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I. QCD Phase Diagram

QCD Partition Function

Phase Quenched QCD

Phase Diagram

Sign Problem
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QCD Partition Function

ZQCD(m,µ) =
∑

states,k

e−β(Ek−µNk).

Nk is the charge of the state k and Ek is the relativistic energy

Ek =
∑

i

√

pk2

i
+mk2

i
.

At low temperatures the partition

function does not depend on µ for

µ < mN .

So observables do not depend on

µ in this parameter domain.

Ne
_ (m _ µ)/ T

m N
µ
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Dirac Operator

The QCD partition function the trace of the time evolution operator at

imaginary time t = iβ, which can be written as a path integral,

ZQCD(m,µ) = 〈
Nf
∏

k

det(D +m+ µγ0)〉YM.

Dirac

operator

quark mass chemical

potential
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Phase Quenched QCD

The QCD partition function where the fermion determinant has been

replaced by its absolute value (the phase quenched QCD partition

function) can be written as

Z|QCD| = 〈| det(D +m+ µγ0)|2〉 = 〈det(D +m+ µγ0) det(D +m− µγ0)〉.

Therefore, µ can be interpreted as an isospin chemical potential.

Goldstone bosons made out of quarks and conjugate anti-quarks are

charged with respect to the chemical potential.

Alford-Kapustin-Wilczek-1999

The mass of the Goldstone bosons is given by Mk − 2µqk with qk the

charge of the Goldstone bosons.

A phase transition to a Bose condensed phase takes place at

µ = mπ/2 .

KSTVZ-2000, Toublan-JV-2000, Son-Stephanov-2000
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Phase Diagram QCD and |QCD|

Τ

critical endpoint

〈q̄q〉 6= 0〈q̄q〉 6= 0

〈qq〉 6= 0

µ

〈q̄q〉 = 0

µ = mN/3

Schematic QCD phase diagram.
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Phase diagram of phase

quenched QCD (de

Forcrand-Stephanov-

Wenger-2007).

The high temperature expansion of the free energy can be obtained by

a Taylor expansion (Allton-et-al-2003, Gavai-Gupta-2003), reweighting

(Fodor-Katz-2002) or from an extrapolation from imaginary µ

(Lombardo-2000, de Forcrand-Philipsen-2002, D’Elia-Lombardo-2002).
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Sign Problem for µ 6= 0

Because the Dirac operator at nonzero µ is nonhermitean, the fermion

determinant is complex

det(D + µγ0 +m) = eiθ| det(D + µγ0 +m)|.

The fundamental problem is that the average phase factor may vanish

in the thermodynamic limit, so that Monte-Carlo simulations are not

possible (sign problem).

The severity of the sign problem can be measured by the ratio

〈e2iθ〉1+1∗ ≡ 〈det2(D +m+ µγ0)〉
〈| det(D +m+ µγ0)|2〉

∼ e−V (FNf=2−Fpq).

full QCD

partition function

phase quenched

partition function

Splittorff-JV-2006
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Sign Problem

� Because of the severity of the sign problem the QCD partition

function cannot be simulated by Monte-Carlo methods at low

temperatures and nonzero baryon densities.

� To get some information on what is going on in QCD at nonzero

chemical potential one needs to construct models that can be

solved.

� If such models can be solved analytically they can be used to test

new algorithms.
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I. Random Matrix Models

Three Random Matrix Models

Testing Algorithms

Why do Random Matrix Theories work?
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Random Matrix Model at Nonzero Chemical
Potential

QCD partition function

Z(m,µ) = 〈det(D +m+ µγ0)〉 =
〈

det





m id† + µ

id+ µ m





〉

The matrix elements of d are random variables because the the gauge

fields are stochastic variables distributed according to the Yang-Mills

action.

ZRMT(m,µ) =

∫

dWdW ∗P (W ) detD.

� The radical proposal is to replace the matrix elements of d by

independently distributed Gaussian random variables.

