The Electric Form Factor of the Neutron with Polarized Targets

Seamus Riordan Stony Brook University seamus.riordan@stonybrook.edu

April 20, 2016

Seamus Riordan — ECT* Apr 2016 G_Eⁿ 1/40

- Review of G_E^n -I, E02-013
- G_E^n to $Q^2 = 10 \text{ GeV}^2$: E12-09-016
 - Requirements and Setup
 - Background
 - Time of Flight Issues

Nucleon Currents

Scattering matrix element, $M \sim \frac{j_{\mu}J^{\mu}}{Q^2}$ Generalizing to spin 1/2 with arbitrary structure, one-photon exchange, using parity conservation, current conservation the current parameterized by two form factors

$$J^{\mu} = e\bar{u}(p') \left[F_{1}(q^{2})\gamma^{\nu} + i\frac{\kappa}{2M}q_{\nu}\sigma^{\mu\nu}F_{2}(q^{2}) \right] u(p)$$

Form Factors

- Dirac F₁, chirality non-flip
- Pauli F2, chirality flip

Replace with Sachs Form Factors

$$G_E = F_1 - \kappa \tau F_2$$

$$G_M = F_1 + \kappa F_2$$

G_E/G_M at high Q^2 - Spin Observables, Pol. Transfer

- Akhiezer and Rekalo (1968) Polarization experiments offer a better way to obtain G_E than Rosenbluth separation
- Polarization observable measurements generally have fewer systematic contributions from nuclear structure and radiative effects

G_E/G_M at high Q^2 - Spin Observables, Pol. Target

Long. polarized beam/polarized target transverse to \vec{q} in scattering plane

Helicity-dependent asymmetry roughly proportional to G_E/G_M

$$\frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} \approx A_\perp = -\frac{2\sqrt{\tau(\tau+1)}\tan(\theta/2)\mathsf{G}_{\mathsf{E}}/\mathsf{G}_{\mathsf{M}}}{(\mathsf{G}_{\mathsf{E}}/\mathsf{G}_{\mathsf{M}})^2 + (\tau + 2\tau(1+\tau)\tan^2(\theta/2))}$$

Polarized Target Measurements - Nulling asymmetry

Long. polarized beam/polarized transverse to \vec{q} in scattering plane

$$\begin{aligned} \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} &= A_\perp \sin \theta^* \cos \phi^* + A_\parallel \cos \theta^* \\ &= -\frac{2\sqrt{\tau(\tau+1)} \tan(\theta/2) G_E/G_M \sin \theta^* \cos \phi^*}{(G_E/G_M)^2 + (\tau + 2\tau(1+\tau) \tan^2(\theta/2))} \\ &- \frac{2\tau \sqrt{1 + \tau + (1+\tau)^2 \tan^2(\theta/2)} \tan(\theta/2) \cos \theta^*}{(G_E/G_M)^2 + (\tau + 2\tau(1+\tau) \tan^2(\theta/2))} \end{aligned}$$

- A_{\parallel} provides "reference asymmetry" that is mostly dependent just on kinematic variables
- Setting A_{||} and A_⊥ to cancel by rotating target pol. angle reduces uncertainties contributed by scaling effects in asymmetry such as target and beam polarization
- Need to know G_E^n a priori to do it correctly, only for low Q^2

Polarized ³He Target

• ${}^{3}\mathrm{He}$ is spin 1/2, 3 body calculations describe polarization as

- 86% only for inclusive case
- $\bullet\,$ D-wave state contributes $\sim 10\%$ to w.f. sensitive to missing momentum range

• ${}^{3}\mathrm{He}$ is spin 1/2, 3 body calculations describe polarization as

- 86% only for inclusive case
- $\bullet\,$ D-wave state contributes $\sim 10\%$ to w.f. sensitive to missing momentum range

Nuclear Corrections

- Nuclear effects evaluated by M. Sargsian in Generalized Eikonal Approximation
 - Determine effective neutron/proton polarization
 - Evaluate rescattering effects on asymmetry
- Considers four main diagrams

