From past to future

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

⇒ Uncertainty:

1. Given the past observations, in general we are not sure about
the theory parameters (and/or the theory itself)

2. Even if we were sure about theory and parameters, there could
be internal (e.g. Q.M.) or external effects (initial/boundary
conditions, ‘errors’, etc) that make the forecasting uncertain.
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From past to future

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

⇒ Decision

◮ What is be best action (’experiment’) to take in order ‘to be
confident’ that what we would like will occur?
(Decision issues always assume uncertainty about future
outcomes.)

◮ Before tackling problems of decision we need to learn to
reason about uncertainty, possibly in a quantitative way.
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From past to future

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

Deep reason of uncertainty

Theory — ? −→ Future observations

Past observations — ? −→ Theory

Theory — ? −→ Future observations
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From past to future

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

Deep reason of uncertainty

Theory — ? −→ Future observations

Past observations — ? −→ Theory

Theory — ? −→ Future observations
=⇒ Uncertainty about causal connections

CAUSE ⇐⇒ EFFECT
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Inferential-predictive process
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Inferential-predictive process
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Inferential-predictive process

(S. Raman, Science with a smile)
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Inferential-predictive process

(S. Raman, Science with a smile)

Even if the (ad hoc) model fits perfectly the data,
we do not believe the predictions
because we don’t trust the model!

[Many ‘good’ models are ad hoc models!]
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2011 IgNobel prize in Mathematics

◮ D. Martin of USA (who predicted the world would end in
1954)

◮ P. Robertson of USA (who predicted the world would end in
1982)

◮ E. Clare Prophet of the USA (who predicted the world would
end in 1990)

◮ L.J. Rim of KOREA (who predicted the world would end in
1992)

◮ C. Mwerinde of UGANDA (who predicted the world would end
in 1999)

◮ H. Camping of the USA (who predicted the world would end
on September 6, 1994 and later predicted that the world will
end on October 21, 2011)
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2011 IgNobel prize in Mathematics

“For teaching the world to be careful
when making mathematical
assumptions and calculations”
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Deep source of uncertainty

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

Uncertainty:

Theory — ? −→ Future observations

Past observations — ? −→ Theory

Theory — ? −→ Future observations
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Deep source of uncertainty

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

Uncertainty:

Theory — ? −→ Future observations

Past observations — ? −→ Theory

Theory — ? −→ Future observations
=⇒ Uncertainty about causal connections

CAUSE ⇐⇒ EFFECT
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Causes → effects

The same apparent cause might produce several,different effects

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Given an observed effect, we are not sure about the exact cause
that has produced it.
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Causes → effects

The same apparent cause might produce several,different effects

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Given an observed effect, we are not sure about the exact cause
that has produced it.

E2 ⇒ {C1, C2, C3}?
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The “essential problem” of the Sciences

“Now, these problems are classified as probability of causes,
and are most interesting of all their scientific applications. I
play at écarté with a gentleman whom I know to be perfectly
honest. What is the chance that he turns up the king? It is
1/8. This is a problem of the probability of effects.
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The “essential problem” of the Sciences

“Now, these problems are classified as probability of causes,
and are most interesting of all their scientific applications. I
play at écarté with a gentleman whom I know to be perfectly
honest. What is the chance that he turns up the king? It is
1/8. This is a problem of the probability of effects.

I play with a gentleman whom I do not know. He has dealt
ten times, and he has turned the king up six times. What is
the chance that he is a sharper? This is a problem in the
probability of causes. It may be said that it is the essential
problem of the experimental method.”

(H. Poincaré – Science and Hypothesis)
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The “essential problem” of the Sciences

“Now, these problems are classified as probability of causes,
and are most interesting of all their scientific applications. I
play at écarté with a gentleman whom I know to be perfectly
honest. What is the chance that he turns up the king? It is
1/8. This is a problem of the probability of effects.

I play with a gentleman whom I do not know. He has dealt
ten times, and he has turned the king up six times. What is
the chance that he is a sharper? This is a problem in the
probability of causes. It may be said that it is the essential
problem of the experimental method.”

(H. Poincaré – Science and Hypothesis)
Why we (or most of us) have not been taught how to tackle
this kind of problems?
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From ‘true value’ to observations

x

Μ0

Experimental
response

?

Given µ (exactly known) we are uncertain about x

c© G. D’Agostini, Bayesian Reasoning (Bologna, 28 April 2016) 21/59



From ‘true value’ to observations

x

Μ

Uncertain Μ

Experimental
response

?

Uncertainty about µ makes us more uncertain about x
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. . . and back: Inferring a true value

x

Μ

Uncertain Μ

Experimental
observation

x0

The observed data is certain: → ‘true value’ uncertain.
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. . . and back: Inferring a true value

x

Μ

Uncertain Μ

Experimental
observation

x0

The observed data is certain: → ‘true value’ uncertain.

