

Searching for Dark Matter at the LHC

Annapaola de Cosa (University of Zurich)

May 2nd 2016 Università degli Studi di Napoli, "Federico II"

Going beyond the Standard Model

- Great success of the Standard Model of particle physics in the last decades
 - Accurate description of elementary particles and their interactions
- 2012: Discovery of the Higgs boson
 - Last piece of the SM puzzle now in place

SM ~ 5% 26.8% Dark Matter 4.9% Ordinary Matter 68.3% Dark Energy

But...What about Dark Matter?

- Compelling proof of DM existence from astrophysical measurements
- SM does not predict DM
- Strong evidence for new physics

First Hints of Dark Matter: 30s

1933: Zwicky measured galaxies velocity in the Coma Cluster

Virial Theorem: 2K = -U where:

$$k = \frac{1}{2}M\langle v \rangle^2 \quad U = \frac{G}{R} \frac{M}{R}$$

Excess in direct mass measurement observed wrt luminosity-based measurements: M~10 M_L

Bulk of matter is DARK

First hints of Dark Matter: 70s/80s

Galactic Rotation Curve: Starts and gas movement within a galaxy depends on the distance r to the Galactic Centre (GC)

Expected behaviour: $v_r(r) \propto 1/\sqrt{(r)}$

First hints of Dark Matter: 70s/80s

Galactic Rotation Curve: Starts and gas movement within a galaxy depends on the distance r to the Galactic Centre (GC)

Observed behaviour: $v_r (r \ge R_0) \sim \text{const}$

First hints of Dark Matter: 70s/80s

- Some of the first measurements performed already in 40s by Babcock followed by further studies carried out in 70s/80s by Rubin and her team
- Rotation curves measured for many thousands of galaxies
 - Same flat behaviour observed moving far from the GC

Other evidences following...

Cluster Collisions

125 Mpc/n

Large scale structures

CMB anisotropies

Dark Matter is there outside

What about its nature?

Annapaola de Cosa (UZH)

Dark Matter ID

A theory of Dark Matter?

Annapaola de Cosa (UZH)

Tim Tait

WIMPs

- Huge variety of hypotheses about DM nature
 - WIMPs (Weakly Interacting Dark Matter Particles) are the promising candidates:
 - Massive, neutral, stable particles
 - Weakly interacting with SM particles (σ <10⁻⁶ pb)
- WIMPs nicely fit matter density in the Universe

DARK MATTER

7	2	2	
	1	1	
	t	1	

DARK MATTER is the name given to material in the Universe that does not emit or reflect light but is necessary to explain observed gravitational effects in galaxies and stars. Dark matter, along with dark energy, totals 96% of the Universe, yet it remains a mystery as to what exactly it *is*.

Acrylic felt, wool felt, and fleece with gravel fill for maximum mass. Packaged in a black opaque bag designed for concealing contents.

\$10.49 PLUS SHIPPING

LUON PHOTON NEUTRINO TACHYON ELECTRON UP QUARK DOWN QUARK TAU NEUTRINO MUON UP QUARK DOWN QUARK TAU GLUON DARK MATTER NEUTRINO TACHYON ELECTRON UP QUARK DOW EUTRINO MUON UP QUARK PROTON NEUTRON DOWN QUARK TAU GLUON PHOTON NEUTRINO TACHY PPAGRONDEURON DOWN QUARK TAU GLUON PHOTON NEUTRINO MUON UP QUARK TAU GLU PPAGRONDEURONDERZO ORK TAU NEUTRINO MUON UP QUARK PROTON N ELECTRON UP QUARK DOWN QUARK TAU NEUTRINO MUON UP QUARK PROTON N

Probing Dark Matter

- Three main strategies to search for weakly interacting DM
 - Direct detection
 - Indirect detection
 - Production at particle colliders

Annapaola de Cosa (UZH)