• PWIA, MEC, FSI, IC

FSI Contributions

- MEC and IC become suppressed at higher Q^2
- At high p, total cross sections for σ_{pp} , σ_{pn} becomes roughly constant
- Selection on small missing momenta suppress contributions from FSI
- Charge exchange can modify final asymmetry (unpol. p get into n sample)

Seamus Riordan — ECT* Apr 2016

G_{F}^{n} Measurements at JLab

- G_{F}^{n} least well measured range of Q^{2}
- More difficult to measure relative to other FFs since
 - G_{F}^{n} is intrinsically small compared to G_{M}^{n}
 - $\bullet\,$ Neutron is not stable outside nucleus, use targets $^2{\rm H}$ and $^3{\rm He}$
- Four experiments done at JLab:
 - Hall C E93-026 Zhu et al., Warren et al. $\vec{d}(\vec{e}, e'n)p$, $Q^2 = 0.5, 1.0 \text{ GeV}^2$
 - Hall C E93-038 Madey et al. $d(\vec{e}, e'\vec{n})p$, $Q^2 = 0.4 - 1.5 \text{ GeV}^2$
 - Hall A E02-013 ${}^{3}\overrightarrow{\text{He}}(\vec{e}, e'n)pp$, $Q^{2} = 1.2 3.4 \text{ GeV}^{2}$ Hall A E05-102 ${}^{3}\overrightarrow{\text{He}}(\vec{e}, e'n)pp$, $Q^{2} = 0.4 1.0 \text{ GeV}^{2}$

Neutron Form Factors

E02-013 Experimental Setup

- \bullet Polarized $^{3}\mathrm{He}$ target acts as effective free neutron source
- Two arms to measure coincidence e' and n, allow for cuts on $p_{{\rm miss},\perp}$ to suppress FSI

- BigBite large acceptance spectrometer, reconstructs $\vec{e'}$
- Neutron arm matches BB acceptance, measures neutron momentum through ToF, performs nucleon charge ID

Polarized ³He Target

- Target polarized through hybrid spin exchange optical pumping technique
- $\bullet \ \gamma \to \mathrm{Rb} \to \mathrm{K} \to {}^{3}\mathrm{He}$
- Record high polarization (at the time) with this technique

- Measure polarization through NMR/EPR
- Polarization stable and about 30-45% in beam

- Target polarized through hybrid spin exchange optical pumping technique
- $\gamma \rightarrow \text{Rb} \rightarrow \text{K} \rightarrow {}^{3}\text{He}$
- Record high polarization (at the time) with this technique

- Measure polarization through NMR/EPR
- Polarization stable and about 30-45% in beam

BigBite Detector Set

Neutron Arm

Proton and Neutron Differentiation

- Neutron arm detects recoiling proton/neutron, $\eta\sim 50\%$
- Measures momentum through ToF, charge through veto layers
- Time resolution $\sigma_t = 300 \text{ ps}$, nucleon momentum resolution $\sigma_p \approx 300 \text{ MeV}$ for $Q^2 = 3.4 \text{ GeV}^2$ point
- $\bullet~$ Covers 5m $\times~$ 1.6m about about 10m away Matches BigBite acceptance for QE electrons
- Few hundred kHz rate/bar, relatively low threshold

Quasielastic Selection

Need to reliably separate neutral QE events

- Invariant mass assuming free stationary nucleon target
- Missing mass of ³He(*e*, *e'n*)X

$Q^2 = 1.7 \text{ GeV}^2$ Quasielastic Selection

$Q^2 = 3.4 \text{ GeV}^2$ Quasielastic Selection

• Momentum resolution degraded due to shorter time-of-flight

Proton Contamination

- Veto not 100% efficient, full detector not symmetric in *p* and *n* efficiency and varies with energy!
- \bullet Evaluated through uncharged/charged ratios of ${\rm H_2},~^3{\rm He},~{\rm N_2}$