“data uncertainty” ?
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. . . and back: Inferring a true value

x

Μ

Uncertain Μ

Experimental
observation

x0

The observed data is certain: → ‘true value’ uncertain.

“data uncertainty” ? Data corrupted?
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. . . and back: Inferring a true value

x

Μ

Uncertain Μ

Experimental
observation

x0

The observed data is certain: → ‘true value’ uncertain.

“data uncertainty” ? Data corrupted?
Even if the data were corrupted, the data were the corrupted
data!! . . .
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. . . and back: Inferring a true value

x

Μ

Which Μ?

Experimental
observation

x0

?

Where does the observed value of x comes from?
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. . . and back: Inferring a true value

x

Μ

x0

?

Inference

We are now uncertain about µ, given x .
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. . . and back: Inferring a true value

x

Μ

x0

Μ given x

x given Μ

Note the symmetry in reasoning.
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A very simple experiment

Let’s make an experiment
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A very simple experiment

Let’s make an experiment

◮ Here

◮ Now
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A very simple experiment

Let’s make an experiment

◮ Here

◮ Now

For simplicity

◮ µ can assume only six possibilities:

0, 1, . . . , 5

◮ x is binary:
0, 1

[ (1, 2); Black/White; Yes/Not; . . . ]
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A very simple experiment

Let’s make an experiment

◮ Here

◮ Now

For simplicity

◮ µ can assume only six possibilities:

0, 1, . . . , 5

◮ x is binary:
0, 1

[ (1, 2); Black/White; Yes/Not; . . . ]

⇒ Later we shall make µ continous.
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Which box? Which ball?

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.
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Which box? Which ball?

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.

We are in a state of uncertainty concerning several events, the
most important of which correspond to the following questions:

(a) Which box have we chosen, H0, H1, . . . , H5?

(b) If we extract randomly a ball from the chosen box, will we
observe a white (EW ≡ E1) or black (EB ≡ E2) ball?

Our certainties: ∪5j=0 Hj = Ω

∪2i=1 Ei = Ω .
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Which box? Which ball?

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.

◮ What happens after we have extracted one ball and looked its
color?

◮ Intuitively feel how to roughly change our opinion about
◮ the possible cause
◮ a future observation
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Which box? Which ball?

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.

◮ What happens after we have extracted one ball and looked its
color?

◮ Intuitively feel how to roughly change our opinion about
◮ the possible cause
◮ a future observation

◮ Can we do it quantitatively, in an ‘objective way’?
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Which box? Which ball?

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.

◮ What happens after we have extracted one ball and looked its
color?

◮ Intuitively feel how to roughly change our opinion about
◮ the possible cause
◮ a future observation

◮ Can we do it quantitatively, in an ‘objective way’?

◮ And after a sequence of extractions?
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The toy inferential experiment

The aim of the experiment will be to guess the content of the box
without looking inside it, only extracting a ball, record its color and
reintroducing in the box
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The toy inferential experiment

The aim of the experiment will be to guess the content of the box
without looking inside it, only extracting a ball, record its color and
reintroducing in the box

This toy experiment is conceptually very close to what we do in
the pure and applied sciences

⇒ try to guess what we cannot see (the electron mass, a
magnetic field, etc)

. . . from what we can see (somehow) with our senses.

The rule of the game is that we are not allowed to watch inside the
box! (As we cannot open and electron and read its properties,
unlike we read the MAC address of a PC interface.)
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Where is probability?

We all agree that the experimental results change

◮ the probabilities of the box compositions;

◮ the probabilities of a future outcomes,
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Where is probability?

We all agree that the experimental results change

◮ the probabilities of the box compositions;

◮ the probabilities of a future outcomes,

although the box composition remains unchanged (‘extractions
followed by reintroduction’).
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Where is probability?

We all agree that the experimental results change

◮ the probabilities of the box compositions;

◮ the probabilities of a future outcomes,

although the box composition remains unchanged (‘extractions
followed by reintroduction’).

Where is the probability?
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Where is probability?

We all agree that the experimental results change

◮ the probabilities of the box compositions;

◮ the probabilities of a future outcomes,

although the box composition remains unchanged (‘extractions
followed by reintroduction’).

Where is the probability?

