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Chiral perturbation theory
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Setting

At non-asymptotic energy scales QCD is a nonperturbative theory

XPT is a low energy eftective field theory of QCD: A realization of
hadronic matter at soft energy scales

p << A~1GeV

Qualitative picture: We assume to know (or to have a big deal of
information about) the nonperturbative vacuum and we “expand” around
that vacuum assuming that the exchanged momenta are soft.

Since we are expanding, we do have control parameters

In the following we do not include baryons and vector mesons

lup| < 940 MeV lpr| < 770 MeV
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Leading order Lagrangian

The O(p?) Lorentz invariant Lagrangian density for pseudoscalar mesons

We have introduced the covariant derivative to take into account
in-medium propagation

Gasser and Leutwyler,
Annals Phys. 158, 142 (1984)
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Formally preserving the Lorentz invariance
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The O(p?) Lorentz invariant Lagrangian density for pseudoscalar mesons

We have introduced the covariant derivative to take into account
in-medium propagation

Gasser and Leutwyler,
Annals Phys. 158, 142 (1984)

DS =9,% — %[vu, 3]

Formally preserving the Lorentz invariance

e e WA irrelevant for mesons

: UB Hros
p = diag(pu, ha) = 5 + =5
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More general vev

123 =>> Mg
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Microscopic view

Procedure: first we mismatch, then we turn on the interactions
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Condensed phases



Phase diagram

solid line: second order

400

por (e dotted line: first order

Kogut and Toublan PhysRevD.64.034007

In the condensed phases, a superfluid of charged bosons: a superconductor!

Mz = M;, = Fie’(sin o)”

b A. Mammarella and M.M. Phys.Rev. D92 (2015) 8, 085025



Mixing and mass splitting

In the condensed phases mesons mix
and have nontrivial mass splitting
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mass charge
eigenstates eigenstates

U = U (G )
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Mixing and mass splitting
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Leptonic decays

Processes #_ — (¢*v, and el
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8 A. Mammarella and M.M. Phys.Rev. D92 (2015) 8, 085025



“Thermodynamics”
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Leading order results

Analytic expressions of the pressure, number density and

2
for pr > mx o fiae (1 1 m%)
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Leading order results

Analytic expressions of the pressure, number density and

for uy > my

8p7TC m4
nﬂ'C i) LO 2 (1 i _7'(')
I,1.O duug Sl Mi-l
S pi
o = 5 1+2u? 3%l
4 L
Equation of State
€10 (p) = 2/p(2f2m2 +p) — p

S. Carignano, A. Mammarella and M.M.
Phys.Rev. D93 (2016) no.5, 051503
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Comparison with different methods

Microcanonical lattice QCD simulations

W. Detmold, K. Orginos, and Z. Shi,
/ Phys. Rev. D86, 054507 (2012)
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Comparison with different methods

Microcanonical lattice QCD simulations

W. Detmold, K. Orginos, and Z. Shi,
/ Phys. Rev. D86, 054507 (2012)
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Leading order yPT correctly reproduces the peak structure
e OS5 1 275 m s (VA3 20 Al =~ 1.276/m.,
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Origin of the peak

“The system for i < 1.3 my, can be identified as a pion gas. When p; ~ plyeak, pions start to condense and the system
resides in the BEC state. The plateau beginning to form beyond = 3 my, may indicate a crossover from the BEC to
BCS state, however higher precision and larger p, is required to make a definite statement.”

W. Detmold, K. Orginos, and Z. Shi,
Phys. Rev. D86, 054507 (2012)
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“The system for i < 1.3 my, can be identified as a pion gas. When p; ~ plyeak, pions start to condense and the system
resides in the BEC state. The plateau beginning to form beyond = 3 my, may indicate a crossover from the BEC to
BCS state, however higher precision and larger p, is required to make a definite statement.”

W. Detmold, K. Orginos, and Z. Shi,
Phys. Rev. D86, 054507 (2012)

In YPT we have access to the pion condensate. At the peak it is close to its maximum
value. The peak seems to be related with the saturation of the condensate.
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BEC-BCS crossover

The BEC and the BCS are not separated by a phase transition
BEC - tightly bound pairs (dimers)
BCS - correlated (far away) fermion pairs

XPT naturally captures the BEC side. Because yPT deals with bosons
Can YPT capture the BCS side?

