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GRAVITATIONAL WAVES FROM COMPACT STARS

? Bottom line: compact objects emit GWs at the frequencies of their
quasi-normal (QN) oscillation modes

? The complex frequencies of QN modes carry information on the internal
structure of the emitting source

. For black holes they only depend on the parameters specifying
space-time geometry: mass, charge and angular momentum

. For stars, things are far less simple, as the frequencies of QN modes
depend on the properties of matter in the star interior, of which
little is known

? Detection of the variety of pulsation modes will provide new
information on the internal structure and dynamics of the emitting star,
setting stringent constraints on the available theoretical models
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PRELIMINARIES

? Consider a star characterized by a static and spherically symmetric
distribution of matter in chemical, hydrostatic and thermodynamic
equilibrium

? The metric of the gravitational field generated by the star can be written
in the form (x0
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NON-RADIAL OSCILLATIONS

? Consider a perturbation inducing a small amplitude motion described
by the displacement 3-vector ⇠i(x)

? Due to the fluid motion the geometry of spacetime is no longer
described by the metric tensor g0

µ⌫

? In standard notation
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corresponds to the unperturbed state and can be determined from
TOV equation

? At first order, Einstein’s equations become a set of linear differential
equations linking the thirteen functions ⇠i(x) and h

µ⌫

(x)

? Studying non radial oscillations amounts to determining the solutions
of these equations
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SOLUTIONS OF PERTURBED EQUATIONS

? Assume that the time dependence of the solutions be of the standard
form exp i�t (linearity + stationary background metric)

? The radial and angular dependence of the solutions can be separated

. Scalar functions can be expanded in ordinary spherical harmonics
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? Similarly, any quantity transforming as a tensor under rotations , e.g.
h

ij , can be expanded in tensorial spherical harmonics
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? The three tensorial harmonics called axial are odd and the seven called
polar are even, because under parity transformations they tranform
according to
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? Quasi-normal modes are labelled polar or axial according to the parity of
the corresponding perturbation
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A MORE PHYSICAL CLASSIFICATION

? Consider the equation describing the displacement associated with the
perturbation in Newtonian theory

⇢0
@

2⇠
@t

2
= �⇢0r��� �⇢r�0 �r�P

⇢ = ⇢0 + �⇢ , P = P0 + �P , � = �0 + ��

? In the rhs of the above equation, the restoring force consists of three
contributions

. ⇢0r�� : change of the gravitational field

. �⇢r�0 : change of density (buoyancy)

. r�P : gradient of pressure

? Quasi-normal modes are classified according to the prevailing restoring
force
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GRAVITATIONAL WAVES FROM COMPACT STARS

? Recall: a star emits GW at the (complex) frequencies of its QN modes

I g-modes: main restoring force is buoyancy
I p-modes: main restoring force is pressure
I f-mode: intermediate between g- and p-modes
I w-modes: pure space-time modes
I r-modes: main restoring force is the Coriolis force
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? In newtonian theory the frequency of the f-mode is proportional to the
average density of the star

? g-modes appear in presence of thermal or composition gradients
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GW EMISSION & EQUATION OF STATE (EOS)

? QN oscillation modes associated with GW emission depend upon the
EOS—i.e. the relation linking pressure and energy-density—describing
the properties of matter inside the star

? Consider the axial (i.e. odd parity) w-modes as an example

I Their frequencies are complex eigenvalues of a Scrödinger-like
equation, whose “potential” V

`
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? Evolution of V
`

(r) as a function of inverse compactness (⇠ R/M )
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GW ASTEROSEISMOLOGY
? AD 1998: Andersson and Kokkotas herald the advent of GW

astereoseismology, declaring that “The day of the first undeniable
detection of gravitational waves should not be far away”
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A B S T R A C T
We present new results for pulsating neutron stars. We have calculated the eigenfrequencies of
the modes that one would expect to be the most important gravitational wave sources: the
fundamental fluid f mode, the first pressure p mode and the first gravitational wave w mode,
for twelve realistic equations of state. From these numerical data we have inferred a set of
‘empirical relations’ between the mode frequencies and the parameters of the star (the radius R
and the mass M). Some of these relations prove to be surprisingly robust, and we show how
they can be used to extract the details of the star from observed modes. The results indicate
that, should the various pulsation modes be detected by the new generation of gravitational
wave detectors that come online in a few years, the mass and the radius of neutron stars can be
deduced with errors no larger than a few per cent.
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1 I N T RO D U C T I O N

