





# INFRADEV: EuroCirCol

M. Boscolo (LNF)





### Outline

EuroCirCol: European Circular Energy-Frontier Collider Study

**INFRADEV: DESIGN STUDY H2020** 

- EuroCirCol & The Future Circular Collider Study
- Work Packages & INFN involvement
- Partners
- Project Budget
- Final remarks on the organization





## **EC** Evaluation Results





- Science is excellent
- Project is ambitious and shows innovation potential
- Objectives are clear and approach is credible
- Will have impact on other disciplines and industry
- Key element of European
   Strategy on Particle Physics

Recognition of FCC Study by European Commission





# Future Circular Collider Study GOAL: CDR and cost review for the next ESU (2018)

#### **LHC** evolution

**1983** first LHC proposal, launch of design study

1994 CERN Council: LHC approval

**2010** first collisions at 3.5 TeV beam energy

2015 collisions at ~ design energy



now is the time to plan for ~ 2040!

#### **FCC Strategic Motivation**

- European Strategy for Particle Physics 2013:
  - "...to propose an **ambitious post-LHC accelerator project...,** CERN should undertake design studies for accelerator projects in a global context, with emphasis on proton-proton and electron-positron high-energy frontier machines...coupled to a **vigorous accelerator R&D programme**, including **high-field magnets** and **high-gradient accelerating structures**
- ICFA statement 2014:
  - "...ICFA supports studies of energy frontier circular colliders and encourages global coordination..."
- US P5 recommendation 2014:
  - "...A very high-energy proton-proton collider is the most powerful tool for direct discovery of new particles and interactions under any scenario oh physics results that can be acquired in the P5 time window..."



## FCC motivation and scope

### **Pushing the energy frontier**

A very large circular hadron collider seems the only approach to reach 100 TeV c.m. collision energy in coming decades

- access to new particles (direct production) far beyond LHC reach
- much increased rates in the sub-TeV mass range

The name of the game of a hadron collider is energy reach

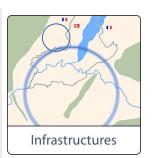
$$E \propto B_{\textit{dipole}} \times \rho_{\textit{bending}}$$

LHC: factor ~4 in radius factor ~2 in field →O(10) in Ecm

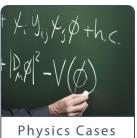
**Man**dalaz

Schematic of an 80 - 100 km

long tunnel







FCC-hh (100TeV in 100km) FCC-ee FCC-he




key technologies dedicated R&D, 16 T magnets **SRF** technologies RF power sources



tunnel in Geneva area, linked to **CERN** accelerator complex, site-specific







**Prealps** 



### **EuroCirCol EU Horizon 2020 Grant**



## EC contributes with funding to FCC-hh study

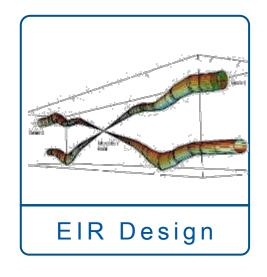

- Main aspects of hadron collider design: arc & IR optics design,
   16 T magnet program, cryogenic beam vacuum system
- Recognition of FCC Study by European Commission.



#### Future Circular Collider study without H2020 Support Requests








**Resources provided** and work carried out by worldwide collaboration.

# EC Funded Scope











core activities for FCC-hh





## EuroCirCol Workpackages



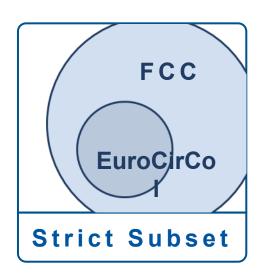
#### WP 5:

Develop a viable and cost optimised dipole magnet conceptual design

### WP 4:

Develop the beam screen conceptual design and perform tests

### WP 2:


Ensure that the beam screen and magnet design lead to good beam performance

### WP 3:

Ensure that the beam can be used to produce the desired luminosity in the experiments