Indirect detection DM annihilation

Particle colliders

page 11

Producing DM at particle colliders

Dark Matter pair production at particle colliders

Dark Matter particles *invisible* to the detector Visible objects used to flag DM production

Missing transverse momentum

- Missing transverse momentum (E_T^{miss}) is defined as the negative sum of the transverse momenta of all reconstructed particles
- E_T^{miss} quantifies the energy imbalance due to invisible particle production

All DM searches at colliders rely on large amount of E_T^{miss}

Outline

Interpretation of Dark Matter searches at LHC

- Effective Field Theory framework
- Simplified Models
- Interplay of direct searches and searches at colliders

DM searches at CMS and ATLAS

- Signal identification and background estimation techniques
- DM detection channels
 - DM + ISR jet/s
 - DM + Vector bosons
 - DM + Heavy Flavour quarks
- Results from LHC Run-II

Conclusions

Effective Field Theory

Interpret the search in terms of Effective Field Theory (EFT)

2 theory parameters

- Dark Matter particle mass m_X
- Interaction scale $M^* = M_{med}/\sqrt{(g_X g_q)}$

Plus interaction nature

Name	Initial state	Type	Operator
C1	qq	scalar	$rac{m_q}{M_\star^2}\chi^\dagger\chiar q q$
C5	gg	scalar	$\frac{1}{4M_\star^2}\chi^\dagger\chi\alpha_{\rm s}(G^a_{\mu\nu})^2$
D1	qq	scalar	$rac{m_q}{M_\star^3}ar\chi\chiar q q$
D5	qq	vector	$\frac{1}{M_\star^2} \bar{\chi} \gamma^\mu \chi \bar{q} \gamma_\mu q$
D8	qq	axial-vector	$\frac{1}{M_{\star}^2}\bar{\chi}\gamma^{\mu}\gamma^5\chi\bar{q}\gamma_{\mu}\gamma^5q$
D9	qq	tensor	$\frac{1}{M_\star^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$
D11	gg	scalar	$\frac{1}{4M_\star^3} \bar{\chi} \chi \alpha_{\rm s} (G^a_{\mu u})^2$

χ

 $\bar{\chi}$

Comparison to DD experiments

EFT limitations

EFT doesn't correctly accounts for kinematics and is not valid for Q < m_{MED}

High m_{Med}:

- EFT consistent with SM
- Intermediate m_{Med}:
 - On-shell production increases σ
 - EFT limits too weak
- Low m_{Med}:
 - Off-shell production $\rightarrow \sigma$ decreases
 - Events are softer
 - EFT limits too strong

EFT not an appropriate approach to reach a comprehensive interpretation of DM searches

Beyond EFT: Simplified models

EFT validity issue [if **Q** > M_{med}]

Simplified Models

DM production characterised by a small set of parameters

Collider vs Direct Detection

Direct detection limited at m_{DM} ~ 6 GeV

LHC p-p collision harvest

ATLAS and CMS

page 22

Experimental Approach to DM searches

Select events with large amount of missing momentum

Indicates production of WIMPs

Reconstruct visible objects to flag DM production

Jet/s from ISR, Vector bosons (W, Z, γ), top or bottom quarks

Estimate backgrounds from data

Interpret search results

Monojet event display

Looking for DM in Monojet events

CMS PAS EXO-15-003

Hard jet/s from initial state radiation (ISR) produced in association to a pair of DM particles

DM signal recoiling against QCD ISR qChannel highly sensitive to DM production ^روروی jet • High gluon production cross-section jet Signal events signature: Monojet • At least 1 high p_T jet ($p_T > 100$ GeV) • Large energy imbalance in transverse plane (E_T^{miss} > 200 GeV) • No leptons or photons Key variable DM • Missing transverse energy spectrum, E_T^{miss} Invisible DM **E**_Tmiss Analysis performed on 13 TeV and 8 TeV data

EWK backgrounds

Dominant backgrounds from EWK processes:

- ► Z(→vv) + jets
- W(→lv) + jets

Looking at similar processes?