1.1 Motivation

The day of the first undeniable detection of gravitational waves
should not be far away. In less than five years, at least five large
interferometric gravitational wave detectors (LIGO, VIRGO,
GEO600 and TAMA) will be operating. At the same time a new
generation of spherical resonant detectors (GRAIL, SFERA, etc.)
could be sensitive enough to detect signals from supernova collapse
and binary coalescences in the Virgo cluster of galaxies. In other
words, recent advancements in technology are heralding the era of
gravitational wave astronomy. However, for this field to reach its
full potential, theoreticians must point out in advance the most
promising sources, the optimal methods of detection and the
appropriate bandwidth to which the detectors should be tuned.
Hence, the theoretical effort is presently focused on various sources
of potentially detectable gravitational waves, in order both to
characterize the waves and to devise detailed detection strategies.
Once gravitational waves are detected the first task will be to
identify the source. This should be possible from the general
character of the waveform and may not require very accurate
theoretical models, but accurate models will be of crucial impor-
tance for a deduction of the parameters of the source, i.e. for
gravitational wave ‘astronomy’.

With this paper we contribute to this rapidly growing field in two
ways. We present results for the gravitational waves from a
pulsating relativistic star, e.g. the violent oscillations of a compact
object formed after a core collapse. These results provide a means
for taking the fingerprints of the source, and suggest optimal

bandwidths to which a detector should be tuned to enable detection
of such signals. Specifically, we discuss how the information carried
by gravitational waves from a pulsating star can be used to infer,
with good precision, both the mass and the radius of the star, data
that would strongly constrain the supranuclear equation of state
(EOS).

The idea behind the present work is a familiar one in astronomy.
For many years, studies of the light variation of variable stars have
been used to deduce their internal structure (Unno et al. 1989). The
Newtonian theory of stellar pulsation was to a large extent devel-
oped in order to explain the pulsations of Cepheids and RR Lyrae.
This approach, known as asteroseismology (helioseismology in the
specific case of the Sun), has been quite successful in recent years.
The relativistic theory of stellar pulsation has now been developed
for thirty years, but it has not yet been applied in a similar way. So far,
the relativistic theory has no immediate connections to observations
(that are not already provided by the Newtonian theory). We believe
that this situation will change once the gravitational wave window
to the Universe is opened, and with this article we discuss how the
information carried by the gravitational wave signal can be inverted
to estimate the parameters of pulsating stars. That is, we take the
first (small) step towards gravitational wave asteroseismology.

1.2 Detectability of the waves

At the present time it is not clear that the gravitational waves from
pulsating neutron stars will be seen by the detectors that are
presently under construction. Our relative ignorance in this matter
is a result of the lack of accurate, fully relativistic models of, for
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? AD 2004: Benhar, Ferrari & Gualtieri argue that astereoseismology is
promising to the extent to which compact stars can be modelled at a
sufficient level of realism
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The frequencies and damping times of the non radial oscillations of non rotating neutron stars are
computed for a set of recently proposed equations of state (EOS) which describe matter at supranuclear
densities. These EOS are obtained within two different approaches, the nonrelativistic nuclear many-
body theory and the relativistic mean field theory, that model hadronic interactions in different ways
leading to different composition and dynamics. Being the non radial oscillations associated to the
emission of gravitational waves, we fit the eigenfrequencies of the fundamental mode and of the first
pressure and gravitational-wave mode (polar and axial) with appropriate functions of the mass and
radius of the star, comparing the fits, when available, with those obtained by Andersson and Kokkotas
in 1998. We show that the identification in the spectrum of a detected gravitational signal of a sharp
pulse corresponding to the excitation of the fundamental mode or of the first p-mode, combined with
the knowledge of the mass of the star—the only observable on which we may have reliable
information—would allow to gain interesting information on the composition of the inner core. We
further discuss the detectability of these signals by gravitational detectors.
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I. INTRODUCTION