Certainly not in the box!

c© G. D’Agostini, Bayesian Reasoning (Bologna, 28 April 2016) 26/59



Subjective nature of probability

“Since the knowledge may be different with different persons
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Subjective nature of probability

“Since the knowledge may be different with different persons
or with the same person at different times,
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Subjective nature of probability

“Since the knowledge may be different with different persons
or with the same person at different times, they may anticipate
the same event with more or less confidence,
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Subjective nature of probability

“Since the knowledge may be different with different persons
or with the same person at different times, they may anticipate
the same event with more or less confidence, and thus different
numerical probabilities may be attached to the same event”
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Subjective nature of probability

“Since the knowledge may be different with different persons
or with the same person at different times, they may anticipate
the same event with more or less confidence, and thus different
numerical probabilities may be attached to the same event”

(Schrödinger, 1947)
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Subjective nature of probability

“Since the knowledge may be different with different persons
or with the same person at different times, they may anticipate
the same event with more or less confidence, and thus different
numerical probabilities may be attached to the same event”

(Schrödinger, 1947)

Probability depends on the status of information of the subject
who evaluates it.
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Probability is always conditional probability

“Thus whenever we speak loosely of ‘the probability of an
event’, it is always to be understood: probability with regard
to a certain given state of knowledge”
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Probability is always conditional probability

“Thus whenever we speak loosely of ‘the probability of an
event’, it is always to be understood: probability with regard
to a certain given state of knowledge”

(Schrödinger, 1947)
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Probability is always conditional probability

“Thus whenever we speak loosely of ‘the probability of an
event’, it is always to be understood: probability with regard
to a certain given state of knowledge”

(Schrödinger, 1947)

P(E ) −→ P(E | Is)

where Is is the information available to subject s .
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What are we talking about?

“Given the state of our knowledge about everything that could
possible have any bearing on the coming true. . .
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What are we talking about?

“Given the state of our knowledge about everything that could
possible have any bearing on the coming true. . . the numerical
probability P of this event is to be a real number by the
indication of which we try in some cases to setup a
quantitative measure of the strength of our conjecture or
anticipation, founded on the said knowledge, that the event
comes true”

(Schrödinger, 1947)
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What are we talking about?

“Given the state of our knowledge about everything that could
possible have any bearing on the coming true. . . the numerical
probability P of this event is to be a real number by the
indication of which we try in some cases to setup a
quantitative measure of the strength of our conjecture or
anticipation, founded on the said knowledge, that the event
comes true”

⇒ How much we believe something
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What are we talking about?

“Given the state of our knowledge about everything that could
possible have any bearing on the coming true. . . the numerical
probability P of this event is to be a real number by the
indication of which we try in some cases to setup a
quantitative measure of the strength of our conjecture or
anticipation, founded on the said knowledge, that the event
comes true”

→ ‘Degree of belief’←
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Beliefs and ‘coherent’ bets

Remarks:

◮ Subjective does not mean arbitrary!
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Beliefs and ‘coherent’ bets

Remarks:

◮ Subjective does not mean arbitrary!

◮ How to force people to assess how much they are confident on
something?
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Beliefs and ‘coherent’ bets

Remarks:

◮ Subjective does not mean arbitrary!

◮ How to force people to assess how much they are confident on
something?

◮ Coherent bet
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Beliefs and ‘coherent’ bets

Remarks:

◮ Subjective does not mean arbitrary!

◮ How to force people to assess how much they are confident on
something?

◮ Coherent bet:
◮ you state the odds according on your beliefs;
◮ somebody else will choose the direction of the bet.

c© G. D’Agostini, Bayesian Reasoning (Bologna, 28 April 2016) 30/59



Beliefs and ‘coherent’ bets

Remarks:

◮ Subjective does not mean arbitrary!

◮ How to force people to assess how much they are confident on
something?

◮ Coherent bet:
◮ you state the odds according on your beliefs;
◮ somebody else will choose the direction of the bet.

“His [Bouvard] calculations give him the mass of Saturn
as 3,512th part of that of the sun. Applying my
probabilistic formulae to these observations, I find that
the odds are 11,000 to 1 that the error in this result is
not a hundredth of its value.” (Laplace)
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Beliefs and ‘coherent’ bets
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◮ How to force people to assess how much they are confident on
something?

◮ Coherent bet:
◮ you state the odds according on your beliefs;
◮ somebody else will choose the direction of the bet.

“His [Bouvard] calculations give him the mass of Saturn
as 3,512th part of that of the sun. Applying my
probabilistic formulae to these observations, I find that
the odds are 11,000 to 1 that the error in this result is
not a hundredth of its value.” (Laplace)
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Beliefs and ‘coherent’ bets

Remarks:

◮ Subjective does not mean arbitrary!

◮ How to force people to assess how much they are confident on
something?

◮ Coherent bet:
◮ you state the odds according on your beliefs;
◮ somebody else will choose the direction of the bet.

“His [Bouvard] calculations give him the mass of Saturn
as 3,512th part of that of the sun. Applying my
probabilistic formulae to these observations, I find that
the odds are 11,000 to 1 that the error in this result is
not a hundredth of its value.” (Laplace)

→ P(3477 ≤ MSun/MSat ≤ 3547 | I (Laplace)) = 99.99%
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Beliefs and ‘coherent’ bets

Remarks:

◮ Subjective does not mean arbitrary!