## EuroCirCol is Subset of FCC





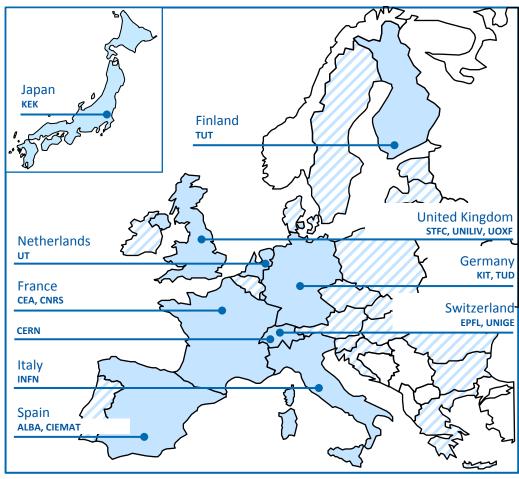


- Helps subset of FCC Participants performing their work efficiently
- Consortium Agreement is extension to FCC MoU
- Establishes compliance with EC H2020 rules
- Limits duplication of management / governance

25/05/16

- Quantify and track matching resources
- Support fundraising of matching resources




# **Organisation Aspects**

- FCC Study is a Collaboration based on a Memorandum of Understanding by which Participants commit
  - to study circular post-LHC machines
  - on best effort contributions
- EuroCirCol is a Consortium of Participants tied together via a H2020 Grant Agreement (GA) with the EC and a Consortium Agreement (CA)



## EuroCirCol Consortium + Associates

| CERN      | IEIO           |  |
|-----------|----------------|--|
| TUT       | Finland        |  |
| CEA       | France         |  |
| CNRS      | France         |  |
| KIT       | Germany        |  |
| TUD       | Germany        |  |
| INFN      | Italy          |  |
| UT        | Netherlands    |  |
| ALBA      | Spain          |  |
| CIEMAT    | Spain          |  |
| STFC      | United Kingdom |  |
| UNILIV    | United Kingdom |  |
| UOXF      | United Kingdom |  |
| KEK       | Japan          |  |
| EPFL      | Switzerland    |  |
| UNIGE     | Switzerland    |  |
| NHFML-FSU | USA            |  |
| BNL       | USA            |  |
| FNAL      | USA            |  |
| LBNL      | USA            |  |



Consortium Beneficiaries, signing the Grant Agreement





## INFN contributions to FCC accelerator studies

### FCC-hh via EuroCirCol:

- WP3: Experimental insertion region design (LNF)
- WP4: Cryogenic beam vacuum system (LNF)
- WP5: High field (16 T) magnet R&D (Ge, Lasa)



### FCC-ee:

- Machine Detector Interface (LNF)
- Thin film technology for SRF cavities (Legnaro)
- Impedance Evaluation (Sapienza & INFN-Rm1)

in the framework of consortium of partners based on **MoU** 



## WP5: High-field accelerator Magnet Design



## **Challenges**

- Field strengths in the order of 16 T as required for an energy frontier hadron collider are much beyond the highest field reached by a magnet with significant aperture available today.
- The target field strength requires:
  - novel concepts for conductor configurations (large current, stable, good winding properties)
  - suitable coil shape (efficient, precise and with acceptable stress level)
  - compact structures, which are compatible with a four-fold increase in the electromagnetic force with respect to present state-of-the-art






## Vacuum technology challenges





**INFN-LNF** 



| FCC-hh Key Parameters                                             | FCC-hh                  | LHC                  |
|-------------------------------------------------------------------|-------------------------|----------------------|
| Energy [TeV]                                                      | 100 c.m.                | 14 c.m.              |
| Dipole field [T]                                                  | 16                      | 8.33                 |
| # IP                                                              | 2 main, +2              | 4                    |
| Luminosity/IP <sub>main</sub> [cm <sup>-2</sup> s <sup>-1</sup> ] | 5-10 x 10 <sup>34</sup> | 1 x 10 <sup>34</sup> |
| Energy/beam [GJ]                                                  | 8.4                     | 0.39                 |
| Synchr. rad. [W/m/apert.]                                         | 28.4                    | 0.17                 |
| Bunch spacing [ns]                                                | 25 (5)                  | 25                   |

## SR power ~30W/m/beam in arcs

(E<sub>crit</sub>=4.3 keV), total 5 MW (LHC 7kW)

- ⇒ Cooling challenge
- ⇒ Vacuum challenge
- ⇒ Impedance challenge
- → Mechanical challenge
  - ⇒ Electron cloud
  - ⇒ Cost challenge

- Dipole Cold bore at 1.9 (or 4.2?) K
- Beamscreen temperature at 50K
- 5MW SR => 100MW of cooling power
- Need good vacuum between 40-60K
- Need to reduce Impedance budget

