Probing transverse nucleon structure at high momentum transfer Trento / ECT* - 18-22/April/2016

Proton Form Factors

(Space-Like, EM p FF)

E. Cisbani

INFN Rome – Sanità Group and Italian National Institute of Health

Outlook

- Short EMFF overview and p-FF status
- JLab opportunity at high Q²
- SBS GEp experiment and expected results

20/April/2016 (ETC*)

Nucleon, it is a mystery!

- Mass origin
 - Confinement / QCD
 - Internal dynamics
- Spin origin
 - Orbital Angular Momentum
 - Gluon Contribution
- (Proton) radius
- QED-QCD reaction mechanisms

Toward a unified picture of nucleon structure

Form Factors and GPDs

see M. Diehl and P. Kroll EPJ C (2013) 73:2397 model dependent attempt

«We note that the **electromagnetic form factors** provide indirect constraints on GPDs at **high values of t**, which will conceivably never be accessible in hard exclusive scattering processes.»

20/April/2016 (ETC*)

FF «traditional» extraction method

- Rosenbluth separation in Born approximation (Z α <<1) $\frac{d\sigma_r}{d\Omega} = \varepsilon \ G_E^2(Q^2) + \tau \ G_M^2(Q^2), \qquad \tau = Q^2/(4M^2)$ $\varepsilon = \left[1 + 2(1+\tau)\tan^2(\theta_e/2)\right]^{-1}$
 - Can determine both absolute values of G_{E} and G_{M}
 - τ kinematically suppress G_E at high Q^2 and G_M at low Q^2
 - Measure cross sections for different ε, then make linear fits
 - Different "kinematic" approaches

The power of spin

- Akhiezer et al. Sov. Phys. JETP 6, 588 (1958), Sov. PHys. Dokl. 14 (1968), ...<
 Form factor accuracy can be improved by measuring interference term G_EG_M by means of beam helicity asymmetry with polarized target or recoil polarimetry
- About 30 years to get the needed technologies:
 - Polarized e beam (high current 100 µA and polarization>70%) and beam polarimetry (~3%)
 - Highly polarized targets
 - Efficient recoil polarimeters (reasonably high analyzing power)

FF «modern» extraction methods

• Recoil polarization: $H(\vec{e}, e', \vec{p}), {}^{2}H(\vec{e}, e', \vec{n})H \quad \frac{P_{t}}{P_{l}} \tan(\frac{\theta}{2}) \propto -\frac{G_{E}^{p}}{G_{M}^{p}}$

 P_t , P_l = trans. and long. polarization of the recoil proton

• Beam-Target polarization asymmetry:

$$\overrightarrow{H}(\vec{e}, e'p) \qquad A = \frac{N^+ - N^-}{N^+ + N^-} \approx \frac{G_E}{G_M}$$
³He($\vec{e}, e'n$)

many systematics (theory and exp.) cancel in ratio

Proton G_E/G_M – an «unexpected» discrepancy

$$rac{d\sigma}{d\Omega} \propto G_{Ep}^2 + rac{ au}{arepsilon} G_{Mp}^2$$

Rosenbluth Separation: assume single photon approximation

Prior to JLab/2000, expectations were that proton G_E/G_M fairly constant with Q^2

$$\mu \frac{G_{Ep}}{G_{Mp}} = -\mu \frac{P_t}{P_l} \frac{(E_{beam} + E_e)}{2M_p} \tan \frac{\vartheta_e}{2}$$

Polarization transfer from the incident electron to the scattered proton

At JLab, new class of experiments show proton G_E/G_M decreasing linearly with Q^2

$$R_{p} = \mu_{p} \frac{G_{E}(Q^{2})}{G_{M}(Q^{2})} \approx 1 - \underbrace{0.13 (Q^{2} - 0.29)}_{Pol. \ Transfer \ Discr.}$$

20/April/2016 (ETC*)

 Q^2 / (GeV/c²)

• Description of the reaction mechanism is wrong (?)

• G_{E} and G_{M} do not scale the same way

TPE makes FF extraction model dependent

Cross section up to 2γ exchange approximation (nucleon model dependent):

$$d\sigma_{1\gamma+2\gamma} = C \left\{ |\tilde{G}_{M}|^{2} + \frac{\epsilon}{\tau} \left[|\tilde{G}_{E}|^{2} + 2|\tilde{G}_{M}|^{2} \left(\tau + \frac{|\tilde{G}_{E}|}{|\tilde{G}_{M}|}\right) Y_{2\gamma} \right] \right\}$$
Rosenbluth at 1_Y approx. Not negligible at high Q²

$$(R_{Rosenbluth}^{exp})^{2} \doteq \frac{|\tilde{G}_{E}|^{2}}{|\tilde{G}_{M}|^{2}} + 2 \left(\tau + \frac{|\tilde{G}_{E}|}{|\tilde{G}_{M}|}\right) Y_{2\gamma}$$
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
Constrained
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram et al. (CLAS12 TPE)
PRL 114 062003 2015
D. Adikaram