◮ How to force people to assess how much they are confident on
something?

◮ Coherent bet:
◮ you state the odds according on your beliefs;
◮ somebody else will choose the direction of the bet.

Is a ‘conventional’ 95% C.L. lower/upper bound a 19 to 1 bet?
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Beliefs and ‘coherent’ bets

Remarks:

◮ Subjective does not mean arbitrary!

◮ How to force people to assess how much they are confident on
something?

◮ Coherent bet:
◮ you state the odds according on your beliefs;
◮ somebody else will choose the direction of the bet.

Is a ‘conventional’ 95% C.L. lower/upper bound a 19 to 1 bet?

NO!
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Beliefs and ‘coherent’ bets

Remarks:

◮ Subjective does not mean arbitrary!

◮ How to force people to assess how much they are confident on
something?

◮ Coherent bet:
◮ you state the odds according on your beliefs;
◮ somebody else will choose the direction of the bet.

Is a ‘conventional’ 95% C.L. lower/upper bound a 19 to 1 bet?

◮ It does not imply one has to be 95% confident on something!
◮ If you do so you are going to make a bad bet!
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Beliefs and ‘coherent’ bets

Remarks:

◮ Subjective does not mean arbitrary!

◮ How to force people to assess how much they are confident on
something?

◮ Coherent bet:
◮ you state the odds according on your beliefs;
◮ somebody else will choose the direction of the bet.

Is a ‘conventional’ 95% C.L. lower/upper bound a 19 to 1 bet?

For more on the subject
see http://arxiv.org/abs/1112.3620
and references therein.
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Standard textbook definitions

p =
# favorable cases

#possible equiprobable cases

p =
#times the event has occurred

# independent trials under same conditions
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Standard textbook definitions

It is easy to check that ‘scientific’ definitions suffer of circularity

p =
# favorable cases

#possible equiprobable cases

p =
#times the event has occurred

# independent trials under same conditions
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Standard textbook definitions

It is easy to check that ‘scientific’ definitions suffer of circularity

p =
# favorable cases

#possible equally possible cases

p =
#times the event has occurred

# independent trials under same conditions

Note!: “lorsque rien ne porte à croire que l’un de ces cas doit arriver
plutot que les autres” (Laplace)

Replacing ‘equi-probable’ by ‘equi-possible’ is just cheating
students (as I did in my first lecture on the subject. . . ).
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Standard textbook definitions

It is easy to check that ‘scientific’ definitions suffer of circularity,
plus other problems

p =
# favorable cases

#possible equiprobable cases

p = limn→∞
#times the event has occurred

# independent trials under same condition

Future ⇔ Past (belief!)

n→∞: → “usque tandem?”
→ “in the long run we are all dead”
→ It limits the range of applications
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‘Definitions’ → evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

#possible equiprobable cases

B) p =
#times the event has occurred

#independent trials under same condition

If the implicit beliefs are well suited for each case of application.
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‘Definitions’ → evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

#possible equiprobable cases

B) p =
#times the event has occurred

#independent trials under same condition

If the implicit beliefs are well suited for each case of application.

BUT they cannot define the concept of probability!
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‘Definitions’ → evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

#possible equiprobable cases

B) p =
#times the event has occurred

#independent trials under same condition

In the probabilistic approach we are following

◮ Rule A is recovered immediately (under the assumption of
equiprobability, when it applies).

◮ Rule B results from a theorem of Probability Theory (under
well defined assumptions).
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‘Definitions’ → evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

#possible equiprobable cases

B) p =
#times the event has occurred

#independent trials under same condition

In the probabilistic approach we are following

◮ Rule A is recovered immediately (under the assumption of
equiprobability, when it applies).

◮ Rule B results from a theorem of Probability Theory (under
well defined assumptions): ⇒ Laplace’s rule
of succession
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Mathematics of beliefs

The good news:

The basic laws of degrees of belief are the same we
get from the inventory of favorable and possible
cases, or from events occurred in the past.

It can be proved that

the requirement of coherence leads to the famous 4
basic rules =⇒

[ Details skipped. . . ]
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Basic rules of probability

1. 0 ≤ P(A | I ) ≤ 1

2. P(Ω | I ) = 1

3. P(A ∪ B | I ) = P(A | I ) + P(B | I ) [ if P(A ∩ B | I ) = ∅ ]

4. P(A ∩ B | I ) = P(A |B , I ) · P(B | I ) = P(B |A, I ) · P(A | I )

Remember that probability is always conditional probability!

