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Abstract
In  the  eve  of  Gravitational  Wave  physics  the  characterisation  of  the  gravitational  wave 
signal emitted by compact binary sources will play a prominent role. 

We present three-dimensional  simulations of  the dynamics of  binary neutron star (BNS) 
mergers from the late inspiral stage up to ∼20 ms after the system has merged, either to form 
a hyper-massive neutron star (HMNS) or a rotating black hole (BH). 

We  report  results  for  equal  and  un-equal-mass  models  and  on  the  strength  of  the 
Gravitational Signal and its dependence on the EOS, the mass ratio of the two stars, the 
radiated energy and angular momentum.

We use a semi-realistic description of the equation of state (EOS) where the EOS is described 
by  a  seven-segment  piece-wise  polytropic  with  a  thermal  component  given  by  
Gamma_th=1.8    

One  of  the  important  characteristics  of  the  present  investigation  is  that  it  is  entirely 
performed using only publicly available open source software, the Einstein Toolkit for the 
dynamical evolution and the LORENE code for the generation of the initial models.



Based on:

❖ Modeling Equal and Unequal Mass Binary Neutron Star Mergers Using Public Codes,                 
R. De Pietri, A. Feo, F. Maione and F. Loeffler, arXiv:1509.08804 [gr-qc], doi:10.1103/PhysRevD.
93.064047

❖ Binary neutron star merger simulations with different initial orbital frequency and equation of 
state, F. Maione, R. De Pietri, A. Feo and F. Loeffler,  arXiv:1605.03424 [gr-qc]

work in collaboration with :                          
R.De Pietri, F. Maione, F. Loeffler



A network of advanced detectors



Gravitational Waves: The Sound of the Universe

❖ Predicted by the General Relativity

❖ Are ripples in the metric of space-time that 
propagate like a wave

❖ Caused by some of the most violent and 
energetic processes in the Universe (most 
powerful sources are binaries of compact 
objects)

❖ Carry information about the source (BH, 
NS, …)

❖ GW will provide a new way to listen the 
Universe and open a new frontier

❖ They are the only way to detect BH 
directly!

these waves travel at the speed 
of light through the Universe



Advanced LIGO/Virgo Interferometers
Virgo, Italy

LIGO Livingston, USA



Gravitational Wave detected!
❖ The gravitational waves were detected 

on September 14, 2015 at 5:51 a.m. 
Eastern Daylight Time (09:51 UTC) by 
both of the twin Laser Interferometer 
Gravitational-wave Observatory (LIGO) 
detectors, located in Livingston, 
Louisiana, and Hanford, Washington, 
USA.

❖ The signal was observed with a matched-
filter signal-to-noise ratio of 24 and a 
false alarm rate estimated to be less than 
1 event per 203 000 years, equivalent to a 
significance greater than 5.1σ. The source 
lies at a luminosity distance of 410(18)  
Mpc corresponding to a redshift 
z=0.09(4). In the source frame, the initial 
black hole masses are 36(5)M⊙ and 
29(4)M⊙, and the final black hole mass is 
62(4)M⊙, with 3.0(5) M⊙c2 radiated in 
gravitational waves. All uncertainties 
define 90% credible intervals. 

Observation of Gravitational Waves from a Binary Black Hole Merger B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration)
Phys. Rev. Lett. 116, 061102 – Published 11 February 2016

GW150914



We already knew they (GW) exists!
❖ PSR B1913+16 (also known as J1915+1606) is a pulsar 

in a binary star system, in orbit with another star 
around a common center of mass. In 1974 it was 
discovered by Russell Alan Hulse and Joseph 
Hooton Taylor, Jr., of Princeton University, a 
discovery for which they were awarded the 1993 
Nobel Prize in Physics

❖ Nature 277, 437 - 440 (08 February 1979), J. 
H. TAYLOR, L. A. FOWLER & P. M. McCULLOCH:  
Measurements of second- and third-order relativistic 
effects in the orbit of binary pulsar PSR1913 + 16 have 
yielded self-consistent estimates of the masses of the 
pulsar and its companion, quantitative confirmation 
of the existence of gravitational radiation at the 
level predicted by general relativity, and detection 
of geodetic precession of the pulsar spin axis.



Gravitational Waves sources: compact objects
❖ MAIN TARGET LIGO/Virgo coll.:  

NS-NS merger  
Expected to rate ≈ 0.2 − 200 events  
per year events between 2016 − 19  
[J. Abadie et al. (VIRGO, LIGO Scientific),   
Class. Quant. Grav. 27, 173001 (2010)]

Table from: Martinez et al.: “Pulsar J0453+1559: A 
Double Neutron Star System with a Large

Mass Asymmetry” arXiv:1509.08805v1 

❖ Core collapse in supernova

❖ BH-BH merger   —— (FOUND!)

❖ BH-NS merger

❖ “Mountains" (deformation) on the crust of Neutron Stars 

❖ Secular instability of Neutron stars

❖ Dynamical instability of Neutron star

sensitive frequency band 
approx. (40-2000) Hz



Why we do want to study BNS mergers?
❖ First: the LIGO/Virgo collaboration will see the signal from BNS system. They are among the most 

powerful sources of GWs

O1
O2



Gravitational Waves from our BNS merger simulations  
(or…what we do)

❖ GW signal from BNS merger simulations using different EOS. 

❖ We look at the EOS signature in the GW signal. Different  
EOS give different signal.

16 orbits before merger



Neutron Stars
❖ Neutron Stars are a degenerate state of matter that is formed after the core 

collapse in a supernova event (where the electrons fall into nuclear matter and 
get captured by protons forming neutrons).

❖ Excellent laboratory to study high-density nuclear physics and EOS.