Wide and highly technologically and scientifically challenging R&D required



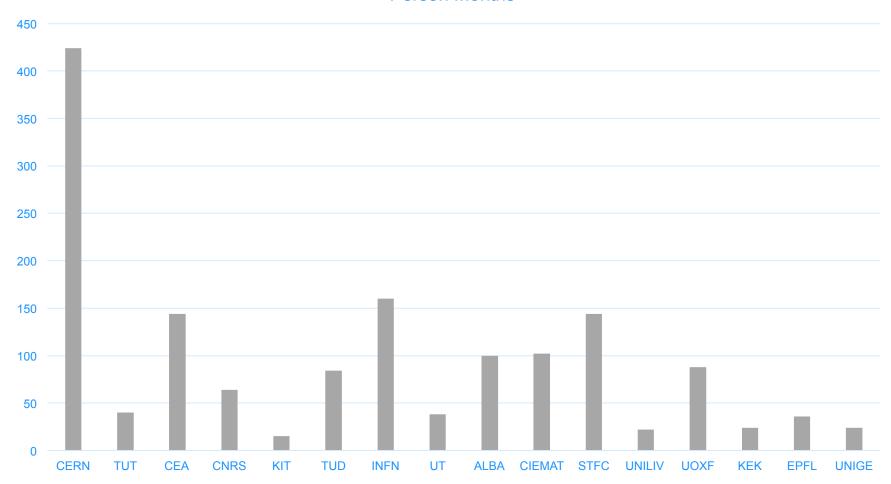
## **WP3 Experimental Insertion Region Design**

INFN-LNF in close collaboration with CERN

Study impact of **synchrotron radiation emitted by protons** on detector and machine components and develop mitigation techniques

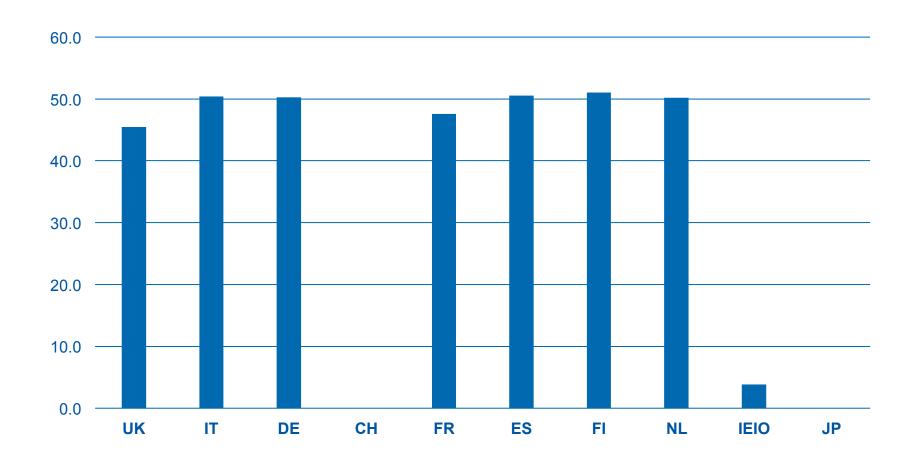
motivation

SYNCHROTRON RADIATION FOR **PROTONS**  Energy distribution of synchrotron radiation photons for I HC and FCC-hh:  $E_{\scriptscriptstyle FCC_{hh}} \propto 7 \times E_{\scriptscriptstyle LHC}$ **SR Spectrum** \* LHC & HL-LHC: UV range = > 4 to 7 kW per ring  $P_{SR_{FCC_{hh}}} \propto 170 \times P_{SR_{LHC}}$  FCC: X-rays => 2.4 to 3.6 MW per ring → fragile parts (flanges, welds, feedthrough) ... must be protected from heat loads  $E_{Crit_{FCC_{hh}}} \propto 100 \times E_{Crit_{LHC}}$ U.V. X-Rays 1.E+09 The total radiated power will 1.E+07 probably be still low, but the much greater photon energy demands for a careful evaluation More, and more energetic photons!