• e.g.
$$\frac{N_{p \to n}}{N_{p \to p}} = \frac{N_{un}}{N_{ch}} \Big|_{H_2}$$

$$D_{p} = rac{1}{1+rac{\mathrm{N}_{\mathrm{p}
ightarrow n}}{\mathrm{N}_{\mathrm{n}
ightarrow n}}}$$

- Monte Carlo simulations generally in agreement
- Evaluated to be 10-25% with systematic error of few percent
- Small proton asymmetry contributions are taken into account

- Accidental Background: 2%
- Nitrogen dilution: 5%
- Misidentified protons: 20%
 - Evaluated through data and Geant4 monte carlo
- Inelastic Events: 0 15%
 - Evaluated through Geant4 monte carlo + MAID
- Nuclear effects + FSI: 5%

Inelastic Contribution/Subtraction - $Q^2 = 1.7 \text{ GeV}^2$

 Asymmetry similar to elastic asymmetry overall correction is smaller

Seamus Riordan — ECT* Apr 2016 G_Fⁿ 21/40

Inelastic Contribution/Subtraction - $Q^2 = 3.4 \text{ GeV}^2$

 Asymmetry similar to elastic asymmetry overall correction is smaller

Seamus Riordan — ECT* Apr 2016 G_Eⁿ 22/40

FSI Results

- Effective polarization highly dependent on missing momentum cuts
- Very different from 86% inclusive assumption, $P_n > \sim 95\%$
- Scanning all kinematics for variety of G_F^n values and our cuts:

• Correction from A to A_{free} is very linear in A

Seamus Riordan — ECT* Apr 2016 G_Fⁿ 23/40

G_E^n with SBS

- Super Bigbite builds on large acceptance/moderate resolution experience
- Talk from Gregg Franklin yesterday

24/40

Seamus Riordan — ECT* Apr 2016

Neutron Form Factors

Neutron Form Factors

• Models for G_{r}^{μ} are highly divergent for high Q^{2} Seamus Riordan — ECT* Apr 2016 G_{r}^{μ} 25/40

Kinematics

$ullet$ Four points overlapping at low Q^2 and extending to $10~{ m GeV}^2$						
Q^2	Time	Ei	θ_{e}	p_e	θ_n	p _n
(GeV^2)	(days)	(GeV)	(deg)	$({ m GeV/c})$	(deg)	(GeV/c)
1.5	1	2.2	40.0	1.42	39.4	1.44
3.7	2	4.4	34.0	2.44	29.9	2.74
6.8	4	6.6	34.0	3.00	22.2	4.44
10.2	31	8.8	34.0	3.38	17.5	6.29
Q^2	$A_{ m exp}$	$\mu_n G_H^\mu$	$\frac{n}{2}/G_M^n$	$\mu_n G_F^n / G_M^n$		
(GeV^2)	(Galster	·) (Gals	ster)	(Our fit)		
1.5	-0.0153	0.224	1	0.296		
3.7	-0.0242	0.308	3	0.497		
6.8	-0.0393	0.368	3	0.650		
10.2	-0.0326	0.403	3	0.742		

High $Q^2 G_E^n$ Experimental Layout

- Upgraded Bigbite detector stack for higher rates, better PID
- ullet Hadron calorimeter at 17 ${
 m m}$
- Place magnet $B \cdot dl = 1.7 \text{ T} \cdot \text{m}$ at 2.8 m from target to deflect protons

Stolen from Gordon Cates

Upgraded BigBite Components

- Require 4 planes with coverage: 2 150 \times 40 $\rm cm^2$ and 2 200 \times 50 $\rm cm^2$
- \bullet Estimated rates are $\sim 100~{\rm kHz/cm^2}$ drift chambers replaced by GEM chambers
- Occupancy about 1% in 30ns for 36k channels, tracking should be relatively easy compared to GEp (factor 5 less rate), tree search applicable
- Momentum resolution of $\sigma_p/p\sim 0.5\%$ for e^- of $3-4~{
 m GeV}$

Q2 1st GEM Rate (GeV2) (kHz/mm2) 5 0.6 8 1.4 12 5.2	Q² 1st GEM Rate (GeV²) (kHz/mm²) 1.5 2.4 4 1.2 7 1.0 10 1.3