❖ Neutron star composition still unknown (neutron, resonance, hyperons,…) 

❖ The extreme condition inside a NS cannot be reproduced in a laboratory. 

❖ Typical properties of NS:

R ' 10Km

M ' 1.4M�

T 2 [1.4ms, 8.5s]

B 2 [108, 1014]Gauss



BNS as a probe for Nuclear Matter EOS
❖ Gravitational wave detection by BNS system will give us information 

on the EOS that cover matter at extreme conditions.

❖ Different possibilities:



Many different possibilities depending on the EOS

Many different possibilities depending on the EOS. GWs in the late inspiral and merger 
phases could constrain NS EOS. Many GW templates from Numerical Relativity are 

necessary 



The Einstein elevator:  
The real differences in the Einstein’s Gravity Theory (General Relativity):  

GRAVITY can not be distinguished by INERTIA
❖ Assumption 1: the space-time is locally described by the Minkowski’s geometry. 

Clocks measure the proper time with respect to a geometry that is locally the same of 
Special Relativity. 

❖ Assumption 2: it is not possible (locally) to distinguish the presence of gravitational 
force with respect to the presence of non-inertial force generated by being in an 
accelerated reference system.  
 
 (This is a consequence of the equivalence between inertial and gravitational mass) 

❖ Inertial systems are the freely-falling  system !

❖ The straight line (meaning the freely-falling trajectory) are the geodetic of a curved 
space-time.

❖ Question: how do we implement these ideas ?
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 General Relativity (in short)
➡ The gravity is shown as a result of the fact that the space-

time is curved! 

๏ Each mass-energy curved the space-time 

๏ Freely falling objects follow the geodetic (straight line) 
of a curved space-time.

๏ Einstein’s fields equation are:  
 

➡ There is a real space-time but we are free to choose any 
reference systems (atlas) to describe physical laws.
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Rµ⌫ � 1

2
gµ⌫R =

8⇡G

c4
Tµ⌫

 John Archibald Wheeler:
spacetime tells  

matter how to move;  
matter tells  

spacetime how to curve



A challenging numerical problem
❖ The accurate simulation of a BNS merger is among the most challenging tasks in 

numerical relativity.

❖ Involve strong gravitational fields, matter motion with relativistic speeds, 
relativistic shock waves, (and strong magnetic fields).

❖ Increasing difficulty due to the multidimensional character of the PDE and by 
the complexity of the Einstein’s equations such as coordinates degrees of 
freedom and formation of black holes (curvature singularity).

❖ Despite the problems, major progress achieved during the last decade in 
numerical simulations of BNS mergers (since the seminal work by Shibata and 
Uryu, 2000) due to:  improved numerical methods (high resolutions methods 
and adaptive mesh refinements), improved physics (nuclear physics EOS, 
thermal effects) and increased computational resources!!



A challenging numerical problem (2)
❖ In the description of BNS mergers are involved three stages, the inspiral, the merger and 

the evolution to its final state (post-merger stage) that would quite likely be a BH 
surrounded by an accretion disk.

❖ The inspiral stage can be modeled with good accuracy by analytical techniques (PN 
calculations and EOB). Produce accurate waveforms up to a time very close to the 
merger. Useful to quickly computing waveform templates to matched filtering searches 
in GW detector data analysis. The role of NR in this regime is mainly to test and help 
improve these techniques.

❖ For the merger and post-merger stage, NR is the only available investigation tool to 
compare the experimental results that would be obtained by LIGO/Virgo detection with 
the underlying physics of the NS.

❖ An accurate description of GW emission of different model sources (different choice of 
the underlying NS physics through different choices of EOS) are useful for developing 
empirical relations to be able to infer NS parameter from future GW detections, as well 
as, to get information on the correct EOS that describe matter at this extreme conditions.



GR NS-NS simulations: State of the Art
❖ One of the main and hottest research topic in Numerical Astrophysics.

❖ A comprensive discussion of the subject can be found in (www.livingreviews.org):  J.A. 
Faber & F.A. Rasio, “Binary neutron star mergers”, Living Reviews in Relativity (2012). This 
review contains 338 references.

❖ Impossible to give a comprensive list of all the individual contributor and their roles. 

❖ Among them is worth citing:

❖ The people that start it back in ‘99: Shibata&Uryu: Phys. Rev. D 61 064001 (gr-qc/9911058) 

❖ and (in alphabetic order): Alic, Anderson, Baiotti , Bauswein, Bernuzzi , Bruegmann , 
Ciolfi, Dietrich , Duez , Etienne , Foucart, Giacomazzo , Gold, Haas , Hotokezaka, Janka, 
Kastaun , Kawaguchi, Kidder , Kiuchi, Kyutoku, Lehner , Liebling , Liu, Nielsen , Ott , 
O’Connor , Pachalidis, Palenzuela , Pfeiffer, Rezzolla , Scheel , Sekiguchi , Shapiro , 
Shibata, Stergioulas, Taniguchi, Uryu, … 



Numerical Relativity in a nutshell

❖ But these are 4D equations! Need to write as 3+1 evolution equations.

❖ Spacetime get foliated into 3D spacelike surfaces, in which we define our variables. We evolve them along a time direction 
normal to those surfaces.

❖ (Magneto)Hydrodynamics is written in terms of conservative form and special numerical techniques are used for the fluxes 
calculations.

❖ All physical variables and equations are discretized on a 3D Cartesian mesh and solved by a computer. Uses finite differences 
for derivative computations and standard Runge-Kutta method for time integrations. 

❖ Different formulation of the Einstein Eqs have been developed in the last 20 years. BSSN-NOK version of the Einstein’s Eqs.