When a neutron star (NS) is perturbed by some exter-
nal or internal event, it can be set into non radial oscil-
lations, emitting gravitational waves at the characteristic
frequencies of its quasinormal modes. This may happen,
for instance, as a consequence of a glitch, of a close
interaction with an orbital companion, of a phase tran-
sition occurring in the inner core or in the aftermath of a
gravitational collapse. The frequencies and the damping
times of the quasinormal modes (QNM) carry informa-
tion on the structure of the star and on the status of
nuclear matter in its interior. In 1998, extending a pre-
vious work of Lindblom and Detweiler [1], Andersson and
Kokkotas computed the frequencies of the fundamental
mode (f-mode), of the first pressure mode (p1-mode) and
of the first polar wave mode (w1-mode) [2] of a non
rotating NS for a number of equations of state (EOS)
for superdense matter available at that time, the most
recent of which was that obtained by Wiringa, Fiks &
Fabrocini in 1988 [3]. They fitted the data with appropri-
ate functions of the macroscopical parameters of the star,
the radius and the mass, and showed how these empirical
relations could be used to put constraints on these pa-
rameters if the frequency of one or more modes could be
identified in a detected gravitational signal. It should be
stressed that, while the mass of a NS can be determined
with a good accuracy if the star is in a binary system, the
same cannot be said for the radius which, at present, is
very difficult to determine through astronomical obser-
vations; it is therefore very interesting to ascertain
whether gravitational-wave detection would help in put-
ting constraints on this important parameter. Knowing
the mass and the radius, we would also gain information

on the state and composition of matter at the extreme
densities and pressures that prevail in a NS core and that
are unreachable in a laboratory.

For instance, it has long been recognized that the
Fermi gas model, which leads to a simple polytropic
EOS, yields a maximum NS mass !0:7 M" that dramati-
cally fails to explain the observed NS masses; this failure
clearly shows that NS equilibrium requires a pressure
other than the degeneracy pressure, the origin of which
has to be traced back to the nature of hadronic interac-
tions. Unfortunately, the need of including dynamical
effects in the EOS is confronted with the complexity of
the fundamental theory of strong interactions, quantum
chromo dynamics (QCD). As a consequence, all available
models of the EOS of strongly interacting matter have
been obtained within models, based on the theoretical
knowledge of the underlying dynamics and constrained,
as much as possible, by empirical data.

In recent years, a number of new EOS have been
proposed to describe matter at supranuclear densities
(!> !0, !0 # 2:67 $ 1014 g=cm3 being the equilibrium
density of nuclear matter), some of them allowing for
the formation of a core of strange baryons and/or decon-
fined quarks, or for the appearance of a Bose condensate.
The present work is aimed at verifying whether, in the
light of the recent developments, the empirical relations
derived in [2] are still appropriate or need to be updated.

We consider a variety of EOS, described in detail in
Sec. II. For any of them we obtain the equilibrium, non
rotating, configurations for assigned values of the mass,
we solve the equations of stellar perturbations and com-
pute the frequencies of the quasinormal modes of vibra-
tion. The results obtained for the different EOS are
compared, looking for particular signatures in the behav-

PHYSICAL REVIEW D 70, 124015 (2004)
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? Bottom line: want to exploit the detection of gravitational waves to
extract information on the properties of the emitting star (e.g. its radius,
or the composition of matter in its interior)

? Two possible strategies

1. Find a set of empirical relations allowing to express the mode
frequencies in terms of appropriate scaling variables, largely
independent of the choice of EOS ! use the detected signal to
obtain the star radius knowing its mass

2. Study the dependence of the pattern of emitted gravitational
waves predicted by different stellar models, corresponding to
different dynamiccal models and composition) ! use the detected
signal to constrain the models

12 / 24



EARLY ATTEMPTS WITHIN STRATEGY 1Early attempts within strategy 1 (AD 1998)

Andersson & Kokkotas, 1998
compute the real and imaginary part of the frequencies of the
(polar and axial) f-mode and the first p- and w- modes for a
variety of EOS
identify the “scaling” variables