Background expectation can be determined from data

- Looking at similar final states
 - **Z(→νν) + jets**: **Z(→μμ/ee) + jets** and **γ+jets**

Looking at similar processes?

Background expectation can be determined from data

- Looking at similar final states
 - $Z(\rightarrow \nu \nu) + jets$: $Z(\rightarrow \mu \mu/ee) + jets$, $W(\rightarrow \mu/e \nu) + jets$ and $\gamma + jets$
 - $W(\rightarrow \mu/e \nu) + jets$: $W(\rightarrow \mu/e \nu) + jets$ with visible lepton

EWK Background Estimation Procedure

Want to estimate EWK background in the signal region (SR)

- Using data-driven techniques to reduce uncertainties
- **1.** Definition of control samples (CR) enriched in events from similar processes
 - Same selection as in SR except lepton/photon veto is inverted
 - Double and single lepton CRs plus photon CR: 5 CRs
- 2. Consider boson recoil (W/Z/ γ p_T) to mimic E_T^{miss} in SR
 - $Z(\rightarrow II) + jets: p_T^Z = p_T^{I1} + p_T^{I2}$
 - $W(\rightarrow lv) + jets: p_T^{W} = p_T^{l} + p_T^{v}$
 - γ+*jets:* p_T^γ
- 3. Relate CR and SR using bin-by-bin transfer factors "R" from simulation
 - $N_i^{Z(SR)} = N_i^{Z(II)} \times \mathbb{R}^{Z(II)}$
 - $N_i^{Z(SR)} = N_i^Y \times \mathbf{R}^Y$
 - $N_i^{W(SR)} = N_i^{W(Iv)} \times \mathbf{R}^{W(Iv)}$

R accounts for cross-section ratio and for efficiency and acceptance of leptons/photons in CRs

Control regions

Annapaola de Cosa (UZH)

Fit to signal and control regions

Combined maximum likelihood fit to CRs and SR to estimate E_T^{miss} shape and normalisation of EWK backgrounds

$$\begin{aligned} \mathcal{L}(\mu, \mu^{Z \to \nu \nu}, \mu^{W \to l \nu}, \theta) &= \prod_{i} \operatorname{Poisson} \left(d_{i} | B_{i}(\theta) + \mu_{i}^{W \to l \nu} + \mu_{i}^{Z \to \nu \nu} + \mu S_{i}(\theta) \right) \\ &\times \prod_{i} \operatorname{Poisson} \left(d_{i}^{Z} | B_{i}^{Z}(\theta) + \frac{\mu_{i}^{Z \to \nu \nu}}{R_{i}^{Z}(\theta)} \right) \quad dilepton \\ &\times \prod_{i} \operatorname{Poisson} \left(d_{i}^{\gamma} | B_{i}^{\gamma}(\theta) + \frac{\mu_{i}^{Z \to \nu \nu}}{R_{i}^{\gamma}(\theta)} \right) \quad photon \\ &\times \prod_{i} \operatorname{Poisson} \left(d_{i}^{W} | B_{i}^{W}(\theta) + \frac{\mu_{i}^{W \to l \nu}}{R_{i}^{W}(\theta)} \right) \quad single \ lepton \end{aligned}$$

 $\begin{array}{l} {\sf Z}(\to {\sf vv}) + {\sf jets} \ {\rm and} \ {\sf W}(\to \mu/e \ {\sf v}) + {\sf jets} \ {\rm estimates} \ {\rm further} \ {\rm constrained} \ {\sf by} \\ {\sf Z}/{\sf W} \ {\rm cross-section} \ {\rm ratio} \\ \mu^{W\to l\nu} \to f_i(\theta) \cdot \mu^{Z\to \nu\nu} \end{array}$

E^T^{miss} distribution in signal region

CMS PAS EXO-15-003

Subdominant background contributions from

- Top, diboson and QCD multijet events
- Estimated from simulation
- Overall good agreement post fit (blue dots)
- Uncertainties get constrained from data in control regions as well as in signal region