I is the background condition (related to information ‘I ′s)

→ usually implicit (we only care on ‘re-conditioning’)
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Basic rules of probability

1. 0 ≤ P(A | I ) ≤ 1

2. P(Ω | I ) = 1

3. P(A ∪ B | I ) = P(A | I ) + P(B | I ) [ if P(A ∩ B | I ) = ∅ ]

4. P(A ∩ B | I ) = P(A |B , I ) · P(B | I ) = P(B |A, I ) · P(A | I )

Remember that probability is always conditional probability!

I is the background condition (related to information ‘I ′s)

→ usually implicit (we only care on ‘re-conditioning’)

Note: 4. does not define conditional probability.
(Probability is always conditional probability!)
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Mathematics of beliefs

An even better news:

The fourth basic rule
can be fully exploided!
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Mathematics of beliefs

An even better news:

The fourth basic rule
can be fully exploided!

(Liberated by a curious ideology that forbits its use)
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A simple, powerful formula
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A simple, powerful formula

P(A |B | I )P(B | I ) = P(B |A, I )P(A | I )
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A simple, powerful formula

Take the courage to use it!
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A simple, powerful formula

It’s easy if you try. . . !
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A simple, powerful formula

[ Bayes Theorem ]
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Laplace’s “Bayes Theorem”

“The greater the probability of an observed event given any one of
a number of causes to which that event may be attributed, the
greater the likelihood of that cause {given that event}.

P(Ci |E ) ∝ P(E |Ci )
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Laplace’s “Bayes Theorem”

“The greater the probability of an observed event given any one of
a number of causes to which that event may be attributed, the
greater the likelihood of that cause {given that event}. The
probability of the existence of any one of these causes {given the
event} is thus a fraction whose numerator is the probability of the
event given the cause, and whose denominator is the sum of
similar probabilities, summed over all causes.

P(Ci |E ) =
P(E |Ci )

∑

j P(E |Cj)
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Laplace’s “Bayes Theorem”

“The greater the probability of an observed event given any one of
a number of causes to which that event may be attributed, the
greater the likelihood of that cause {given that event}. The
probability of the existence of any one of these causes {given the
event} is thus a fraction whose numerator is the probability of the
event given the cause, and whose denominator is the sum of
similar probabilities, summed over all causes. If the various causes
are not equally probable a priory, it is necessary, instead of the
probability of the event given each cause, to use the product of
this probability and the possibility of the cause itself.”

P(Ci |E ) =
P(E |Ci )P(Ci )

∑

j P(E |Cj)P(Cj)
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Laplace’s “Bayes Theorem”

“The greater the probability of an observed event given any one of
a number of causes to which that event may be attributed, the
greater the likelihood of that cause {given that event}. The
probability of the existence of any one of these causes {given the
event} is thus a fraction whose numerator is the probability of the
event given the cause, and whose denominator is the sum of
similar probabilities, summed over all causes. If the various causes
are not equally probable a priory, it is necessary, instead of the
probability of the event given each cause, to use the product of
this probability and the possibility of the cause itself.”

P(Ci |E ) =
P(E |Ci )P(Ci )

P(E )

(Philosophical Essai on Probabilities)
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Laplace’s “Bayes Theorem”

P(Ci |E ) =
P(E |Ci )P(Ci )

∑

j P(E |Cj)P(Cj)

“This is the fundamental principle (∗) of that branch of
the analysis of chance that consists of reasoning a
posteriori from events to causes”

(*) In his “Philosophical essay” Laplace calls ‘principles’ the ‘fondamental

rules’.
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Laplace’s “Bayes Theorem”

P(Ci |E ) =
P(E |Ci )P(Ci )

∑

j P(E |Cj)P(Cj)

“This is the fundamental principle (∗) of that branch of
the analysis of chance that consists of reasoning a
posteriori from events to causes”

(*) In his “Philosophical essay” Laplace calls ‘principles’ the ‘fondamental

rules’.

Note: denominator is just a normalization factor.

⇒ P(Ci |E ) ∝ P(E |Ci )P(Ci )
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Laplace’s “Bayes Theorem”

P(Ci |E ) =
P(E |Ci )P(Ci )

∑

j P(E |Cj)P(Cj)

“This is the fundamental principle (∗) of that branch of
the analysis of chance that consists of reasoning a
posteriori from events to causes”

(*) In his “Philosophical essay” Laplace calls ‘principles’ the ‘fondamental

rules’.

Note: denominator is just a normalization factor.

⇒ P(Ci |E ) ∝ P(E |Ci )P(Ci )

Most convenient way to remember Bayes theorem
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Cause-effect representation

box content → observed color

P(B(1) |Hj), P(B(2) |Hj), . . .