Rµ⇥ �
1
2
gµ⇥R = 8�G Tµ⇥

�µTµ⇥ = 0

p = p(⇥, �)

Einstein Equations

Conservation of energy momentum

Equation of state

Conservation of baryon density

Tµ⇥ = (⇥(1 + �) + p)uµu⇥ + pgµ⇥

Ideal Fluid Matter



3+1 formulations of the metric

:: lapse

:: shift vector

:: 3-metric



ADM evolutions
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about 1.2 solar masses the bar was non persistent but nowwith

a dominant mode 1 instability in the final part of the simula-

tion.

So we explored the region of high betas instabilities (β !
0.255 without corotation point, see for example [23]) in non
too compact cores of about 1.5 solar masses.

In this parameters region as expected the barmode instabil-

ity is the dominant one and it can start without any pertur-

bation and also with a pre-existent m=1 perturbation and this

make more plausible it’s developement after the collapse, but

we claim that near the threshold it’s possible to see a strong

non-linear interaction between the modes and although the

bar might be here a persistent one it is erased in a dynami-

cal timescale by the growth of a competing mode 1 instability.

This implies that also in this favourable case the potential

strong persistent quasi-periodic signal seems to be suppressed

by the appearance of a weaker one-arm instability which pro-

duce a much lower gravitational signal then the barmode one.

Commentare il fatto che ci possono volere diversi millisec-

ondi prima che l’instabilit parta e che quindi potrebbe essere

necessaria una finestra temporale sufficiente nell’evoluzione

della stella. NOTARE che anche Saijo in [24] perturba tutte le

simulazioni con una perturbazione di modo 2

For reviews on the expected gravitational wave from neu-

tron stars instability see, for example, refs, [25, 26] and [27].

This work is organized as follow. In section II we give det-

tails on the evoultion methods used. In section III we discuss

the initial models and their properties used in this study. In

section IV we discuss the methodology used to analize the

numerical results of the simulations. In section V we discuss

the general dynamics of the bar-mode instability and its prop-

erties. In section VI we discuss the stability of the code and

the accuracy of the obtained results. In section VII we present

two different determination of the critical value for the onset

of instability. In section VIII we give dettails for the expected

gravitational radiation signal from the unstable models. In

section IX we disccus the implication of our results and of the

open problem still present.

We have consistently used the following convention. We

used a space like signature (−, +, +, +) for the four dimen-
sional metric. Greek indices (µ, ν . . .) are taken to run from
0 to 3, Latin indices (i, j, k, . . .) from 1 to 3 and we adopt

the standard convention for the summation over repeated in-

dices. We consistently used the notation xi = (x, y, z) for
spatial coordinates, x0 = t for the temporal coordinate and
r =

√

x2 + y2 + z2, ϖ =
√

x2 + y2, θ = arctan(ϖ/z),
ϕ = arctan(y/x) for the axial and spherical coordinates.
All the quantities are expressed in the system of adimensional

units in which c = G = M⊙ = 1 (unless explicitly stated).

II. EVOLUTION OF FIELDS ANDMATTER

The code and the method of the evolution is the same of the

one used in Baiotti et.all. [28] and therein described. For self

consistency we report here the main properties and character-

istic of the used simulation method. We have used the gen-

eral relativistic hydrodynamics Whisky code in which the

Einstein and hydrodynamics equations are written as finite-

differences on a Cartesian grid and solved using shock cap-

turing numerical schemes (a first description of the code was

given in [28]) and is a result of a collaboration among several

European Institutes [29].

The code has been constructed within the framework of

the Cactus Computational Toolkit (see [30] for details), de-

veloped at the Albert Einstein Institute (Golm) and at the

Louisiana State University (Baton Rouge). This public do-

main code provides high-level facilities such as paralleliza-

tion, input/output, portability on different platforms and sev-

eral evolution schemes to solve general systems of partial dif-

ferential equations. Clearly, special attention is dedicated to

the solution of the Einstein equations, whose matter-terms in

non-vacuum space-times are handled by the Whisky code.

While the Whisky code is entirely new, its initial develop-

ment has benefited in part from the release of a public ver-

sion of the general relativistic hydrodynamics code described

in [31, 32], and developed mostly by the group at the Wash-

ington University (St. Louis).

A. Evolution of Einstein equations

The original ADM formulation casts the Einstein equations

into a first-order (in time) quasi-linear [33] system of equa-

tions. The dependent variables are the three-metric γij and

the extrinsic curvature Kij , with first-order evolution equa-

tions given by

∂tγij = −2αKij + ∇iβj + ∇jβi, (2.1)

∂tKij = −∇i∇jα + α

[

Rij + K Kij − 2KimKm
j

−8π

(

Sij −
1

2
γijS

)

− 4πρ
ADM

γij

]

+βm∇mKij + Kim∇jβ
m + Kmj∇iβ

m.

(2.2)

Here, ∇i denotes the covariant derivative with respect to the

three-metric γij ,Rij is the Ricci curvature of the three-metric,

K ≡ γijKij is the trace of the extrinsic curvature, Sij is

the projection of the stress-energy tensor onto the space-like

hyper-surfaces and S ≡ γijSij (for a more detailed discus-

sion, see [34]). In addition to the evolution equations, the

Einstein equations also provide four constraint equations to

be satisfied on each space-like hyper-surface. These are the

Hamiltonian constraint equation

(3)R + K2 − KijK
ij − 16πρ

ADM
= 0 , (2.3)

and the momentum constraint equations

∇jK
ij − γij∇jK − 8πji = 0 . (2.4)

In equations (2.1)–(2.4), ρ
ADM

and ji are the energy density

and the momentum density as measured by an observer mov-

ing orthogonally to the space-like hyper-surfaces.
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sion of the general relativistic hydrodynamics code described

in [31, 32], and developed mostly by the group at the Wash-

ington University (St. Louis).