 My (current) task is to evaluate the contribution of synchrotron radiation photons emitted in the last bending magnets into the interaction region

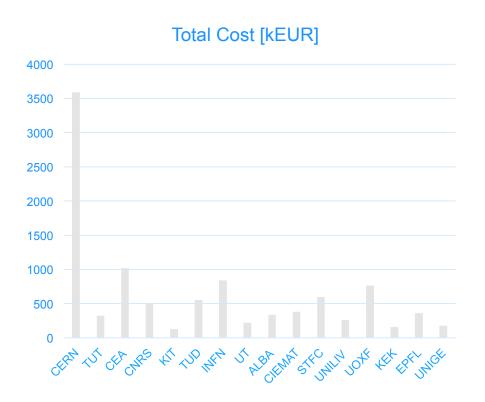
tool: MDIsim

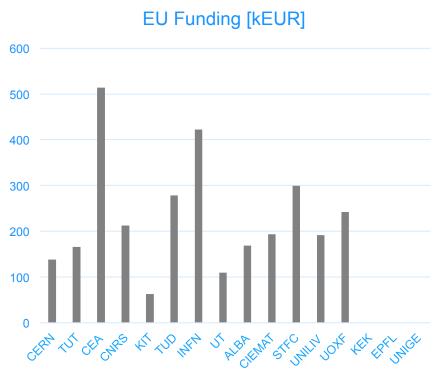
Tool used: MDISim


## **Total Effort Overview**

#### **Person Months**







# Funding Ratio in % per Country





# Cost and Funding Overview







### Practical Steps STEPS as the project starts:

- Identification of Administrative & Technical personnel
- Scientific Team definition, team database
- Administration Support Roles
- Reporting dates, Milestones & Deliverables
- Establish governance structure
- Schedule governance meetings
- Schedule WP meetings





### Project Personnel Database

### As the project is approved the following figures need to be defined:

- Administrative
  - Contact for EC project matters (done)
  - Roles for administration support tasks
- Technical
  - WP leaders
  - WP deputies
  - WP technical contact per WP at Beneficiary
  - Science and engineering team members at Beneficiaries (task leaders, researchers)





# Administration Support Roles

### Names per Beneficiary for:

| Administrative<br>Coordination<br>Officer | Collects, compiles and re-distributes technical and financial input (Examples: EU offices, dedicated WP coordination assistants)                                                                                                       |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Finance<br>Service<br>Officer             | Personnel and material resource planning and tracking Preparing Internal Resource Utilisation Summaries and financial reporting to the EC (Examples: finance departments or EU offices)                                                |
| Communication<br>Officer                  | Collect, prepare and disseminate information intended for the public (Examples: press offices, outreach groups)                                                                                                                        |
| Knowledge and Innovation Officer          | Assess background of beneficiaries in the work package Collect and compile IP and technologies with innovation and exploitation potentials Interact with communication offices Liaise with the Coordinator's Knowledge Transfer office |
| Gender Equality<br>Officer                | Monitors gender aspects Assists in identifying and documenting support instruments Work with other Beneficiaries on improvement actions                                                                                                |



# Compile Team Database



**WP leaders send tables** with list of persons and work descriptions as input to milestone reports.

| WP:           |                                |                  |  |
|---------------|--------------------------------|------------------|--|
| Lead:         |                                | Co Lead:         |  |
|               |                                |                  |  |
| Participants: | Person<br>(name, email, phone) | Task:            |  |
| CERN          | Person 1                       | Work description |  |
|               | Person 2                       |                  |  |
| INFN          | Person 3                       |                  |  |
|               | Person 4                       | •••              |  |
|               |                                | •••              |  |
|               |                                | •••              |  |
|               |                                |                  |  |



# Reporting



| Report                          | Date at which information reaches Coordinator |  |
|---------------------------------|-----------------------------------------------|--|
| Internal Activity Report 1      | M 10                                          |  |
| Internal Resource Utilisation 1 | M 10                                          |  |
| Internal Resource Utilisation 2 | M 18                                          |  |
| Periodic Report 1 to EC         | M 18 + 10 calendar days                       |  |
| Internal Resource Utilisation 3 | M 25                                          |  |
| Internal Activity Report 2      | M 25                                          |  |
| Internal Resource Utilisation 4 | M 36                                          |  |
| Periodic Report 2 to EC         | M 36 + 10 calendar days                       |  |
| Internal Resource Utilisation 5 | M 48                                          |  |
| Periodic Report 3 to EC         | M 48 + 10 calendar days                       |  |



... to conclude:

## Sample messaging

#### Key message:

The FCC study is needed now to ensure continuity in the field.

