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OUTLINE

* Gravitational Waves from Compact Stars

» Quasi-normal (damped) oscillation modes
» Dependence of the eigenfrequencies on the star structure and
dynamics

* Gravitational-wave asteroseismology

> Determining star properties from the observation of gravitational
waves

» Exploiting the observation of gravitational waves to costrain
theoretical models of the structure and dynamics of compact stars

% Summary & Outlook
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GRAVITATIONAL WAVES FROM COMPACT STARS

* Bottom line: compact objects emit GWs at the frequencies of their
quasi-normal (QN) oscillation modes

* The complex frequencies of QN modes carry information on the internal
structure of the emitting source

> For black holes they only depend on the parameters specifying
space-time geometry: mass, charge and angular momentum

> For stars, things are far less simple, as the frequencies of QN modes
depend on the properties of matter in the star interior, of which
little is known

% Detection of the variety of pulsation modes will provide new
information on the internal structure and dynamics of the emitting star,
setting stringent constraints on the available theoretical models
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PRELIMINARIES

* Consider a star characterized by a static and spherically symmetric
distribution of matter in chemical, hydrostatic and thermodynamic
equilibrium

% The metric of the gravitational field generated by the star can be written
in the form (z° = t,z' = p, 2% = 7,2 = 6)

d52 = gﬁydm“dmu = eydt2 — e>‘d7“2 — 7’2 (d92 + sin2 onOQ)

* v and X are functions of r, to be determined solving Einstein’s equations
(in geometric units)

Guv =2T,, inside the star
Guw =0 outside the star

> G, Einstein’s tensor, T),,: energy-momentum tensor



NON-RADIAL OSCILLATIONS

Consider a perturbation inducing a small amplitude motion described
by the displacement 3-vector £ (x)

Due to the fluid motion the geometry of spacetime is no longer
described by the metric tensor g,

In standard notation

ds® = guudatdz” = (g3, + hyw) datdz” = dsj + hyyda’ dz”

g%, corresponds to the unperturbed state and can be determined from
TOV equation

At first order, Einstein’s equations becom_e a set of linear differential
equations linking the thirteen functions £*(z) and h. ()

Studying non radial oscillations amounts to determining the solutions
of these equations
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SOLUTIONS OF PERTURBED EQUATIONS

* Assume that the time dependence of the solutions be of the standard
form exp iot (linearity + stationary background metric)

» The radial and angular dependence of the solutions can be separated

> Scalar functions can be expanded in ordinary spherical harmonics

oo 4
f(r,0,9) = ZZAM )Yem (0, 6)
=0 m=

> Under parity transformations spherical harmonics transform
according to

Yem (7 — 0,7+ ¢) = (1) Yom (6, )
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* Similarly, any quantity transforming as a tensor under rotations , e.g.
h*?, can be expanded in tensorial spherical harmonics

=[S ) 0o o () 0o)

tm Lk=1

% The three tensorial harmonics called axial are odd and the seven called
polar are even, because under parity transformations they tranform
according to

(P2} m-0.m+e)= (-0 {p2} 0.0
{Am} (r— 0,7+ ¢) = ”1{Am} 9, ¢)

* Quasi-normal modes are labelled polar or axial according to the parity of
the corresponding perturbation
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A MORE PHYSICAL CLASSIFICATION

* Consider the equation describing the displacement associated with the
perturbation in Newtonian theory

2

poaitg = —poV(s@ — 6,0V‘I’o — V6P

p=po+6p, P=Py+0P, d=Pg+ P

* In the rhs of the above equation, the restoring force consists of three
contributions

> poVod : change of the gravitational field
> dpV dg : change of density (buoyancy)
> VP : gradient of pressure

% Quasi-normal modes are classified according to the prevailing restoring
force
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GRAVITATIONAL WAVES FROM COMPACT STARS