Interpretation

Interpretation in terms of simplified models:

- Limits on production σ set as a function of:
 - m_{DM} and m_{MED}

Vector mediator 2.1 fb⁻¹ (13 TeV) m_{DM} (GeV) Observed C 1400 CMS Preliminary Median Expected 90% CL 0.9 bserved 90% CL $g_{DM} = g_{SM} = 1$ Scale Uncert. 1200 8TeV - Median Expected 90% CL 0.8 BTeV - Observed 90% CL Vector LUX 0.7 Planck+WMAP Relic 1000 0.6 800 Run 1 0.5 600 0.4 Run 2 0.3 400 0.2 200 0.1 10² 10³ 10⁴ m_{MED} (GeV) CMS PAS EXO-15-003

Axial-Vector mediator

Annapaola de Cosa (UZH)

Interpretation

Limits recast in terms of DM-nucleon cross section

Annapaola de Cosa (UZH)

What about V + DM?

DM can be produced in association to a W/Z boson

- Lower σ but also lower backgrounds wrt Jet + E_T^{miss}
- V boson recoiling against high E_T^{miss}
- 2 possible decay channels:
 - Leptonic and Hadronic
- Search strategy based on V reconstruction
 - Strongly depends on decay channel
 - Leptonic V reconstruction from leptons
 - Hadronic V reconstruction from jets in low/high p_T regime
- Backgrounds estimation
 - From data similarly to Monojet

SM Higgs-stralung with invisible Higgs decay mode

Low p_T V (hadronic decay)

Low V p_T: V→jj decay fully reconstruted

- V decay products emerged as two distinct jets
- Multivariate discriminator based on jet and di-jet properties, e.g:
 - m_{jj} consistent with V boson mass
 - Jet Quark-Gluon likelihood (QGL)
 - Color flow

V tagging

jet 1

Annapaola de Cosa (UZH)

jet 2
High p_T V (hadronic decay)

High V p_T: V \rightarrow jj decay products merged in one *fat* jet

Substructure techniques employed: V boson tagging

- 1 central, high p_T fat jet with m_j compatible with V boson mass [ATLAS & CMS]
- Fat jet likely to be originated from 2 jets, N-subjettiness [CMS]

Events / 0.025

Annapaola de Cosa (UZH)

What about leptonic V?

W(→l v) + DM

- I isolated, high p_T lepton and high E_T^{miss}
- W not fully reconstructable
 - Transverse mass, M_T

$$M_{\rm T} = \sqrt{2p_{\rm T}^{\rm lep} E_{\rm T}^{\rm miss} (1 - \cos(\Delta \phi))}$$

CMS, PRD 91, 092005 (2015) / ATLAS, JHEP 09 (2014) 037

Z(→l l) + DM

- Z reconstructed from 2 opposite-charge same-flavour leptons
- ATLAS looks for signal events in the tails of E_T^{miss} spectrum, CMS looks at M_T

CMS-EXO-12-054 / ATLAS, PRD 90, 012004 (2014)

Results from V + DM searches

Exclusion limits on signal strength μ in m_{DM} — m_{MED} plane

Axial-Vector

CMS-PAS-EXO-12-055

ATLAS documentation for 13 TeV not yet public

Vector

두

10⁻¹

 10^{-2}

 10^{-3}

Constraints from di-jet searches

Annapaola de Cosa (UZH)

DM production in association to top quarks

- Favoured in case of scalar/pseudoscalar mediator models
 - Under the assumption of Yukawa-like coupling
 - HF coupling enhanced ($\propto m_q$)
 - Loop-suppression for monojet process

DM production in association to top quarks

- Favoured in case of scalar/pseudoscalar mediator models
 - Under the assumption of Yukawa-like coupling
 - HF coupling enhanced (∝ m_q)
 - Loop-suppression for monojet process
- Top-quark pair recoiling against DM particles