#### **Proof point:**

R&D, large-scale technical developments at industrial scale and construction is will require over 20 years, comparable to the operational lifetime of the LHC.

slide from: James Gillies, Head of Communications, CERN EuroCirCol kick-off meeting, 2 June 2015

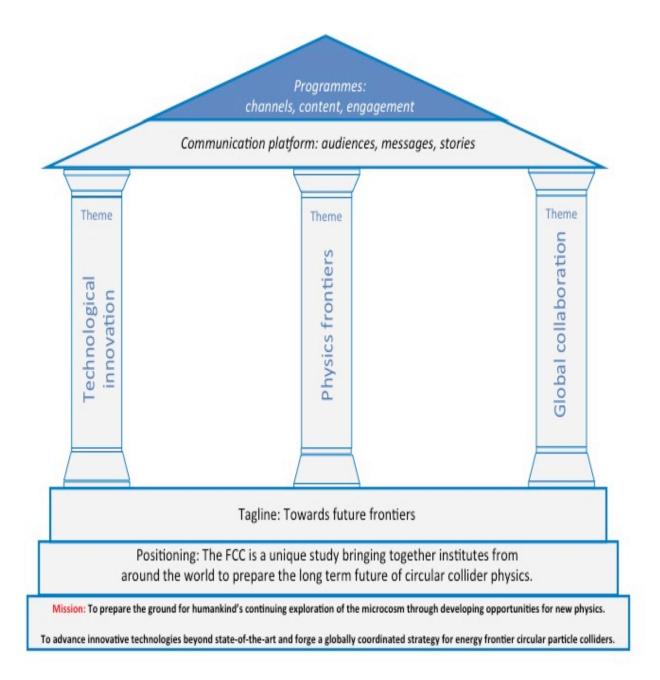




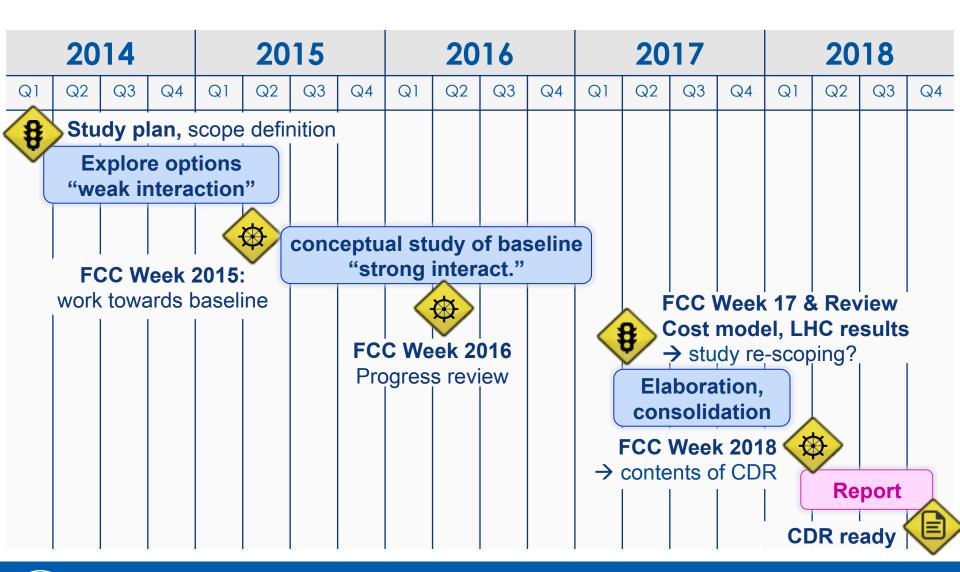
## Sample messaging

#### Key message:

The FCC study is a strong example of what can be achieved when people from around the world work together.


#### **Proof point:**

51 institutes from 19 countries are involved in the FCC study

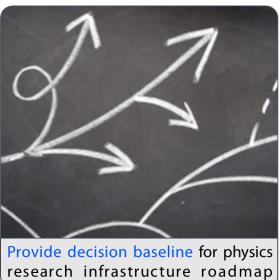

slide from: James Gillies, Head of Communications, CERN EuroCirCol kick-off meeting, 2 June 2015







# FCC Study time line towards CDR






# Strategic Goals



Create awareness of strategic and funding needs for particle-physics





Confirm Europe as preferred area for next large scale collider facility

## Work towards inclusion of EuroCirCol in the ESFRI roadmap (European Strategy for Research Infrastructures)