29/40

Upgraded BigBite Components

• π^-/e^- rate about 3:1

- Bigbite shower/preshower form trigger at least preshower online rejection necessary to keep rates $\sim 2~\rm kHz$
- BigBite GRINCH+preshower pushes rejection to $\sim 10^4$ combined and pion contributions to signal < 0.1%

Upgraded BigBite Components

- π^-/e^- rate about 3:1
- Bigbite shower/preshower form trigger at least preshower online rejection necessary to keep rates $\sim 2~\rm kHz$
- BigBite GRINCH+preshower pushes rejection to $\sim 10^4$ combined and pion contributions to signal < 0.1%

- HCAL uses 12×24 15×15 cm² iron/scintillator design for hadron calorimetery
- 48D48 removes background and deflects protons out of QE acceptance - loss of 20% statistics at 2.8 m for extended target

- \bullet Spatial resolution of 1.5 $\mathrm{cm} \to 10 \ \mathrm{mrad}$
- ToF resolution critical for QE selection see later slides
- Detector plane can provide additional PID

- HCAL uses $12{\times}24~15{\times}15~{\rm cm}^2$ iron/scintillator design for hadron calorimetery
- 48D48 removes background and deflects protons out of QE acceptance - loss of 20% statistics at 2.8 m for extended target

- \bullet Spatial resolution of 1.5 $\mathrm{cm} \to 10 \ \mathrm{mrad}$
- ToF resolution critical for QE selection see later slides
- Detector plane can provide additional PID

Quasielastic Selection and Backgrounds

- Cuts on missing momenta (θ_{pq} and ToF), invariant mass allow for suppression of inelastic events
- Inelastics can be corrected using Monte Carlo with MAID or sideband subtraction/deconvolution

 Background mostly neutrons, photons probably removable with energy resolution, some inelastic protons
 Seamus Riordan — ECT* Apr 2016 G² 31/40

Time of Flight Concerns

- Time-of-flight resolution critical to suppresion of inelastics and systmatics
- Control is dependent on cuts and understanding of background form
- MAID only goes to $Q^2 \sim 4 \text{ GeV}^2$, asymmetry not well contrainted (look at CB, pol. ³He DIS data?)
- Worse resolution translates into poorer statistics need to map based on reasonable models

Have developed MC with:

- Full acceptance/magnetic propagation for all detectors
- Elastic and inelastic events
 - Form factors from Kelly
 - π production from MAID
 - π production using DIS cross sections and assuming $\mathit{N}+\pi$ final state
- Radiative effects from equivalent radiator approximation, glass target windows

MAID vs. DIS - Elastics only

- MAID only available for lower two Q^2
- DIS underpredicts (mostly Δ) by factor of \sim 8

Seamus Riordan — ECT* Apr 2016 G_Fⁿ 33/40

MAID vs. DIS - Elastics only

CTEQ6 - Christy/Bosted Rate Fractional Difference, LD2,

- MAID only available for lower two Q^2
- DIS underpredicts (mostly Δ) by factor of \sim 8

Seamus Riordan — ECT* Apr 2016 G_Fⁿ 33/40

MAID vs. DIS - $p_{m,\parallel}$

 $\delta t = 0.5 \text{ ns}$

Black - all, blue - QE, red - Inelastic

Seamus Riordan — ECT* Apr 2016 G_Fⁿ 34/40

MAID vs. DIS - W^{2}

 $\delta t = 0.5 \text{ ns}$

DIS - W^2

 $\delta t = 0.5~\mathrm{ns}$

DIS predictions for highest Q² become problematic if higher by by large factor
Proposal rate was based on ~ order of magnitude higher DIS

Seamus Riordan — ECT* Apr 2016 G_F^n 36/40

Counts vs. Time of Flight Resolution

- \bullet Scaling DIS \times 5, 15% contamination needs about 0.5 $\rm ns$ resolution
- \bullet Could probably do OK with 1 ns resolution, loss of 20% statistics