DM production in association to top quarks

- Favoured in case of scalar/pseudoscalar mediator models
 - Under the assumption of Yukawa-like coupling
 - HF coupling enhanced ($\propto m_q$)
 - Loop-suppression for monojet process
- Top-quark pair recoiling against DM particles
- Top decays almost exclusively to W b
 - Two possible final states:

 $t \to W \ b \to l \ \nu \ b$ $t \to W \ b \to q \ q' \ b$

- 3 Combination for a tt decay:
- Single lepton
- Dilepton
- Hadronic

DM production in association to top quarks

- Favoured in case of scalar/pseudoscalar mediator models
 - Under the assumption of Yukawa-like coupling
 - HF coupling enhanced (∝ m_q)
 - Loop-suppression for monojet process
- Top-quark pair recoiling against DM particles
- Top decays almost exclusively to W b
 - Two possible final states: **l v b** or **q q' b**

Signal characterisation

- Large missing energy
- LF jets plus HF jets
- 0/1/2 leptons depending on the final state

- 3 Combination for a tt decay:
- Single lepton
- Dilepton
- Hadronic

DM production in association to top quarks

- Favoured in case of scalar/pseudoscalar mediator models
 - Under the assumption of Yukawa-like coupling
 - HF coupling enhanced ($\propto m_q$)
 - Loop-suppression for monojet process
- Top-quark pair recoiling against DM particles
- Top decays almost exclusively to W b
 - Two possible final states: **l v b** or **q q' b**

Signal characterisation

- Large missing energy
- LF jets plus HF jets
- 0/1/2 leptons depending on the final state

- 3 Combination for a tt decay:
- Single lepton
- Dilepton
- Hadronic

Signal selection

- 1 lepton and at least 3 jets
 - out of which 1 b-tagged
- E_T^{miss} > 160 GeV

Background contamination

- Dominant backgrounds from
 - tt+jets (2l), $W(\rightarrow lv)$ + jets
- Minor contributions from
 - Z(→ll)+jets, SingleTop, Dibosons

Signal selection

- 1 lepton and at least 3 jets
 - out of which 1 b-tagged
- E_T^{miss} > 160 GeV

Background contamination

- Dominant backgrounds from
 - tt+jets (2l), $W(\rightarrow lv) + jets$
- Minor contributions from
 - Z(→ll)+jets, SingleTop, Dibosons

W(→lv) + Jets suppression through selection on m_T^W

$$m_{T}^{W} = \sqrt{2p_{T}^{lep} E_{T}^{miss} (1 - \cos(\Delta \phi(lep, E_{T}^{miss})))}$$

CMS, arXiv:1504.03198

Signal selection

- 1 lepton and at least 3 jets
 - out of which 1 b-tagged
- E_T^{miss} > 160 GeV

Background contamination

- Dominant backgrounds from
 - **tt+jets (2l)**, W(→lv) + jets
- Minor contributions from
 - Z(→ll)+jets, SingleTop, Dibosons

tt + Jets suppression through selection on m_{T2}^W

Dileptonic tt+jets with 1 lepton lost

 m_{T2}^{W} : minimal mother particle mass compatible with t t \rightarrow lvb lvb event topology and daughter particle mass

Dileptonic tt+jets event have lower values of m_{T2}^{W} with respect to signal

Signal selection

- 1 lepton and at least 3 jets
 - out of which 1 b-tagged
- E_T^{miss} > 160 GeV

Background contamination

- Dominant backgrounds from
 - **tt+jets (2l)**, W(→lv) + jets
- Minor contributions from
 - Z(→ll)+jets, SingleTop, Dibosons

tt + Jets suppression through selection on m_{T2}^W

CMS, arXiv:1504.03198

Signal selection

- At least 4 jets
 - out of which 2 b-tagged
- Veto on leptons
- Large E_T^{miss}
- **Background contamination**
- Dominant backgrounds from
 - tt+jets (1l), $W(\rightarrow l\nu)/Z(\rightarrow \nu\nu)$ + jets
- Minor contributions from
 - SingleTop, Dibosons, QCD