A. Evolution of Einstein equations

The original ADM formulation casts the Einstein equations

into a first-order (in time) quasi-linear [33] system of equa-

tions. The dependent variables are the three-metric γij and

the extrinsic curvature Kij , with first-order evolution equa-

tions given by

∂tγij = −2αKij + ∇iβj + ∇jβi, (2.1)

∂tKij = −∇i∇jα + α

[

Rij + K Kij − 2KimKm
j

−8π

(

Sij −
1

2
γijS

)

− 4πρ
ADM

γij

]

+βm∇mKij + Kim∇jβ
m + Kmj∇iβ

m.

(2.2)

Here, ∇i denotes the covariant derivative with respect to the

three-metric γij ,Rij is the Ricci curvature of the three-metric,

K ≡ γijKij is the trace of the extrinsic curvature, Sij is

the projection of the stress-energy tensor onto the space-like

hyper-surfaces and S ≡ γijSij (for a more detailed discus-

sion, see [34]). In addition to the evolution equations, the

Einstein equations also provide four constraint equations to

be satisfied on each space-like hyper-surface. These are the

Hamiltonian constraint equation

(3)R + K2 − KijK
ij − 16πρ

ADM
= 0 , (2.3)

and the momentum constraint equations

∇jK
ij − γij∇jK − 8πji = 0 . (2.4)

In equations (2.1)–(2.4), ρ
ADM

and ji are the energy density

and the momentum density as measured by an observer mov-

ing orthogonally to the space-like hyper-surfaces.

Hamiltonian +  Momentum constraints

6 equations 
for the metric 

+1 constrain  equation

+3 constrain  equation

+6 equations for the 
time-coordinate 
derivative of the 
metric (extrinsic 
curvature) 



The code: Einstein TOOLKIT + LORENE
• Einstein Toolkit open set of over 100 Cactus thorns for computational 

relativity along with associated tools for simulation management and visualization
• Cactus framework for parallel high performance computing (Grid computing, 

parallel I/O)
• Data are evolved on a Cartesian Mesh with 6 levels of refinement with 

Carpet 

• Matter Evolution with the module GRHydro:  
(Magnetic+CT evolution of Magnetic Field) 
HLLE Riemann Solver  
WENO Reconstruction method (*)  
PPM Reconstruction methods

• Spacetime Metric evolution is performed with the module MacLachlan 
implementing a 3+1 dimensional split of the Einstein Eqs.  
BSSN-NOK Gravitational Evolution scheme (*)  
CCZ4 gravitational evolutions 

• Initial data computed using the LORENE CODE

einsteintoolkit.org



The computational challenge 
❖ Cartesian grid with 6 refinement  

levels (7 when we get a BH).

❖ Standard Resolution in the finest  
grid 0.25 CU and up to 0.125 CU.  
=> from 5,337,100 points up to 42,696,800 
per grid.

❖ Outer grid extends to (1063Km) to extract gravitational 
waves far from the source.

❖ One extra refinement level added just before collapse to 
black hole. 

❖ 12 spacetime variables + 4 gauge variables + 5 
hydrodynamical variables evolved in each point. 

❖ MPI+OpenMP code parallelization.

16

Level min(x/y) max(x/y) min(z) max(z) (N
x

, N

y

, N

z

)
(CU) (CU) (CU) (CU) dx = 0.25

1 ≠720 720 0 720 (185,185,96)
2 ≠360 360 0 360 (205,205,106)
3 ≠180 180 0 180 (205,205,106)
4 ≠90 90 0 90 (205,205,106)
5 ≠60 60 0 30 (265,265,76)
6 ≠30 30 0 15 (265,265,76)

(7 ≠15 15 0 7.5) (265,265,76)

TABLE V. Simulation grid boundaries of refinement levels.
Level 7 is only used for simulations forming a BH, once the
minimum of the lapse – < 0.5. Resolutions as reported in
this paper always refer to grid 6.

—x (CU) 0.75 0.50 0.375 0.25 0.185 0.125
# threads 16 64 128 256 512 2048
# MPI 2 8 16 32 64 256
Memory (GBytes) 3.8 19 40 108 237 768
speed (CU/h) 252 160 124 53 36 16
speed (ms/h) 1.24 0.78 0.61 0.26 0.18 0.08
cost (SU/ms) 13 81 209 974 2915 26053
total cost (kSU, 50 ms) 0.65 4 10.5 49 146 1300

TABLE VI. Computational cost of the simulations, for the ex-
ample of using BSSN-NOK, with WENO reconstruction for
the hydrodynamics. SU stands for service unit: one hour on
one CPU core. The reported values refers to the “GALILEO”
PRACE-Tier1 machine locate at CINECA (Bologna, Italy)
equipped with 521 nodes, two-8 cores Haswell 2.40 GHz, with
128 GBytes/node memory and 4xQDR Infiniband intercon-
nect. Also, these are only correct for evolutions that do not
end with the formation of a BH, as an additional refinement
level was used to resolve the BH surroundings, and more anal-
ysis quantities had to be computed (e.g., the apparent horizon
had to be found). In addition, the simulations resulting in a
BH were performed on facilities at Louisiana State University:
SuperMike II (LSU HPC) and QB2 (Loni).

however, are not the only variables to consider. Required
memory puts a lower bound on the size of the employed
resources, while an upper bound is present at the break-
down of strong scaling.