The mode frequencies and damping times, when plotted as a
function of the above variables, show little dependence on the
choice of EOS

Theory Seminar, ANL - June 5, 2007 – p.22/4913 / 24



ENERGY AND DAMPING TIME OF THE f -MODEFrequency and damping time of the f-mode
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EARLY ATTEMPTS WITHIN STRATEGY 2
Early attempts within strategy 2 (AD 1999)

frequency of the 1st axial w-
mode vs star compactness (OB,
Berti & Ferrari, 1999)

the pattern of frequencies strictly reflects the (local) stiffness of
the EOS ( ). Softer (i.e. lower ) EOS
correspond to higher frequencies

for a given EOS, the frequency depends weakly upon

Theory Seminar, ANL - June 5, 2007 – p.25/49
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UNIVERSALITY REVISITED
universality revisited: AD 2004-2005

Frequency of the f-mode computed using different models based
on state-of-the-art EOS (OB, Ferrari & Gualtieri, 2004)
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UNIVERSALITY REVISITED
universality revisited: AD 2004-2005

Damping time of the f-mode computed using different models
based on state-of-the-art EOS (OB, Ferrari & Gualtieri, 2004)
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UNIVERSALITY REVISITED
universality revisited: AD 2004-2005

Frequency of the first p-mode computed using different models
based on state-of-the-art EOS (OB, Ferrari & Gualtieri, 2004)
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UNIVERSALITY REVISITEDuniversality revisited: AD 2004-2005

Frequencies and damping times of the first w-mode computed
using different models of EOS (Tsui & Leung, 2005)
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FAILURE OF UNIVERSALITY
universality revisited: AD 2004-2005

Damping time of the first p-mode computed using different models
based on state-of-the-art EOS (OB, Ferrari & Gualtieri, 2004)

universality does not appear to work here !
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A NUMERICAL EXPERIMENT (ANDERSSON &
KOKKOTAS)A numerical experiment
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select a model polytropic star
( EOS, easily solvable) and
compute and

compute frequency and damping
time of the f-mode and the 1st
w-mode

plot the four lines corresponding to
the empirical relations

the intersection of the four lines
gives the correct and with a
few percent accuracy
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MORE ON STRATEGY 2

Recent work within strategy 2

-mode frequency as a function of the neutron star mass
(OB, Ferrari & Gualtieri, 2004)
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and strange stars have much
higher frequencies
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NEUTRON STARS vs STRANGE STARS
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SUMMARY & OUTLOOK

? Oscillations are a promising source of GW emission from
compact stars

? The rich oscillation spectra could allow to probe the internal
structure and dynamics of the star

? Realistic modeling of the astrophysical processes leading to the
excitation of oscillation modes are needed. Hovewer, besides the
equation of state, achieving this goal will require the
understanding of a variety of properties of neutron star matter,
such as the transport coefficients, the occurrence of superfluid
and superconducting gaps and the neutrino emission and
scattering rates.
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EQUILIBRIUM EQUATIONS

? Assuming that matter inside the star can be described as a perfect fluid
characterized by the four-velocity field u
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? From energy-momentum conservation

d⌫(r)
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? Combining together the above relations leads to the equation describing
hydrostatic equilibrium of a spherically symmetric star in general
relativity: the Tolman-Oppenheimer-Volkoff equation
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DETECTION OF GW FROM COMPACT STARS
Detection of GW from neutron (continued)

Assume that the -mode of a neutron star with
has been excited

The signal emitted can be modeled as (Ferrari et al, 2003)

and the energy stored into the mode is

Will the VIRGO interferometer be able to detect this signal ?

Theory Seminar, ANL - June 5, 2007 – p.37/49
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DETECTION OF GW FROM COMPACT STARS

Detection of GW from neutron stars (continued)
VIRGO noise power spectral density

with and
Signal to noise ratio

requires for a source in our galaxy
(d 10 kpc) and for a source in the VIRGO cluster (d 15
Mpc)

Detection by first generation interferometers unlikely, prospects for
advanced LIGO and VIRGO are good
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