P(W (1) |Hj), P(W (2) |Hj), . . .
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Cause-effect representation

box content → observed color

An effect might be the cause of another effect =⇒
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A network of causes and effects

Vuoto
Vuoto
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A network of causes and effects

Preparation ‘node’ models prior knowledge about Box.
⇒ P(Hj |Prepk)
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A network of causes and effects

Preparation ‘node’ models prior knowledge about Box.
⇒ P(Hj |Prepk)

Ri model extra uncertainty in cascade.
⇒ P(WR |W ), P(BR |W ), etc.

c© G. D’Agostini, Bayesian Reasoning (Bologna, 28 April 2016) 40/59



A network of causes and effects

Preparation ‘node’ models prior knowledge about Box.
⇒ P(Hj |Prepk)

Ri model extra uncertainty in cascade.
⇒ P(WR |W ), P(BR |W ), etc.

We shall also include multi-reporters and systematic effects
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Multi-reporters

Multiple ‘testimonies’ of the same empirical fact.
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Multi-reporters

Multiple ‘testimonies’ of the same empirical fact.

⇒ Our belief on O1 being Black or White will depend
on the consistencies of the ‘testimonies’
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Systematic effects

The box content could be biased. . .
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Systematic effects

The box content could be biased. . .

. . . if one or more balls of either color might be added to the
original box content
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Systematic effects

The box content could be biased. . .

[technical implementation of the bias – logically equivalent]
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Graphical models

The importance of graphical models is that

⇒ Nowadays, thanks to progresses in mathematics and
computing, drawing the problem as a ‘belief network’ is more
than 1/2 step towards its solution!
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A different way to view fit issues

θ

µxi

xi

µyi

yi

[ for each i ]

Determistic link µx ’s to µy ’s
Probabilistic links µx → x , µy → y

(errors on both axes!)
⇒ aim of fit: {x, y} → θ

c© G. D’Agostini, Bayesian Reasoning (Bologna, 28 April 2016) 44/59



A different way to view fit issues

θ

µxi

xi

µyi

yi

[ for each i ]

θ/σv

µxi

xi

zi σv

µyi

yi

[ for each i ]

Determistic link µx ’s to µy ’s Extra spread
Probabilistic links µx → x , µy → y of the data points

(errors on both axes!)
⇒ aim of fit: {x, y} → θ
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A different way to view fit issues

A physics case (from Gamma ray burts):

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

y

x

Reichart
D’Agostini
True

(Guidorzi et al., 2006)
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A different way to view fit issues

θ/σv

µxi

µs
xi

xi

zi σv

µyi

µs
yi

yi

[ for each i ]

βyβx

Adding systematics
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A different way to view fit issues

µx

µ
S
x

x

zµyµ
S
y

y

?

?
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A different way to view fit issues

µx

µ
S
x

x

zµyµ
S
y

y

?

?

⇒ the mathematical function relating, generally speaking, “y to
x” relates the true values, not the observations!
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Application to the six box problem

H0 H1 H2 H3 H4 H5

Remind:

◮ E1 = White

◮ E2 = Black
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Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )
P(Ei | I )

P(Hj | I )
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P(Hj | I )

◮ P(Hj | I ) = 1/6
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Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )
P(Ei | I )

P(Hj | I )

◮ P(Hj | I ) = 1/6

◮ P(Ei | I ) = 1/2
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Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )
P(Ei | I )

P(Hj | I )

◮ P(Hj | I ) = 1/6

◮ P(Ei | I ) = 1/2

◮ P(Ei |Hj , I ) :

P(E1 |Hj , I ) = j/5

P(E2 |Hj , I ) = (5− j)/5
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Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )
P(Ei | I )

P(Hj | I )

◮ P(Hj | I ) = 1/6

◮ P(Ei | I ) = 1/2

◮ P(Ei |Hj , I ) :

P(E1 |Hj , I ) = j/5

P(E2 |Hj , I ) = (5− j)/5

Our prior belief about Hj
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Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )
P(Ei | I )

P(Hj | I )

◮ P(Hj | I ) = 1/6

◮ P(Ei | I ) = 1/2

◮ P(Ei |Hj , I ) :

P(E1 |Hj , I ) = j/5

P(E2 |Hj , I ) = (5− j)/5

Probability of Ei under a well defined hypothesis Hj

It corresponds to the ‘response of the apparatus in
measurements.
→ likelihood (traditional, rather confusing name!)
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Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )
P(Ei | I )

P(Hj | I )

◮ P(Hj | I ) = 1/6

◮ P(Ei | I ) = 1/2

◮ P(Ei |Hj , I ) :

P(E1 |Hj , I ) = j/5

P(E2 |Hj , I ) = (5− j)/5

Probability of Ei taking account all possible Hj

→ How much we are confident that Ei will occur.

c© G. D’Agostini, Bayesian Reasoning (Bologna, 28 April 2016) 47/59



Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )
P(Ei | I )