- Two photon effects for polarized target related to effects in polarization transfer
- Only considered proton ground state for box diagrams
- Asumming similar size correction as proton:

Blunden, Melnitchouk, Tjon, Phys. Rev. C 72, 034612 (2005)

Seamus Riordan — ECT* Apr 2016 G_Eⁿ 38/40

Assuming Galster for G_E^n , Kelly for G_M^n :

Q^2 [GeV ²]	time [days]	stat [%]	sys [%]
1.5	1	1.3	2.4
3.7	2	6.0	4.4
6.8	4	19.8	7.3
10.2	31	22.5	6.6

Systematic uncertainties to asymmetries at highest Q^2

Quantity	Expected Value	Rol Uncortainty
Qualitity	Expected value	Ref. Offcertainty
Beam polarization P_e	0.85	2.4%
Target polarization $P_{^{3}\mathrm{He}}$	0.60	3.3%
Neutron polarization P_n	0.86	2.3%
Nitrogen dilution $D_{ m N_2}$	0.94	2.1%
Background dilution $D_{ m back}$	0.95	< 1%
Final state interactions	0.95	2.1%
Inelastic correction	0.8-1.2	5.0%
Angular error from A_{\parallel}		< 1%
Systematic error in G_E^n/G_M^n		6.6%

Requirements for Instrumentation in G_E^n/G_M^n Measurement

To achieve $\sim 10\%$ at $Q^2=10~{\rm GeV^2}$ given luminosity $6\times 10^{36} {\rm Hz/cm^2}$ (60 cm target, 60 $\mu {\rm A}$), 60% polarization:

BigBite Requ	uirements	Nucleon Arm Requirements		
$2\ 150 imes 40\ { m cm}^2$ chambers		N acceptance	30 msr	
$2~200 imes 50~{ m cm}^2$ chambers		p _n	$1-10~{ m GeV}$	
e ⁻ acceptance	$40 \mathrm{msr}$	Angular Range	$17-40^{\circ}$	
p_e	$1-3.0~{ m GeV}$	$\delta \theta_{p_n}$	$10 \mathrm{mrad}$	
δp_e	1%	$\delta t_{ m ToF}$	$0.5~\mathrm{ns}$	
Angular Range	$35-40^{\circ}$	B · dl	$1.7 T \cdot m$	
e^- detector rates	$100 \ \rm kHz/cm^2$	Total rate	$20 \mathrm{~kHz}$	
e− ToF	$0.25~\mathrm{ns}$			
δE	$\sim 10\%$			
π rejection	100-300:1			
$\delta \theta_e$	$\sim 1~{ m mrad}$			
δv_z	$\sim 0.5~{ m cm}$			

- G_E^n can be measured to $Q^2 = 10~{
 m GeV}^2$ with SBS to $\sim 10-20\%$ accuracy
- $\bullet\,$ HCAL needs ToF resolution on order of $0.5-1~\mathrm{ns}$
- $\bullet\,$ Upgraded target that can handle 60 μA with 60% polarization required
- Other requirements fall within SBS defintions

BACKUP SLIDES

DIS - W^2

 Adjusting cuts so contamination is about the same, loss of statisics is about 20%

DIS - W^2

 Adjusting cuts so contamination is about the same, loss of statisics is about 50%

- Rates above include elastic e^- , DIS e^- , and π^{+-0}
- $\bullet\,$ Single arm shower/preshower (with ps cut) keeps will have $<2~{\rm kHz}$ trigger rate without affecting QE cuts
- Need to allow some inelastic in trigger prescale lower threshold

- Rates above include elastic e^- , DIS e^- , and π^{+-0}
- $\bullet\,$ Single arm shower/preshower (with ps cut) keeps will have $<2~{\rm kHz}$ trigger rate without affecting QE cuts
- Need to allow some inelastic in trigger prescale lower threshold

Smearing and Photons

- Smearing ToF is asymmetric in p
- For highest momentum transfers $\beta = 1$ particles can get smeared in (from small $p_{m,\parallel}$)
- 48D48 and energy resolution of HCAL should suppress
- π^0 production could contribute need to study responses, rates