FF at small Q²: the nucleon E,M radius

Nucleon size (radius) derived from Form Factors (at low Q²)

 $\begin{aligned} G_E^{p,n}(Q^2) &= G_E^{p,n}(0) - \frac{1}{6}Q^2 \langle r^2 \rangle_E^{p,n} + \cdots \Rightarrow \left\langle r^2 \rangle_E^{p,n} = -6 \left. \frac{d \, G_E^{p,n}(Q^2)}{dQ^2} \right|_{Q^2=0} \\ G_M^{p,n}(Q^2)/\mu &= 1 - \frac{1}{6}Q^2 \langle r^2 \rangle_M^{p,n} + \cdots \end{aligned}$ (similar for the magnetic radius)

2010 (Pohl et al.): Large disagreement between the proton charge radius from ep scattering/spectroscopy and µp Lamb shift

20/April/2016 (ETC*)

Different variations of the Rosenbluth approach give consistent results

 \rightarrow exp. systematic under control

20/April/2016 (ETC*)

"Non Rosenbluth" measurements

20/April/2016 (ETC*)

Proton F_2/F_1 scaling – pQCD prediction

- Quark Helicity conservation
- Counting rules:
 - 1/Q² for gluon line
 - 1/Q² for helicity flip
- Photon absorbed by one «collinear» quark which interacts with the other two quarks by 2×gluon exchange

$$\rightarrow$$
 F₁ ~ 1/Q⁴, F₂ ~ 1/Q⁶

Modified pQCD: Belitsky et al. & other models include quark orbital angular momentum and gluon polarization effects to explain F_2/F_1 at arge O² 20/April/2016 (ETC*)

Naive Summary - Why and where are FFs interesting

- Fundamental properties of the nucleon
- Many fundamental models able to calculate them
- Large Q²:
 - Distinguish important models for GE/GM
 - Scaling behavior (flavor form factors components)
 - Constrain GPD at high x (valence quark dominate)
 - Smaller effective mass of the quarks
 - Toward pQCD dominated regime
- Very Low Q²:
 - Pion cluod effects
 - Precise nucleon size estimation

SBS original motivations (2007) - Proton G_E/G_M

- VMD (lachello, Lomon, Bijker), generally good description of all FFs
- Relativistic CQM (Miller, Gross, ...) spin dependent quark density
- Lattice QCD, starts to give prediction
- Dyson-Schwinger, dressed quarks, diquark correlation, ...
 - pQCD-based:
 G_E/G_M→const, Q²→ ∞
- GPD-based: direct connection to quark
 OAM, FF's constraint GPD's

Most of them agree with current data but diverge at higher, unexplored, Q²

20/April/2016 (ETC*)

New SuperBigbite Spectrometer (SBS) in Hall A

SBS specifications (fully configured)

EMFF measurements at high Q² by pol. methods

Method:	Polarization Transfer: $p(\vec{e}, e'\vec{p})$	Target Perp. Polarization: $p^{\uparrow}(\vec{e}, e'p)$		
Measure (one photon approx.)	$\frac{P_t}{P_l} \tan\left(\frac{\theta}{2}\right) \propto \frac{G_E^p}{G_M^p}$ P _t , P _l : trans. and long. polarization of the recoil proton	$A = \frac{N^+ - N^-}{N^+ + N^-} \sim \frac{G_E^p}{G_M^p}$ N ⁺ and N ⁻ : events with opposite transverse target polarization		
Many systematics effects (theory and exp.) cancel in ratio				
Figure of Merit (stat.) Ω : acceptace L: Luminosity σ : elastic xsec ~ E^2/Q^{12} Pb: beam polarization	$\begin{array}{l} \Omega \mathrel{\ L} \sigma \mathrel{\ P_b^2} \mathrel{\ } \epsilon \mathrel{\ } A_y^2 \\ \sim \displaystyle \frac{\Omega \mathrel{\ } \mathrel{\ } L \mathrel{\ } \epsilon}{Q^{16}} \\ A_y: \text{ polarimeter analyzing power} \\ \epsilon: \text{ polarimeter efficiency} \end{array}$	$\begin{split} \Omega \ L \ \sigma \ P_b^2 \ P_T^2 \\ \sim & \frac{\Omega \ L}{Q^{12}} \ P_T^2 \\ P_T : \text{Target polarization} \end{split}$		
At Q ² ~10 GeV ² expected: $FoM_{pol_trans} \sim 10 \times FoM_{targ_pol}$ (target polarization cannot tolerate large L)				
 Challenges at high Q²: <u>need to maximize</u> (coincidence) acceptance (solid angle) luminosity polarimetry efficiency beam polarization (having the needed beam energy) keeping costs at «affordable» level 				
20/April/2016 (ETC*)	E. Cisbani / EM SL Proton Form Fac	tors 19		