* Recall: a star emits GW at the (complex) frequencies of its QN modes

» g-modes: main restoring force is buoyancy
p-modes: main restoring force is pressure
f-mode: intermediate between g- and p-modes
w-modes: pure space-time modes

r-modes: main restoring force is the Coriolis force

vy vy VvYyYy

{wgn} <ws <{wpn} <{wwn}

* Innewtonian theory the frequency of the f-mode is proportional to the
average density of the star

* g-modes appear in presence of thermal or composition gradients
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GW EMISSION & EQUATION OF STATE (EQS)

* QN oscillation modes associated with GW emission depend upon the
EOS—i.e. the relation linking pressure and energy-density—describing
the properties of matter inside the star

% Consider the axial (i.e. odd parity) w-modes as an example

> Their frequencies are complex eigenvalues of a Scrodinger-like
equation, whose “potential” V;(r) explicitly depends on the EoS

e21/(r) 3
Ve(r) = {K(Z +Dr+7r°[e(r) — P(r)] — 6M(7’)}

r3

wiht (recall)
dv 1 dpP

dr — [e(r) + P(r)] dr
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* Evolution of V;(r) as a function of inverse compactness (~ R/M)

DA
10/24



GW ASTEROSEISMOLOGY

% AD 1998: Andersson and Kokkotas herald the advent of GW
astereoseismology, declaring that “The day of the first undeniable
detection of gravitational waves should not be far away”

Mon. Not. R. Astron. Soc. 299, 1059—1068 (1998)

Towards gravitational wave asteroseismology
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* AD 2004: Benhar, Ferrari & Gualtieri argue that astereoseismology is

promising to the extent to which compact stars can be modelled at a
sufficient level of realism
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* Bottom line: want to exploit the detection of gravitational waves to
extract information on the properties of the emitting star (e.g. its radius,
or the composition of matter in its interior)

% Two possible strategies

1. Find a set of empirical relations allowing to express the mode
frequencies in terms of appropriate scaling variables, largely
independent of the choice of EOS — use the detected signal to
obtain the star radius knowing its mass

2. Study the dependence of the pattern of emitted gravitational
waves predicted by different stellar models, corresponding to
different dynamiccal models and composition) — use the detected
signal to constrain the models
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EARLY ATTEMPTS WITHIN STRATEGY 1

e Andersson & Kokkotas, 1998

> compute the real and imaginary part of the frequencies of the
(polar and axial) f-mode and the first p- and w- modes for a
variety of EOS

> identify the “scaling” variables

< 3=
|

R
1.4 My ~ 10 km
e The mode frequencies and damping times, when plotted as a

function of the above variables, show little dependence on the
choice of EOS
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ENERGY AND DAMPING TIME OF THE f-MODE
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EARLY ATTEMPTS WITHIN STRATEGY 2

10 1 > frequency of the Ist axial w-

L]
of S ~e__ Tt s——a_mA J mode vs star compactness (OB,
—_ \D\ .\ . .
T N R e T e, WFF Berti & Ferrari, 1999)
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> the pattern of frequencies strictly reflects the (local) stiffness of

the EOS (I' = dlog P/dlog p). Softer (i.e. lower I') EOS
correspond to higher frequencies

> for a given EOS, the frequency depends weakly upon M/ R
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UNIVERSALITY REVISITED

> Frequency of the f-mode computed using different models based
on state-of-the-art EOS (OB, Ferrari & Gualtieri, 2004)

f-mode frequency
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UNIVERSALITY REVISITED

> Damping time of the f-mode computed using different models
based on state-of-the-art EOS (OB, Ferrari & Gualtieri, 2004)

f-mode damping time
N ‘ ‘ AKfit = =
K New fit m—
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a=(87+£02)x 1072
b= —0.271 =+ 0.009
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UNIVERSALITY REVISITED

> Frequency of the first p-mode computed using different models
based on state-of-the-art EOS (OB, Ferrari & Gualtieri, 2004)

p-mode frequency
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UNIVERSALITY REVISITED

> Frequencies and damping times of the first w-mode computed
using different models of EOS (Tsui & Leung, 2005)
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FAILURE OF UNIVERSALITY