� QCD is strongly interacting and random matrix theories are the

ultimate strongly interacting theories.
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Random Matrix Model

D =





m iW + µ

iW † + µ m



 ,

where µ can be arbitrary complex and the n× n matrix W is

distributed according to

P (W )dWdW ∗ = e−nΣ2TrW †W .

The model has one parameter, Σ , which is the chiral condensate.

� Imaginary chemical potential Jackon-JV–1994

� Real chemical potential Stephanov-1996
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Solution of the Random Matrix Model

The random matrix partition function can be evaluated exactly at any

finite n Halasz-Jackson-JV-1998

Zν(m,µ) =

∫ ∞

0

dssν+1Iν(2mnsΣ)(s
2 − µ2)ne−nΣ2(s2−µ2+m2).

This expression is valid for arbitrary complex

µ and is an analytic function of µ .

This supports the idea of getting around the

sign problem by analytical continuation to

imaginary chemical potential or by Taylor

expansion.

Lombardo-2000, D’Elia-Lombardo-2002, de

Forcrand-Philipsion-2002, Allton-et-al-2003,

Gavai-Gupta-2003
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Successes of the Random Matrix Model

The chiral phase transition with increasing temperature

The nature of the quenched approximation

The phase diagram of QCD at µ 6= 0

The spectrum of the Dirac operator
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Finite Temperature Chiral Phase Transition

Replace the time derivative by only the lowest Matsubara frequency

∂0 → iπTσ3

det





m iW + iπTσ3

iW † + iπTσ3 m



 = det





m iWσ3 + iπT

iσ3W
† + iπT m





and σ3 can be absorbed in the probability distribution.

This model has a chiral phase transi-

tion at T = 1/πΣ . Jackson-JV-1994

πT can also be interpreted as imagi-

nary chemical potential.
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The Nature of Quenching

The quenched partition function is given by

lim
k→0

〈detk(D +m+ µγ0)det
k(D +m+ µγ0)

†〉

= lim
k→0

〈detk(D +m+ µγ0)det
k(D +m− µγ0)〉.

Therefore, the quenched theory has the physics of the phase

quenched theory and has a pion condensate phase transition when

µ > mπ/2 .

Stephanov-1996
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Model for the Transition to Nonzero Baryon
Density

For increasing chemical potential,

this model has a first order phase

transition to a phase with vanishing

chiral condensate and nonzero

baryon density.

For large n the results are given by

the mean field approximation and

do not depend on the number of fla-

vors.
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Model for the Phase Diagram of QCD

By including the temperature at

nonzero chemical potential through

the lowest Masubare frequency, we

obtain a random matrix model that al-

lows us to calculate the phase diagram

in the µ− T −m-plane.

This works because the random ma-

trix model is equivalent to a sixth order

Landau-Ginsberg potential.

Halasz-Jackson-Stephanov-

Shrock-JV-1998
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Other Models

Osborn model

BBKSV model
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The Osborn Model

Two Matrix Model

Z(m,µ) =

∫

dΦ1dΦ2det
n





m iΦ1 + µΦ2

iΦ†
1 + µΦ†

2 m



 e−nΣ2Tr(Φ†
1
Φ1+Φ†

2
Φ2).

� This model has a much larger invariance group, U(n)×U(n), which

is the reason that is completely solvable.

� The eigenvalue density can be obtained analytically.

� Duality: Z(Σ, µ) = Z(Σµ, 1/µ) .

� Z(m,µ) = (1− µ2)nZ( m√
1−µ2

, 0) for µ < 1 .

� There is no phase transition at µ = 1 .
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Solution of the Osborn Model

Solution for µ < 1 (in units where Σ = 1 )

Z(m,µ) = (µ2 − 1)2n+ν+1e
− m2n

1−µ2

∫ ∞

0

sdssν+1(s2)ne−ns2|1−µ2|Iν(2mns)

Osborn-2004

Solution of the JSV model

Zν(m,µ) = e−n(m2−µ2)

∫ ∞

0

dssν+1Iν(2mns)(s
2 − µ2)ne−ns2 .
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The BBKSV Model

Z(m,µ) =

∫

dΦ1dΦ2 det





m eµΦ1 − e−µΦ†
2

−e−µΦ†
1 + eµΦ2 m



 e−2nΣ2Tr(Φ1Φ
†
1
+Φ2Φ

†
2
)

where Φ1 and Φ2 are complex n× n matrices.

