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In the following  we do not include baryons and vector mesons

|µB | . 940 MeV |µI | . 770 MeV
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mesonic multipletvacuum

⌃ = u⌃̄u with u = eiT ·�/2

SU(Nf ) generatorsfluctuations

•  The simplest choice is of course ⌃̄ =

✓
1 0
0 1

◆

Corresponding to the standard nonlinear realization of  𝟀PT 

⌃ = eiT ·�
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More general vev
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Kogut and Toublan PhysRevD.64.034007

Phase diagram

solid line: second order

dotted line: first order

In the condensed phases, a superfluid of charged bosons: a superconductor!

M2
D = M2

M = F 2
0 e

2(sin↵)2

16 A. Mammarella and M.M. Phys.Rev. D92 (2015) 8, 085025



Mixing and mass splitting
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Leptonic decays
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Equation of State

S. Carignano, A. Mammarella and M.M.  
Phys.Rev. D93 (2016) no.5, 051503
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Leading order 𝟀PT correctly reproduces the peak structure
µpeak
I,LQCD = {1.20, 1.25, 1.275}m⇡ µpeak

I,�PT = (
p
13� 2 )1/2m⇡ ' 1.276m⇡
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Origin of the peak
“The system for μI < 1.3 mπ, can be identified as a pion gas. When μI ∼ μIpeak, pions start to condense and the system 
resides in the BEC state. The plateau beginning to form beyond μI ≈ 3 mπ, may indicate a crossover from the BEC to 
BCS state, however higher precision and larger μI is required to make a definite statement.”

W. Detmold, K. Orginos, and Z. Shi, 
Phys. Rev. D86, 054507 (2012) 
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In 𝟀PT we have access to the pion condensate. At the peak it is close to its maximum 
value. The peak seems to be related with the saturation of the condensate.

S. Carignano, A. Mammarella and M.M.  
Phys.Rev. D93 (2016) no.5, 051503
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BEC-BCS crossover
The BEC and the BCS are not separated by a phase transition
BEC - tightly bound pairs (dimers)
BCS  - correlated (far away) fermion pairs

𝟀PT naturally captures the BEC side. Because 𝟀PT deals with bosons
Can 𝟀PT capture the BCS side?
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What about the ground state properties?
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In fermionic systems the crossover region is characterised by a divergent 
s-wave scattering length. 
For relativistic systems it corresponds to the conformal point

In 𝟀PT  we do not have access to the s-wave scattering length, because 
we do not have quarks! 

Conformal limit
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In fermionic systems the crossover region is characterised by a divergent 
s-wave scattering length. 
For relativistic systems it corresponds to the conformal point

In 𝟀PT  we do not have access to the s-wave scattering length, because 
we do not have quarks! 

Conformal limit

However in 𝟀PT  at µI =
p
3m⇡

✏ = 3p

@2✏

@p2
= 0

cs =

r
2

3

Correct value for a system of 
maximally stressed two noninteracting 
Fermi fluids

No trace anomaly

Change from two different regimes



Conclusions
• The realistic conditions in heavy nuclei and in compact stars require a 
nonvanishing isospin chemical potential 

• If isospin is broken nontrivial mass dependence

• In the condensed phase there is mixing and mesons have nontrivial masses 
and decay patterns

• LO𝟀PT seems to lead to the correct EoS below the 𝝔 mass 

• Need of more reBined lattice QCD simulations

• We can easily do kaons
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Definitions
Superfluid: frictionless fluid with v = 𝞩ϕ   ⇒   𝞩× v = 0  (irrotational or quantized vorticity)

Superconductor: “screening” of magnetic fields: Meissner effect (almost perfect diamagnet) 

Superfluid vs Superconductors

Higgs mechanism Gauge fields with mass, M, 
penetrate for a length 

Superconductor 
“Broken gauge symmetry”

� / 1/M

Goldstone theorem “Easy” transport of the quantum 
numbers of the broken group

Superfluid 
Broken global symmetry
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BOSONS FERMIONS
4He 3He

Fermionic and bosonic superfluids at T=0

electrons

Electrically neutral
(really superfluids)

Neutral or charged
(superfluids or superconductos)
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Bosons “like” to move together, no 
dissipation

4He becomes superfluid at 
Tc ≃ 2.17 K,  Kapitsa et al  (1938)  
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Bosons “like” to move together, no 
dissipation

4He becomes superfluid at 
Tc ≃ 2.17 K,  Kapitsa et al  (1938)  

BOSONS

An arbitrary weak interaction leads to 
the formation of Cooper pairs  

3He becomes superfluid at 
Tc ≃ 0.0025 K, Osheroff (1971)

FERMIONS
4He 3He

Fermionic and bosonic superfluids at T=0

electrons

Electrically neutral
(really superfluids)

Neutral or charged
(superfluids or superconductos)
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