To quantify these needs, the resolution and the size of
the computational grid are most important. Table V
shows the characteristics of the grid we used for the
present work. In particular we use a fixed structure of
mesh-refined, centered grids, with the exception of an
additional refinement level for simulations resulting in
an apparent horizons, and then only after merge (when
the minimum of the lapse – on the grid dropped below
0.5). In the last column of Table V we show the actual
grid-size in computation-points of each level, for resolu-
tion dx = 0.25 CU. Clearly the actual grid size (including
ghost-zones and bu�er-zones) changes varying with res-
olution, and is not explicitly shown here for that reason.

With the computational domain completely specified,
the next step of an analysis of the computational cost
is to asses the cost for a full simulation of a particular
model at the desired resolution. Table VI shows the ac-
tual simulation cost as function of resolution, for a partic-
ular High-Performance-Computer (HPC) system used in
the present research program, namely the “GALILEO”
system installed at the Italian CINECA supercomputer
center. As it was discussed in the conclusion, our result
show that the combined use of BSSN-NOK and WENO
allows the possibility to find qualitatively accurate results
in agreement with high-resolutions simulations. This is
a very desirable feature since it allows researchers to
quickly scan numerous di�erent models in order to se-
lect the most interesting for further study using higher
resolution.

All of our results have been produced using open source
and freely available software, the Einstein Toolkit for the
dynamical evolution and the LORENE library for gener-
ating the initial models. That means that the whole set
of our result can be reproduced and re-analyzed by re-
running the simulation from a common code-base. Some
modifications of the above mentioned software were nec-
essary, but these changes are also open source, and are
available for download from the University of Parma
WEB web server of the gravitational group [83]. We
kindly ask to cite this work if you find any of the ma-
terial there useful for your own research.
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Initial models studied
❖ The initial data of our simulations is 

calculated using the LORENE code 
[“LORENE: Langage Objet pour la 
RElativité NumériquE,” http://
www.lorene.obspm.fr/] that provides 
the possibility to generate arbitrary 
initial data for irrotational BNS. 

❖ The code is GPL free and can be freely 
and easily used to generate the initial 
data for the simulations.

❖ The initial data generated by LORENE 
show a residual eccentricity and we will 
show how this can be seen in numerical 
simulation (SLy14vs14)

Table from: Martinez et al.: “Pulsar J0453+1559: A Double Neutron Star System with a Large
Mass Asymmetry” arXiv:1509.08805v1 



EOS used in our simulations
❖ Piecewise polytropic representation 

of SLy EOS + thermal component:

❖ 7 pieces EOS => realistic treatment 
of the NS crust and the BH 
accretion disk eventually produced

❖ High density region similar to 
Gamma = 3.00 polytropic.

❖ Still only approximate treatment of 
thermal component.

Read et 
al. 2009

Douchin and Haensel 2000,2001



Results on Numerical Methods comparisons

❖ The combination BSSN + WENO is the best for running 
sensible simulations at low resolution.

❖ With those methods you can run a qualitatively correct 
BNS simulation on your laptop!
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Comparison between 
three different 
reconstruction 
methods for 
hydrodynamics 
(WENO,PPM,MP5)

and two gravity 
(metric) evolution 
schemes 
(BSSN,CCZ4).



Data Analysis: Convergence
❖ Merger time measured from at least 

three different resolution 
simulations for each model.

❖ Convergence order and 
extrapolated “infinite” resolution 
merger time obtained with a fit to:

❖ Despite all observed differences it is 
important to make sure that all 
tested method lead to the same 
determination of the “true” merger 
time t_merger(dx=0).
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 SLy14vs14 (general picture)
Dynamics of the 
evolution of the 

model with equal 
mass where it is 

plotted the matter 
density (rho) at 

various time. In the 
evolution of the 

equal mass models, 
SLy16vs16 promptly 
forms a BH after the 

merger while 
SLy15vs15 shows a 

delayed BH 
formation.



Four Unequal mass models 

In the case of 
unequal mass 

models the 
remaining star 

shows a single bar 
deformation. In the 
merger phase the 

two arms structure 
present in the case of 
equal mass systems 
is transformed into a 
single arm structure 

as the mass ratio 
increases.



SLy14vs14



Results: gravitational waves signal properties 

❖ Example of the FFT of the 
gravitational wave signals 
and the oscillation of the 
maximum density for three 
simulations: an equal mass 
and an unequal-mass one 
and the one with a 
significant softer EOS.

❖  Only the equal mass one 
show the two side peaks

❖ The softer one show a clear 
effect of its greater 
deformability. 



Result for the post merger spectrum
❖ Position of the peaks 

depends on the EOS and on 
the fact that the two masses 
are equal or unequal.

❖ Spectroscopic data are a 
direct route to the 
investigation of the true-
EOS governing matter at 
extreme conditions.
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See for example: K. Takami, L. Rezzolla, and L. Baiotti, Phys. Rev. D91, 064001 (2015), arXiv:1412.3240 [gr-qc] and reference there in..



An example of comparison with literature.
❖ Tidal deformability λ/M-5 as a root to understand the 

position of the peaks? 

❖ There is a loot of debated in literature about universal 
relation between frequency of the packs of the properties 
of the NS like its Mass, Compactness and or the 
deformability of the star.

❖ Problem: are this properties really described by this 
phenomenological relations ?

❖  All depends on the properties of the TRUE EOS and 
indeed all the observable are correlated to the each 
others.