Signal selection

- At least 4 jets
 - out of which 2 b-tagged
- Veto on leptons
- Large E_T^{miss}

Background contamination

- Dominant backgrounds from
 - tt+jets (1l), $W(\rightarrow lv)/Z(\rightarrow vv) + jets$
- Minor contributions from
 - SingleTop, Dibosons, QCD

W(→lv) + Jets and Z(→vv) + jets reduced by request on btagging.

Remain source of irreducible bkgs

Signal selection

- At least 4 jets
 - out of which 2 b-tagged
- Veto on leptons
- Large E_T^{miss}

Background contamination

- Dominant backgrounds from
 - tt+jets (1l), $W(\rightarrow l\nu)/Z(\rightarrow \nu\nu)$ + jets
- Minor contributions from
 - SingleTop, Dibosons, QCD

QCD and tt + jets suppression through selection on $\Delta \Phi(j, E_T^{miss})$

 $\Delta \Phi(j, E_T^{miss})$ useful to reject dileptonic tt+jets events also in single-lepton channel

Signal selection

- At least 4 jets
 - out of which 2 b-tagged
- Veto on leptons
- Large E_T^{miss}

Background contamination

- Dominant backgrounds from
 - tt+jets (1l), W(→lv)/Z(→vv) + jets
- Minor contributions from
 - SingleTop, Dibosons, QCD

tt + jets suppression through selection on Razor variables

Razor variables use both transverse and longitudinal information about the event, to fully exploit the kinematics of the decay

Results from tt + DM search

- Up so far: results from 8 TeV published by both collaborations
 - Effective Field theory approach used for results interpretation
 - Major sensitivity to Scalar/Pseudoscalar interactions
 - Set limits on DM-nucleon elastic scattering cross section, as a function od M_{DM}
 - Collider searches more sensitive at low M_{DM}

DM plus bottom quarks

CMS PAS B2G-15-007

DM production in association with b quarks

Signal characterisation :E^{miss} + b-quarks

- 2 categories of signal-like events:
 - based on jet and b-tag multiplicity
- ► Signal extraction from E_T^{miss} distribution
- Main backgrounds derived from leptonic CRs:
 - $Z(\rightarrow vv) + jets$, $W(\rightarrow lv) + jets$, ttbar

Complementary to DM + tt search

Sensitivity projections

Projections for

- Run-II: 30 fb⁻¹ @ 13 TeV
- ▶ Run-III: 300 fb⁻¹ @ 14 TeV
- ▶ HL-LHC: 3000 fb⁻¹ @ 14 TeV

Expected limits for

- LUX-ZEPLIN: 10 tonne years exposure
- DARWIN 200 tonne years exposure

Conclusions

The Dark Matter problem stands out as one of the major challenges for modern physics

- LHC allow to probe DM at the frontiers of high energy physics in a variety of direct searches
- Needs appropriate interpretation of the searches and careful comparison with other experiments
 - Simplified models provide a more accurate interpretation framework with respect to EFT
 - Working closely with theorists to develop new models

LHC Run-II is just started and we are waiting for more data Hopefully the discovery is just behind the corner!

Thank you for your attention!