> Damping time of the first p-mode computed using different models
based on state-of-the-art EOS (OB, Ferrari & Gualtieri, 2004)

> wuniversality does not appear to work here !

p-mode damping time
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A NUMERICAL EXPERIMENT (ANDERSSON &
KOKKOTAS)

® select a model polytropic star
(P o € EOS, easily solvable) and
compute M and R

® compute frequency and damping
time of the f-mode and the 1st

E 8 w-mode
§ ¢ plot the four lines corresponding to
7‘1”0 ‘ ' the empirical relations
1) “"w 1 e the intersection of the four lines
7.”::alvalue gives the correct M and R with a
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MORE ON STRATEGY 2

> f-mode frequency as a function of the neutron star mass
(OB, Ferrari & Gualtieri, 2004)

f-mode frequency

B | D stars containing hyperons
and strange stars have much
higher frequencies

v (KHz)
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NEUTRON STARS vs STRANGE STARS

APR2 —o—

sl Neutron stars ~ APRB200 —a— |
APRB120 —e—
+ BBS1
28 G240 ——

Strange stars

a

Vi (KHz)

* strange stars have vy > 1.7 kHz and M < 1.8 Mg

* a wide frequency range corresponds to strange stars only (for example,

vy > 1.9 kHz for a star of mass M = 1.2 M)

* frequencies vy R 2.2 kHz most likely correspond to strange stars,

regardless of the mass
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SUMMARY & OUTLOOK

* Oscillations are a promising source of GW emission from
compact stars

% The rich oscillation spectra could allow to probe the internal
structure and dynamics of the star

* Realistic modeling of the astrophysical processes leading to the
excitation of oscillation modes are needed. Hovewer, besides the
equation of state, achieving this goal will require the
understanding of a variety of properties of neutron star matter,
such as the transport coefficients, the occurrence of superfluid
and superconducting gaps and the neutrino emission and
scattering rates.
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EQUILIBRIUM EQUATIONS
* Assuming that matter inside the star can be described as a perfect fluid
characterized by the four-velocity field u"
Tuw = (e+ P)upu, — Pguw

> e:energy density , P : pressure

* From the ¢t component of Einstein’s equations it follows that
- 2
e M =1—=M(r)
r

M(r) = 47r/ E(T'/)T/erl
0

* The rr component yields

dir) _ _, (47rP(r)r + M) (1 —2 My))l

dr T2
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* From energy-momentum conservation

dv(r)

_ 2
dr

E
e(r)+ P(r) dr

* Combining together the above relations leads to the equation describing
hydrostatic equilibrium of a spherically symmetric star in general
relativity: the Tolman-Oppenheimer-Volkoff equation
a _

dr

[e(r) + P(r)] [M(r) + 47TT3P(T)]

OLIG
r2[1—2M(r)/r] c— r2
* Invacuum e = P = 0 and we find the Schwarzschild solution
ds® = (1 — &

-1
. ) dat* — (1 - %) dr? —r* (d6” + sin® 9dy?)
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DETECTION OF GW FROM COMPACT STARS

> Assume that the f-mode of a neutron star with

vy = 1.9 kHz, 74 = 0.184 s has been excited
> The signal emitted can be modeled as (Ferrari et al, 2003)

h(t) = ho e~/ sin 2704 (t — t)]
and the energy stored into the mode is

dEmode = gzﬂ | h(v) |2 dSdy

> Will the VIRGO interferometer be able to detect this signal ?



DETECTION OF GW FROM COMPACT STARS
> VIRGO noise power spectral density

Sp(z) =107 . {3.24[(6.23z) ® + 2z ' + 1 + 2%} Hz *
with z = v/ and vy = 500 Hz
> Signal to noise ratio

SNR =2

- 1/2
[ a0
0 Sn(v)
> SN R = 5 requires Epoqe ~ 6 x 1077 Mg, for a source in our galaxy
Mpc)

(d ~ 10 kpc) and ~ 1.3 M, for a source in the VIRGO cluster (d ~ 15

DA
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