❖ The question is: which one is the correct EOS describe 
the NS and indeed its Mass, Angular Momentum and 
rotational profile, characteristic frequency, ..…

K. Takami, L. Rezzolla, and L. Baiotti, Phys. Rev. D91, 064001 (2015), arXiv:1412.3240 [gr-qc]
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FIG. 11. Mass-weighted frequencies at amplitude maximum
f

max

shown as a function of the dimensionless tidal deforma-
bility �/M̄

5. Filled circles refer to the data from [32], while
colored triangles indicate the data from our binaries (triangles in
boxes refer to the unequal-mass binaries GNH3-q09-M1300 and
SLy-q09-M1300). The dotted line shows the relation suggested
in [31] [i.e., Eq. (22)], while the solid line represents the best fit to
our data [i.e., Eq. (24)]. Note that the systematic differences between
circles and triangles are due to the small differences in the definition
of the time of merger; indeed the red hexagon represents the new po-
sition to which the value for M̄f

max

(empty brown triangle) moves
to when the difference in the time of merger is taken into account and
is very close to the one in Ref. [32] (empty brown circle).

(EOB) description of the tidal effects in BNSs [32]. More
specifically, the EOB analytic approach has revealed quasiu-
niversal relations of the mass-rescaled GW frequency and of
the binding energy at the time of merger when expressed as
functions of ` = 2 dimensionless tidal coupling constant T

2 ,
which is related to tidal deformability by � = 16T

2 M̄
5
/3 in

an equal-mass case. Together with semianalytic calculations,
Ref. [32] also reported the results of numerical-relativity sim-
ulations of equal-mass BNSs for nine different EOSs finding
both a good match with the results of [31] and with those
of the EOB approximation (the data relative to the numeri-
cal simulations in Ref. [32] are shown with filled circles in
Fig. 11).

Because the numerical-relativity results both of Ref. [31]
and of Ref. [32] were restricted to the analysis of equal-mass
systems with average mass M̄ = 1.35M�, it is interesting to
reconsider these quasiuniversal relations when also the mass
of the system is allowed to vary. Of course this was already
explored in [32] within the EOB approximation, but we can
now extend it also to a fully nonlinear regime.

A summary of the correlation of the fmax frequency with

the tidal deformability is shown in Fig. 11, where we indi-
cate with a dotted line the empirical relation suggested in [31]
[i.e., Eq. (22)], with filled circles the data from [32], and with
colored triangles the data from our binaries (triangles in boxes
refer to the unequal-mass binaries GNH3-q09-M1300 and
SLy-q09-M1300). Clearly, also the results presented here
support the universality of fmax as a function of the dimen-
sionless tidal deformability ⇤. At the same time, since ex-
pression (22) does not have any information about the mass of
the system M̄ , this can be introduced rather simply through
the expression

log10

✓
fmax

Hz

◆
⇡ 4.2423 � 0.1546⇤1/5 � log10

✓
2M̄

M�

◆
.

(24)
Stated differently, the universality is really in the quantity
M̄fmax, as already pointed out in Ref. [32]. Expression (24)
is shown as a solid line in Fig. 11 and provides a very good fit
of the data, with a maximum relative difference between the
simulations and fitted values that is only ⇠ 0.7%.

Before concluding this section we should remark about the
amount of scattering in the numerical data. There could be a
number of reasons behind this scatter (e.g., different codes,
different initial data, etc.) but we believe that the largest
source of difference is systematic and comes from a slightly
different definition of the merger time. For example, while we
define it to be the time of the first maximum in the ` = m = 2
mode amplitude |h| = (h+

2 + h⇥
2)1/2, Ref. [31] (and pos-

sibly Ref. [32]) defined it as the time with the maximum am-
plitude of |h+|. Indeed, if we adopt the same definition as
in [31, 32], then the systematic difference disappears. This is
illustrated with the binary H4-q10-M1350, for which we
use the same initial data as in Ref. [32]; the red hexagon
represents the new position to which the value for M̄fmax

(empty brown triangle) moves when the difference in the time
of merger is taken into account and clearly the new value cor-
responds closely to the one in Ref. [32] (empty brown circle).

D. Correlations of the f

1

frequency

As already discussed in Ref. [30], possibly one of the most
interesting aspects of our spectral analysis is that there is a
very clear correlation between the low-frequency peak f1 and
the stellar compactness C ⌘ M̄/R̄. This is shown in Fig. 12,
which reports the values of the f1 frequencies plotted as a
function of C for the various EOSs. Each cross refers to
a given mass and the frequencies grow with mass; i.e., for
each EOS the smallest f1 frequency corresponds to the small-
est mass and the largest frequency to the largest mass. Also
shown as a shaded grey band is the estimate of the total error,
which is effectively dominated by the fitting procedure of the
PSD, since the average numerical error from the simulations is
estimated to be 0.06 kHz, while the average uncertainty in the
fitting procedure of the PSD is of 0.2 kHz (see also Ref. [70]).

The behavior of the low-frequency peak is remarkably con-
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FIG. 6. Gravitational waveforms for all the binaries with equal masses and nuclear-physics EOSs as evolved at the reference medium resolution.
Each row refers to a given EOS, while each column concentrates on a given initial mass. The different EOSs are distinguished by different
colors, and we will adopt this color coding also for all the subsequent plots; more details on the various binaries are shown in Table II.

Also in the frequency domain, a rapid scan of the panels
allows one to discern the most important features. First, and
as discussed by several authors [8, 23–27, 66, 70], all PSDs
show a clear and strong peak, i.e., the f2 peak, which, at these
distances, can be 1 order of magnitude or more above the sen-
sitivity curve of the Advanced LIGO detectors. This peak
is clearly related to the rotation of the bar-deformed HMNS
and corresponds, in a corotating frame, to a (quadrupolar)
` = m = 2 mode moving at a positive pattern speed in
the prograde direction [28]4. As we will comment later in
Sec. V E, this mode can be seen to correlate with a number
of properties of the stars comprising the binary, although this
dependence is different for different EOSs and is “universal”
only at a fixed mass.