P(Hj | I )

◮ P(Hj | I ) = 1/6

◮ P(Ei | I ) = 1/2

◮ P(Ei |Hj , I ) :

P(E1 |Hj , I ) = j/5

P(E2 |Hj , I ) = (5− j)/5

Probability of Ei taking account all possible Hj

→ How much we are confident that Ei will occur.
We can rewrite it as P(Ei | I ) =

∑

j P(Ei |Hj , I ) · P(Hj | I )
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Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )
P(Ei | I )

P(Hj | I )

◮ P(Hj | I ) = 1/6

◮ P(Ei | I ) = 1/2

◮ P(Ei |Hj , I ) :

P(E1 |Hj , I ) = j/5

P(E2 |Hj , I ) = (5− j)/5

But it easy to prove that P(Ei | I ) is related to the other
ingredients, usually easier to ‘measure’ or to assess somehow,
though vaguely
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Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )
P(Ei | I )

P(Hj | I )

◮ P(Hj | I ) = 1/6

◮ P(Ei | I ) = 1/2

◮ P(Ei |Hj , I ) :

P(E1 |Hj , I ) = j/5

P(E2 |Hj , I ) = (5− j)/5

But it easy to prove that P(Ei | I ) is related to the other
ingredients, usually easier to ‘measure’ or to assess somehow,
though vaguely

‘decomposition law’: P(Ei | I ) =
∑

j P(Ei |Hj , I ) · P(Hj | I )
(→ Easy to check that it gives P(Ei | I ) = 1/2 in our case).
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Collecting the pieces of information we need

Our tool:

P(Hj |Ei , I ) =
P(Ei |Hj , I )·P(Hj | I )∑
j P(Ei |Hj , I )·P(Hj | I )

◮ P(Hj | I ) = 1/6

◮ P(Ei | I ) =
∑

j P(Ei |Hj , I ) · P(Hj | I )

◮ P(Ei |Hj , I ) :

P(E1 |Hj , I ) = j/5

P(E2 |Hj , I ) = (5− j)/5

We are ready!
−→ Let’s play with our toy
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We are ready

Now that we have set up our formalism, let’s play a little

◮ analyse real data

◮ some simulations

◮ make variations

Let’s play!

◮ Hugin Expert (Lite – demo version);

◮ R scripts
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How does it work?

Simply – and nothing more! – Probability Theory
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How does it work?

Simply – and nothing more! – Probability Theory

Given n variables Xi (each node), each of which can assume
several values,

◮ build the joint ‘pdf’ using the ‘chain rule’

f (x1, x2, . . . , xn | I )

c© G. D’Agostini, Bayesian Reasoning (Bologna, 28 April 2016) 49/59



How does it work?

Simply – and nothing more! – Probability Theory

Given n variables Xi (each node), each of which can assume
several values,

◮ build the joint ‘pdf’ using the ‘chain rule’

f (x1, x2, . . . , xn | I )

⇒ marginalize to get f (xi | I );
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How does it work?

Simply – and nothing more! – Probability Theory

Given n variables Xi (each node), each of which can assume
several values,

◮ build the joint ‘pdf’ using the ‘chain rule’

f (x1, x2, . . . , xn | I )

⇒ marginalize to get f (xi | I );
⇒ condition on what is assumed to get the distribution of all the

others.
E.g. f (x1, x2, . . . , xn−1 | I , xn) =

f (x1,x2,...,xn | I )
f (xn | I )

.
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several values,

◮ build the joint ‘pdf’ using the ‘chain rule’

f (x1, x2, . . . , xn | I )

⇒ marginalize to get f (xi | I );
⇒ condition on what is assumed to get the distribution of all the

others.
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How does it work?

Simply – and nothing more! – Probability Theory

Given n variables Xi (each node), each of which can assume
several values,

◮ build the joint ‘pdf’ using the ‘chain rule’

f (x1, x2, . . . , xn | I )

⇒ marginalize to get f (xi | I );
⇒ condition on what is assumed to get the distribution of all the

others.
E.g. f (x1, x2, . . . , xn−1 | I , xn) =

f (x1,x2,...,xn | I )
f (xn | I )

.

⇒ marginalize to get f (xi | I , xn)

(Only some ‘technical tricks’ to factorize the problem when the
number of ‘states’ becomes very large)
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OK, . . . but the priors?

Priors are an important ingredient of the framework:
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OK, . . . but the priors?

Priors are an important ingredient of the framework:
◮ They are crucial in the Bayes theorem:

◮ there is no other way to perform a probabilistic inference
without passing through priors
. . . although they can be often so vague to be ignored.
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OK, . . . but the priors?

Priors are an important ingredient of the framework:
◮ They are crucial in the Bayes theorem:

◮ there is no other way to perform a probabilistic inference
without passing through priors
. . . although they can be often so vague to be ignored.