23



BEC-BCS crossover

The BEC and the BCS are not separated by a phase transition
BEC - tightly bound pairs (dimers)
BCS - correlated (far away) fermion pairs

XPT naturally captures the BEC side. Because yPT deals with bosons
Can YPT capture the BCS side?

Note that the 7" is the NGB mode.

It is a collective mode. The crossover is immaterial for it!

23



BEC-BCS crossover

The BEC and the BCS are not separated by a phase transition
BEC - tightly bound pairs (dimers)
BCS - correlated (far away) fermion pairs

XPT naturally captures the BEC side. Because yPT deals with bosons
Can YPT capture the BCS side?

Note that the 7" is the NGB mode.

It is a collective mode. The crossover is immaterial for it!

What about the ground state properties?
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Conformal limit

In fermionic systems the crossover region is characterised by a divergent

s-wave scattering length.
For relativistic systems it corresponds to the conformal point

In YPT we do not have access to the s-wave scattering length, because
we do not have quarks!
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Conformal limit

In fermionic systems the crossover region is characterised by a divergent

s-wave scattering length.
For relativistic systems it corresponds to the conformal point

In YPT we do not have access to the s-wave scattering length, because
we do not have quarks!

i ]
However in YPT at pu; = V3m,

L S No trace anomaly
T2

€

0? . :
i g b Change from two different regimes
Op?

9 Correct value for a system of

CSZ 53

3 <—— maximally stressed two noninteracting
Fermi fluids
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Conclusions

* The realistic conditions in heavy nuclei and in compact stars require a
nonvanishing isospin chemical potential

* If isospin is broken nontrivial mass dependence

* In the condensed phase there is mixing and mesons have nontrivial masses
and decay patterns

* LOyYPT seems to lead to the correct EoS below the g mass
®* Need of more refined lattice QCD simulations

®* We can easily do kaons
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New Call for GSSI PhD Applications 2016/17 now open

= Print

The Gran Sasso Science Institute (GSSI), founded in 2012 in LAquila (Italy) as
Center for Advanced Studies of the National Institute for Nuclear Physics
(INFN) and then established in March 2016 as a new university providing

post-graduate education, offers 41 PhD fellowships for the academic year
2016/17.

The GSSl invites applications for 10 fellowships in “Astroparticle Physics”, 11

in “Mathematics in Natural, Social and Life Sciences”, one of which funded by
the Italian Institute of Technology (IIT), 10 in “Computer Science” and 10 in
“Urban Studies and Regional Science”. The official language for all PhD
courses is English.

The fellowships are awarded for three years and their yearly amount is € 16.159,91 gross. All PhD students have free
accomodation at the GSSI facilities and use of the canteen.

The application must be submitted through the online form available at www.gssi.it/phd/ by 1st September 2016 at 18.00
(Italian time zone).

For more information, please consult the Call for Applications at www.gssi.it/phd/ or write an email to info@gssi.infn.it or
call +39 0862 4280262.
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Superfluid vs Superconductors

-
Definitions
Superfluid: frictionless fluid withv = V¢ = Vxv=0 (irrotational or quantized vorticity)

Superconductor: “screening” of magnetic fields: Meissner effect (almost perfect diamagnet)
{ 2,

Superfluid
Broken global symmetry

Goldstone theorem = Easy” transport of the quantum
numbers of the broken group

Superconductor

“Broken gauge symmetry”

{ ; Gauge fields with mass, M,
L > penetrate for a length A oc 1/M
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Fermionic and bosonic superfluids at T=0

4He BOSONS 5He FERMIONS

electrons

Electrically neutral Neutral or charged
(really superfluids) (superfluids or superconductos)
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Fermionic and bosonic superfluids at T=0

= 3
He  gosons He FERMIONS
electrons
| @ilgitistiiis
AALANALD U IS
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liligiigiil
00000 lglg.
Bosons “like” to move together, no An arbitrary weak interaction leads to
dissipation the formation of Cooper pairs
“He becomes superfluid at He becomes superfluid at
T. = 2.17 K, Kapitsa et al (1938) T. = 0.0025 K, Osheroff (1971)
Electrically neutral Neutral or charged
(really superfluids) (superfluids or superconductos)
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