All of the panels also show the presence of a low-frequency
peak, i.e., the f1 peak, which has already been discussed in

4 As customary, the prograde direction is the direction of rotation of the
HMNS as seen in an inertial frame.

detail in Ref. [28], where it was indicated as f�. This peak
always has a power smaller than that of f2 and it can hap-
pen that if the EOS is particularly soft (e.g., as for the bi-
nary APR4-q10-M1275) or if the mass is particularly small
(e.g., as for the binary SLy-q10-M1250), it is hard to dis-
tinguish it from the background. However, because the peak
is also sitting in a region where the sensitivity of detectors
is higher, it will be detectable at these distances with a SNR
smaller but comparable to that of the f2 peak (cf., Table III).
As remarked in [30], this peak is is produced by the nonlin-
ear oscillations of the two stellar cores that collide and bounce
repeatedly right after the merger. More important, as we will
comment later in Sec. V D, this mode correlates tightly with
the stellar compactness C in a way that is essentially universal,
that is independent of the EOS.

In addition to the f1 and f2 peaks, the PSDs also show the
presence of an additional peak at frequencies higher than f2

(see top left panel of Fig. 7). We have dubbed this peak as
f3 (in Ref. [28] it was instead indicated as f+) and its value
is approximated as f3 ⇠ 2f2 � f1 with a precision of about

Phys. Rev. D91, 064001 (2015)



Difficult to reproduce results…
❖ “Initial data for neutron star binaries with arbitrary spins”, Tsatsin and 

Maronetti in  PHYSICAL REVIEW D 88, 064060 (2013)

❖ Reduced eccentricity: “Binary Neutron Stars with Generic Spin, Eccentricity, 
Mass ratio, and Compactness - Quasi-equilibrium Sequences and First 
Evolutions”, Dietrich et all 2015 (1507.07100)

❖ “New code for quasiequilibrium initial data of binary neutron stars: 
Corotating, irrotational, and slowly spinning systems“ by Antonios Tsokaros 
et all.  PHYSICAL REVIEW D 91, 104030 (2015)  
Realistic Spins: “Mergers of binary neutron stars with realistic spin”, 
Bernuzzi et all (2014) PHYSICAL REVIEW D 89, 104021 (2014).

❖ Properties of the port-merger HMNS: “Properties of hypermassive neutron 
stars formed in mergers of spinning binaries” Kastaum et.all. PHYSICAL 
REVIEW D 91, 064027 (2015)
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Delayed Black-Hole Formation



SLy16vs16 Model dx=0.50 dx=0.375 dx=0.25

Sly16vs16 0.83 ms 0.81 ms 0.79 ms



Collapse time to Black Hole (after Merger)
Model dx=0.50 dx=0.375 dx=0.25

Sly15vs15 6.11 ms 11.81 ms 7.36 ms

Sly16vs16 0.83 ms 0.81 ms 0.79 ms



Collapse time to Black Hole (after Merger)

Model dx=0.50 dx=0.375 dx=0.25

Sly15vs15 6.11 ms 11.81 ms 7.36 ms

Sly16vs16 0.83 ms 0.81 ms 0.79 ms
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BUDGET for model 16vs16 
   Final mass BH np.max(Mbh[1]) is: 2.82937414009 
   Final J    BH np.max(Lbh[1]) is: 6.40877814116 
   Mass in disk  np.min(MATTER) is: 3.60524241442e-05 
   Total simulated time after BH  : 41.6623738628 
   Values 25 ms after BH formation 
        BH M     =  2.82551213935 
        BH J     =  6.40772796317 
        BH J/M^2 =  0.802619506998 
        Mass =  6.1875728259e-05

BUDGET for model 15vs15 
   Final mass BH np.max(Mbh[0]) is: 2.57733745845 
   Final J    BH np.max(Lbh[0]) is: 4.46170131712 
   Mass in disk  np.min(MATTER) is: 0.0162523005579 
   Total simulated time after BH  : 33.9091725788 
   Values 25 ms after BH formation 
        BH M     =  2.57531472352 
        BH J     =  4.44682924429 
        BH J/M^2 =  0.670486181372 
        Mass =  0.0278916700256 



Multi orbits simulations (four different EOS)
❖ APR4 EOS obtained using variational chain summation methods with the Argonne two-nucleon interaction 

and including also boost corrections and three-nucleon interactions

❖ The SLy EOS based on the Skyrme Lyon effective nuclear interaction  

❖ The H4 EOS constructed in a relativistic mean field framework including also Hyperons contributions and 
tuning the parameters to have the stiffest possible EOS compatible with astrophysical data 

❖ The MS1 EOS constructed with relativistic mean field theory considering only standard nuclear matter. 

We present new long term (up to 16 
orbits) equal mass BNS simulations with 

four different EOS, starting with four 
different values of the star center 

d=(40,44.3,50,60)Km.

The true EOS for nuclear matter in a 
system similar to a NS is still unknown, 
not even assuming a small effect on the 
temperature, i.e., cold neutron star, as 

expected here for initial data.

Binary neutron star merger simulations with different initial orbital frequency and equation of state, F. Maione, R. De Pietri, A. Feo and F. Loeffler,  arXiv:1605.03424



Multi Orbits simulations
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(a) Mass-Radius relations (b) Initial density profiles

Figure 1 – Left: Mass-radius relations for non-rotating neutron stars with four nuclear
EOSs. The horizontal gray line marks the mass of PSRJ0348+0432 M = 2.01M§[75].
Right: Initial density profiles for the stars using these four EOSs, with a Baryon mass
of 1.4M§.

stars for each of these EOS. They have been generated solving the TOV equations with
the code rns [76].