◮ They allow us to use consistently all pieces of prior
information. And we all have much prior information in our
job!
Only the perfect idiot hase no priors

c© G. D’Agostini, Bayesian Reasoning (Bologna, 28 April 2016) 50/59



OK, . . . but the priors?

Priors are an important ingredient of the framework:
◮ They are crucial in the Bayes theorem:

◮ there is no other way to perform a probabilistic inference
without passing through priors
. . . although they can be often so vague to be ignored.

◮ They allow us to use consistently all pieces of prior
information. And we all have much prior information in our
job!
Only the perfect idiot hase no priors

◮ Mistrust all prior-free methods that pretend to provide
numbers that should mean how you have to be confident on
something.
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Prescriprions?
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Objective prescriptions?

Mistrust those who promise you ‘objective’ methods to form up
your confidence about the physical world!
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Principles?

Too many unnecessary ‘principles’ on the market.
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Principles?

Too many unnecessary ‘principles’ on the market.

“These are my principles.
If you don’t like them,
I have others.”
(Groucho Marx)
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Summarizing

◮ The probabilistic framework basically set up by Laplace(∗) in
his monumental work is healthy and grows up well (browse
e.g. Amazon.com)

[(∗) See https://www.youtube.com/watch?v=8oD6eBkjF9o and
relates book]
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◮ It is very close to the natural way of reasoning.

◮ Its consistent application in small-complex problems was
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e.g. Amazon.com)

◮ It is very close to the natural way of reasoning.

◮ Its consistent application in small-complex problems was
prohibitive many years ago.

◮ But it is now possible, thanks to progresses in applied
mathematics and computation.
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Summarizing

◮ The probabilistic framework basically set up by Laplace(∗) in
his monumental work is healthy and grows up well (browse
e.g. Amazon.com)

◮ It is very close to the natural way of reasoning.

◮ Its consistent application in small-complex problems was
prohibitive many years ago.

◮ But it is now possible, thanks to progresses in applied
mathematics and computation.

◮ It makes little sense to stick to old ‘ah hoc’ methods that had
their raison d’être in the computational barrier.

◮ Mistrust all results that sound as ‘confidence’, ’probability’ etc
about physics quantities, if they are obtained by methods that
do not contemplate ’beliefs’.

[(∗) See https://www.youtube.com/watch?v=8oD6eBkjF9o and
relates book]
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The End

FINE
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Notes

The following slides should be reached by hyper-links, clicking
on highlighted words marked by the symbol †
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ISO dictionary

Measurand: “particular quantity subject to measurement.”

Result of a measurement: “value attributed to a measurand,
obtained by measurement.”

Uncertainty: “a parameter, associated with the result of a
measurement, that characterizes the dispersion of the
values that could reasonably be attributed to the
measurement.”

Error: “the result of a measurement minus a true value of
the measurand.”

True value: “a value compatible with the definition of a given
particular quantity.”

Type A and Type B uncertainties →

Go back
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ISO dictionary

Type A evaluation (of uncertainty): “method of evaluation of
uncertainty by the statistical analysis of series of
observations.”
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Type A evaluation (of uncertainty): “method of evaluation of
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uncertainty by means other than the statistical
analysis of series of observations.”
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ISO dictionary
Type A evaluation (of uncertainty): “method of evaluation of

uncertainty by the statistical analysis of series of
observations.”

Type B evaluation (of uncertainty): “method of evaluation of
uncertainty by means other than the statistical
analysis of series of observations.”
⇒ “. . . the standard uncertainty u(xi ) is evaluated by
scientific judgement based on all of the available
information on the possible variability of Xi . The
pool of information may include

◮ previous measurement data;
◮ experience with or general knowledge of the

behaviour and properties of relevant materials
and instruments;

◮ manufacturer’s specifications;
◮ data provided in calibration and other

certificates;
◮ uncertainties assigned to reference data takenc© G. D’Agostini, Bayesian Reasoning (Bologna, 28 April 2016) 58/59
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Solution of the AIDS test problem

P(Pos |HIV) = 100%

P(Pos |HIV) = 0.2%

P(Neg |HIV) = 99.8%

We miss something: P◦(HIV) and P◦(HIV): Yes! We need some
input from our best knowledge of the problem. Let us take
P◦(HIV) = 1/600 and P◦(HIV) ≈ 1 (the result is rather stable
against reasonable variations of the inputs!)

P(HIV |Pos)

P(HIV |Pos)
=

P(Pos |HIV)

P(Pos |HIV)
·
P◦(HIV)

P◦(HIV)

=
≈ 1

0.002
×

0.1/60

≈ 1
= 500×

1

600
=

1

1.2

Go back
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