Additional Material

Monojet Systematic Uncertainties

Experimental uncertainties on transfer factors R

- Lepton efficiency: 1/2% (µ/e)
- Lepton veto: 3%
- Photon efficiency: 2%
- Photon purity: 2%
- Theoretical uncertainties on transfer factors R
 - QCD scale, PDF uncertainties
 - EWK corrections
- Systematic uncertainties on minor bkgs
 - Top cross section: 10%
 - Diboson cross-section: 20%
 - Luminosity: 12%
 - MET: 4%
 - b-veto: 6%

Translating results on DD plane

Vector

Scalar

$$\sigma_{\chi \mathrm{p}}^{V} = \frac{9}{\pi} \frac{g_{\mathrm{DM}}^{2} g_{\mathrm{SM}}^{2} \rho^{2}}{m_{\mathrm{MED}}^{4}}$$

$$\sigma_{\chi p}^{S} = \frac{\rho^2}{\pi} \left| \frac{m_p}{m_t} \frac{g_t y_t \ g_\chi y_\chi}{m_{\rm MED}^2} \frac{2}{27} f_{\rm TG} \right|^2$$

Axial-Vector

Pseudoscalar

$$\sigma_{\chi p}^{A} = \frac{3}{\pi} \frac{g_{\rm DM}^{2} g_{\rm SM}^{2} a^{2} \rho^{2}}{m_{\rm MED}^{4}} \qquad \langle \sigma v \rangle_{\bar{b}b}^{P} = \frac{N_{C}}{2\pi} \frac{(y_{b}g_{b})^{2} (y_{\chi}g_{\chi})^{2} m_{\rm DM}^{2}}{(m_{\rm MED}^{2} - 4m_{\rm DM}^{2})^{2} + m_{\rm MED}^{2} \Gamma_{\rm MED}^{2}} \sqrt{1 - \frac{m_{b}^{2}}{m_{DM}^{2}}}$$

hep-ph/1411.0535v2 hep-ph/1407.8257v2

tt+DM: Background estimation

- Major backgrounds after selection are:
 - **Single-lepton:** tt(2l), W(lv) +Jets
 - Hadronic: tt(1l), W(lv)+Jets, Z(vv)+jets
- Dedicated background enriched CRs defined for single-lepton and hadronic channels :

Single-lepton channel

Backgro	Control Region					
tt(2l)	ee/µµ/eµ					
V+ Jets	0 b jets M⊤>160					

Full-hadronic channel

Backgroun	Control Region
tt(1l)	Single e/µ with M⊤<160
V+ Jets	0 b jets
W(lv) + Jets	e/µ, 0 b jets & M⊤<160
Z(vv) + Jets	ee/µµ, 0 b jets & M∥<160

DM Kinematics

1/o do/dMET

M_{T2}^{W}

tt di-leptonic

- irreducible background for tt+ DM semileptonic channel
- Large E_T^{miss} from neutrino and missing lepton
 - This implies higher M_{T}
- Transverse mass M_{T2} can be used to reject such kind of background events
 - M_{T2}^W is the minimal mother particle mass compatible with assumed event topology and daughter particle mass

$$M_{T2}^W = \min \left\{ m_y ext{ consistent with: } \left[egin{array}{c} ec{p}_1^T + ec{p}_2^T = ec{E}_T^{ ext{miss}} \,, \ p_1^2 = 0 \,, \ (p_1 + p_\ell)^2 = p_2^2 = M_W^2 \,, \ (p_1 + p_\ell + p_{b_1})^2 = (p_2 + p_{b_2})^2 = m_y^2 \end{array}
ight\}$$

Bai, Cheng, Gallichio, Gu JHEP 07 (2012) 110

Bounds on $\sigma_{\chi-N}$

- Upper limits on σ_X translated in lower limits on M* (interaction scale)
 - Ex: scalar interaction $\sim (M^*)^{-3}$

$$\mathcal{O} = \frac{m_q}{M_*^3} \bar{q} q \bar{X} X$$

• And $\sigma_{X^{\propto}}(M^*)^{-6}$

$$M^* = M^*_{gen} \left(\frac{\sigma_{gen}}{\sigma_{\chi}}\right)^{(1/6)}$$

- Translation of the constraints on M* in bounds on $\sigma_{X\text{-}N}$ (SI or SD according to the case)
 - Phys.Rev.D82:116010,2010

$$\sigma_0^{D1} = 1.60 x 10^{-37} \text{cm}^2 \left(\frac{\mu_{\chi}}{1 \text{ GeV}}\right)^2 \left(\frac{20 \text{ GeV}}{M^*}\right)^6$$