Bloch-Brückmann-Kieburg-Splittorff-JV-2013

The Gaussian integral is only nonzero for terms that have an equal

number of factors Φi and Φ†
i for i = 1, 2 so that the partition function

does not depend on µ .

� Z(m,µ) = Z(m, 0) .

� Z(m,µ+ πi/2) = Z(m,µ) .
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Testing the Complex Langevin Algorithm

Test of the complex Langevin algorithm for the BBKSV Model

Nagata-Nishimura-Shimasaki-2016

Complex Langevin works after “gauge cooling” adapted for random

matrix theory.
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Why do Random Matrix Models Work?

� The random matrix theory has the global symmetries of QCD.

� The pattern of spontaneous symmetry breaking is the same as in

QCD.

� In microscopic limit,

mV = fixed, λV = fixed, µ2V = fixed for V → ∞

the above random matrix theories coincide with QCD.

� More precisely, in this limit random matrix theory coincides with the

ǫ-domain of chiral perturbation theory.

� The mean field limit of the chiral Lagrangian in the p-counting

scheme coincides with the ǫ -limit of QCD.
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Microscopic Limit of QCD

The ǫ limit of the two flavor QCD partition function with chemical

potentials µ1 and µ2 is given by

Zν(m,µ1, µ2) =

∫

U∈U(2)

detνUe−
1

4
V (µ1−µ2)

2F 2Tr[U,τ3][U
†,τ3]+mV ΣTr[U+U−1].

This partition function can be derived from the microscopic limit of

random matrix theory. Toublan-JV-2000

The partition function does not depend of the baryon chemical

potential µ = (µ1 + µ2)/2 .

The chiral condensate is µ-independent for µ < µc.
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Dirac Spectra

Why?

Dirac spectra at nonzero chemical potential

Chiral condensate

Dense matter, strangeness and waves in Dirac spectra

Random Matrix Models – p. 28/41



Dirac Spectra

Why are we interested in Dirac spectra?

Z(m,µ) = 〈det(D +m+ µγ0)〉 = 〈
∏

k

(iλk +m)〉

= 〈det(γ0(D +m) + µ)〉 = 〈
∏

k

(µk + µ)〉

� Chiral condensate

〈ψ̄ψ〉 = 1

V

d

dm
logZ =

1

V

〈

∑

k

1

m+ iλk

〉

.

� Baryon number density

〈nB〉 =
1

V

d

dµ
logZ =

1

V

〈

∑

k

1

µ+ µk

〉

.
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Phase Factor and Dirac Eigenvalues

det(D +m+ µγ0) = eiθ| det(D +m+ µγ0)|
∏

k(iλk +m) phase factor

Scatter plot of Dirac eigenvalues
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quark mass m

cm

Barbour et al. 1986

m < mc then 〈eiθ〉 ∼ 0
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Dirac Spectra in Random Matrix Theory

Spectrum of (cosφ+ iγ0 sinφ)(D +m+ µγ0)

Lombardo-Splittorff-JV-2009
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Dirac Spectra at Nonzero Chemical Potential

At nonzero chemical potential the Dirac operator is nonhermitian.

Based on our experience from Random Matrix Theory, we expect the

following:

� At small chemical potential we expect the eigenvalues to move

perpendicular to the imaginary axis.

� The eigenvalues are distributed more or less homogeneously in a

compact region.

� The topology of the region is trivial. A nontrivial topology can only

occur after a phase transition.
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Width of Quenched Dirac Spectrum

quark mass m

��
��
��

��
��
��

����
����
����
����
����
����

����
����
����
����
����
����

������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������

Scatter plot of Dirac eigenvalues

mc

µ2 =
1

4
m2

π =
mΣ

2F 2
,

can also be written as

m =
2µ2F 2

Σ
.