We followed [77] parameterizing the EOSs as piecewise polytropes, with the
following expressions in each density interval [fl

i≠1

, fl
i

]:
P

cold

= K
i

fl�i (1)

‘
cold

= ‘
i

+ K
i

�
i

≠ 1fl�i≠1. (2)

For each EOS we used 7 polytropic pieces, of which the first four (at lower densities)
always adopt the prescription of [71, 72] for the stellar crust and the three remaining,
instead, use the coe�cient found in appendix B of [77] for each of the four EOS models
described above. Characteristics of the employed EOSs and of their impact on the
initial models are listed in Tab. 1.

During the evolution, the EOS is supplemented by a thermal component of the
form

P
th

= �
th

fl(‘ ≠ ‘
cold

), (3)
choosing �

th

= 1.8 following the results of the discussion in [78].

3. Results

We analyzed the dynamics of the inspiral phase of a BNS merger, performing numerical
simulations of an equal mass binary system using four di�erent EOSs for the cold
nuclear matter and starting the dynamical evolution from four di�erent values of
coordinate distance between the star centers.

17

Figure 8 – Overview of the plus polarization of the gravitational wave strain rh+
22

for each model simulated. The waveforms of models with the same EOS are aligned at
their merger times (the time of the maximum of |h22|). The waves starting from di�erent
initial frequencies are marked with di�erent colors (blue: d = 60 km, green: d = 50 km,
red: d = 44.3 km, cyan: d = 40 km). They show a di�erent phase evolution in the
last orbits and some di�erences in the wave amplitude in the merger and post-merger
phases.

All this analysis neglects the interplay between eccentricity and tidal e�ects,
since Post Newtonian approximants including both have not been yet developed.
Nevertheless, eccentricity is a known source of error, and can be reduced with the
procedure outlined above [68, 69], which is advisable when calibrating analytical
models with long, high-resolution numerical simulations.

3.3. Comparison of BNS simulations with di�erent starting distance

The main purpose of this work is to compare the dynamical evolution of initial BNS
models with the same EOS and di�erent starting distance between the stars (i.e.
di�erent initial frequencies). This comparison is useful to get insights on the numerical
errors accumulated during many orbits and to validate the correctness of LORENE
initial data, even when the two starts are close to each other and the tidal e�ects
have a relevant impact on the system evolution from the beginning of the dynamical
simulation. This can also be seen as using the full 3d numerical evolution to fill the
gaps between several quasi-equilibrium configurations through which the coalescing
binary must pass.
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Figure 5 – Evolution of the coordinate distance between the star centers, assumed
as the points with the maximum density inside each star. The e�ect of the orbital
eccentricity is clearly recognizable in the distance oscillations. We note also that the
orbital evolution of models starting at di�erent initial distances does not perfectly match,
in particular for the more compact models. Also see Sec. 3.3 for a discussion.

3.2. Orbital Eccentricity

The amplitude of the gravitational wave strain shows a characteristic oscillation in
all our simulations (see Figs. 6 and 8). This phenomenon has been interpreted in
the literature as an imprint of a small eccentricity in the orbital evolution due to
the missing approaching radial velocity in the quasi-circular initial data [68, 69] (see
Sec. 2). We checked the trajectories of our BNS systems, calculating their eccentricity
in a simple way, and later confronted their gravitational wave strain with the one
computed with a recently developed analytical model for eccentric binaries [95].

We computed the trajectories by following the dynamics of the star centers,
defined as the points on the numerical grid with the maximum density fl. Next,
we computed the coordinate distance D between the star centers at each time step,
and fitted its derivative (computed with a fourth order operator) with the following
Newtonian approximation for the orbital evolution:

Ḋ(t) = A
0

+ A
1

t ≠ e D
0

Ê
e

sin (Ê
e

t + „
e

) , (20)
where e is the eccentricity and D

0

= d the initial coordinate interbinary distance. The
fit is performed in the time interval between t

ret

= 3ms and t
ret

= 2

3

t
merger

, to avoid
the initial spurious radiation and the plunge phase but having at least one eccentricity
cycle included. For the models starting from only d = 40 km it is not possible to satisfy
that last requirement, which is why we excluded those simulations from the analysis

❖ Simulation starting from different initial distance of 
the two stars (d=40,44.3,50,60 km) and different EOS 

Separation as function of time (eccentricity)



Conclusions
❖ With the first detection of GWs the era of Gravitational waves astronomy 

just started.

❖ Long term simulation of BNS mergers using only public codes: You 
can re-run all the models on your own. 

❖ It is possible to check the code on a laptop … (Using our setting).

❖ All the simulation presented here were performed on Tier-1 system.

❖ More insight improving the resolution of the simulation. 

❖ Confirmation of previous results published in literature. 

❖ Just a starting point for new research …. 



What’s next ?
❖ Investigate dependence of collapse time on resolution and EoS.

❖ Matter expelled not-axisymmetrically during merger => study accretion disk 
formation, mass, composition and development to an equilibrium configuration.

❖ Can (magneto)hydrodynamical instabilities develop in the disk? 

❖ (Black hole like) kicks from linear momentum emitted in gravitational waves and 
unbound matter expelled not-axisymmetrically.

❖ Realistic treatment of EOS thermal component (ex. Using finite temperature EOS 
from relativistic mean field theory like Shen EOS).

❖ Simulations with magnetic fields to study the development of magnetic 
instabilities during the merger (Kelvin-Helmotz), in the hypermassive NS and the 
accretion disk (MRI).

❖ Studying possible electromagnetic and jet emissions after collapse.

❖ Use of OpenMP4 to test at least part of the code on GPUs and Intel MICs.