[CMS, JHEP 06 (2015) 121]

σ_{13TeV}/σ_{8TeV} (monojet)

DM + b(b)

Scalar

	ocatar	m_{Φ} (GeV)								
σ/σ	$(g_{\chi}, g_q = 1)$	10	15	20	50	100	200	300	500	1000
m_{χ} (GeV)	1	824	-	93	57	107	291	572	$3.8 \cdot 10^{3}$	$2.3 \cdot 10^{4}$
	10	$2.7 \cdot 10^{3}$	$1.8 \cdot 10^{3}$	-	54	61	-	-	-	-
	50	-	-	-	$1.2 \cdot 10^{4}$	$7.1 \cdot 10^{3}$	-	-	-	-
	100	-	-	-	-	-	-	-	-	-
	150	-	-	-	-	-	$7.2 \cdot 10^{4}$	$2.7 \cdot 10^{4}$	$4.7 \cdot 10^{3}$	$2.8 \cdot 10^{4}$
	500	$8.0 \cdot 10^{6}$	-	-	-	-	-	-	$5.0 \cdot 10^{6}$	$6.9\cdot10^5$

Pseudoscalar					me	₅ (GeV)				
σ/σ	$(g_{\chi}, g_q = 1)$	10	15	20	50	100	200	300	500	1000
m_{χ} (GeV)	1	$1.0 \cdot 10^{4}$	-	143	96	117	268	671	$5.0 \cdot 10^{3}$	$3.1 \cdot 10^{4}$
	10	-	340	-	74	60	-	-	-	-
	50	$1.1 \cdot 10^{4}$	-	-	$7.0 \cdot 10^{3}$	$2.9 \cdot 10^{3}$	360	-	-	-
	100	-	-	-	-	-	-	-	-	-
	150	-	-	-	-	-	$2.8 \cdot 10^{4}$	$7.3 \cdot 10^{3}$	$5.9 \cdot 10^{3}$	$2.4 \cdot 10^{4}$
	500	$3.3 \cdot 10^{6}$	-	-	-	-	-	-	-	-

Monotop @ 8 TeV

SM production of single top associated to large E_T^{miss} (monotop signature) suppressed

- Two production modes BSM:
 - FCNC interaction with an invisible Vector/Scalar DM particle
 - Resonant production of an invisible exotic state
- Signal signature:
 - 1 b-jet, 1 μ + E_T^{miss}
 - Excess of events in m_T^W tails

 $m_{\rm T}^{\rm W} = \sqrt{2p_{\rm T}^{\mu} E_{\rm T}^{\rm miss} (1 - \cos(\Delta \phi(\mu, E_{\rm T}^{\rm miss})))}$

• Previous CMS search: hadronic decay

CMS PAS B2G-15-001

Monotop **@ 8 TeV**: Results

- Main backgrounds, W+jets and ttbar, modelled from control samples
 - W enriched CR (1j 0b)
 - ttbar enriched CR (2j 2b)
- ▶ Template fit to m_T^W spectrum in signal and control samples

Resonant scenario excluded for resonant particle masses **up to 1610 GeV** (a_{res} = 0.1)

More mono-searches

Mono-Photon: γ + DM

- Major uncertainties from photon fake rate
- Mono-Higgs: H(γ γ/bb) + DM

σ(pp → h χ χ) × BR(h→ γγ)[fb]

Monotop @ 8 TeV

- Non-resonant scenario excluded for invisible particle masses up to 523 GeV
- Sensitivity close to hadronic channel
 - Invisible vector particles excluded up to 650 GeV (CMS, arXiv:1410.1149v2])

CMS PAS B2G-15-001

Monotop @ 8 TeV

Excluded resonant mass as a function of invisible mass (a = 0.1)