= 2µ2F 2

Σ

The width of the Dirac spectrum follows from a mean field analysis of

the phase quenched partition function.

Gibbs-1986,Stephanov-1996, Toublan-JV-2000

The sign problem becomes severe for µ > mπ/2 when the quark

mass is inside the support of the eigenvalues.

Splittorff-JV-2006
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Dirac Spectrum and Chiral Condensate

quark mass m
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Scatter plot of Dirac eigenvalues

mc

condensate

Chiral condensate
in full QCD

Support of spectrum

Quenched chiral

Σ(m) = 1
V

∑

k
1

m+iλk

m

Σ(m)

� For nonhermitean theories theories with a complex determinant,

the support of the Dirac spectrum does not depend on the complex

phase of the determinant.

� Exponential cancellations can wipe out the critical point and reveal

a completely different physical system. This is the case of QCD at

nonzero baryon density.
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Spectral Density of Full QCD

The spectral density at nonzero chemical potential is defined by

ρ(λ) = 〈
∑

k

δ(λ− λk)〉.

� The average contains a complex determinant and therefore the

spectral “density” is in general complex.

� At nonzero chemical potential the quenched or phase quenched

chiral condensate vanishes even at low temperatures.

� The obtain a nonvanishing chiral condensate the spectral “density”

in full QCD has to be drastically different.

‘
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Spectral Density of Full QCD

� In the microscopic domain, the spectral density of full QCD is given

by random matrix theory and can be evaluated analytically.

Osborn-2004

� It turns out that the spectral density contains a region with strong

oscillations with a period ∼ 1/V and an amplitude that grows

exponentially with the volume.

� The oscillatory region extends over a finite part of the complex

plane.
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Dirac Spectrum QCD at µ 6= 0
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Real part of the spectral density for QCD with one flavor at nonzero chemical

potential.

The oscillatory region is responsible for the discontinuity in the chiral

condensate.

Osborn-Splittorf-JV-2005/2008, Osborn-2004
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Mechanism for Discontinuity of the Chiral
Condensate

� The Banks-Casher formula states that a

discontinuity in the chiral condensate requires

a dense Dirac spectrum on the imaginary axis.

� Using a random matrix theory at nonzero

chemical potential we (OSV) showed that a

discontinuity can be obtained from a strongly

oscillating spectral density with a period ∼ 1/V

and an amplitude that grows exponentially with

the volume.

� This is a generic mechanism that occurs in

nonhermitian theories with a sign problem.

Osborn-Splittorff-JV-2006,Ravagli-JV-

2007,Kanazawa-Wettig-2013,Wettig-JV-2014

m
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Dense Matter, Strangeness and Waves in the
Dirac Spectrum

Oscillatory Region

quark mass m

Dirac spectrum for Full QCD.

2F 2µ2

Σ

8
3
µ2F 2

Σ − m
3

The dotted region is in a pion

condensed phase.

The dashed region is in a

kaon condensed phase.

The remainder of the com-

plex phase is in the normal

phase.

Osborn-Splittorff-JV-2005/2008,

Osborn-2004

Generating function for Dirac spectrum

Z = 〈det(D + µγ0 +m)| det(D + µγ0 + z)|2〉.

Three flavor partition function with an isospin and strangeness

chemical potential.
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Comments

� The oscillatory region is responsible for the discontinuity in the

chiral condensate.

� This implies that the oscillatory region has to vanish for T > Tc

� The oscillatory region is absent for µ < mπ/2 .

� For QCD with dynamical quarks we have two independent

mechanisms to restore chiral symmetry for µ > mπ/2 :

⋆ A gap develops in the Dirac spectrum.

⋆ The oscillatory region shrinks to zero.
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VII. Conclusions

� It is one of the great triumphs of Random Matrix Theory that it can

describe the low-energy limit of a fundamental quantum field

theory.
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