Proton G_E/G_M at large Q^2 by polarization transfer

Absolute error < 0.1 Beam time = 60 days

20/April/2016 (ETC*)

Large Luminosity ⇒ Large Background

Tracker	Area of interest	Hit Rate,
	for tracking, cm^2	kHz/cm ²
First	0.20 x 18	400
Second	$2\pi \ 0.35^2$	130
Third	π 4.8 ²	64
BigCal	$\pi \ 1.2^2$	173

 $L\sim 10^{39}\ /cm^2/s$

- Must be supported by the detectors
 ⇒ GEM technology
- Must be handled by the trigger:
 - spatial and time correlation between electron and proton elastically scattered
 - «high» energy threshold in segmented CALO's

GEp5: Proton Polarimeter (PP)

$$\frac{G_E}{G_M} = -\frac{P_t}{P_l} \frac{E+E'}{2M} \tan \frac{\theta}{2} \left[1 + (\text{few \%})_{2\gamma}\right]$$

Use azimuthal asymmetry of the proton scattering off matter induced by spin-orbit coupling

Polarimeter only measures components of proton spin that are **transverse** to the proton's momentum direction

20/April/2016 (ETC*)

Number of scattered protons: $f^{\pm}(\vartheta,\varphi) = \frac{e^{\rho\rho}(\vartheta,\varphi)}{2\pi} \left[1 \pm A_{\gamma} \left(P_{\chi}^{\rho\rho} \sin\varphi + P_{\gamma}^{\rho\rho} \cos\varphi \right) \right]$ where \pm refers to electron beam helicity $A \doteq \frac{f^+ - f^-}{f^+ + f^-} = A_Y \left(P_X^{pp} \sin \varphi + P_V^{pp} \cos \varphi \right) = A_Y \cos(\phi - \delta)$ $\tan \delta \doteq \frac{P_x^{pp}}{P_x^{pp}}$ A (a.u.) 0.02 0.01 0 -0.01-0.0290 180 270 360 ϕ (degrees) $\sigma_{P_{X,Y}^{pp}} \sim \sqrt{2}/(A \cdot P_e \cdot \sqrt{N}) \implies \text{Maximize } P_e$

N=number of scattered proton, $\overline{P_e}$ beam polarization

• Require: Dipole magnet to precess P₁ at target to P_v^{pp}

GEp5 Projected results

- •Settle the question of a zero crossing of GEp/GMp
- Constrain GPDs at high x, large t

8.8

11.0

8.0

12.0

10

30

0.032

0.074

New software tools may improve analysis

from C. Fanelli (ECT* 2015)

A Markov chain Monte Carlo has been used to extract the polarization transfers from the Likelihood:

$$\mathcal{L}(\mathbf{P}) = \prod_{i=1}^{N_{evt}} \frac{1}{2\pi} \left[1 + (a_1 + h\epsilon^{(i)}A_y^{(i)} \sum_{j=x,z} S_{yj}^{(i)}P_j + A_y^{(i)}S_{yy}^{(i)}P_y) \cos \varphi^{(i)} + (b_1 - h\epsilon^{(i)}A_y^{(i)} \sum_{j=x,z} S_{xj}^{(i)}P_j - A_y^{(i)}S_{xy}^{(i)}P_y) \sin \varphi^{(i)} + (b_1 - h\epsilon^{(i)}A_y^{(i)} \sum_{j=x,z} S_{xj}^{(i)}P_j - A_y^{(i)}S_{xy}^{(i)}P_y) \sin \varphi^{(i)} + (b_1 - h\epsilon^{(i)}A_y^{(i)} \sum_{j=x,z} S_{xj}^{(i)}P_j - A_y^{(i)}S_{xy}^{(i)}P_y) \sin \varphi^{(i)} + (b_1 - h\epsilon^{(i)}A_y^{(i)} \sum_{j=x,z} S_{xj}^{(i)}P_j - A_y^{(i)}S_{xy}^{(i)}P_y) \sin \varphi^{(i)} + (b_1 - h\epsilon^{(i)}A_y^{(i)} \sum_{j=x,z} S_{xj}^{(i)}P_j - A_y^{(i)}S_{xy}^{(i)}P_y) \sin \varphi^{(i)} + (b_1 - h\epsilon^{(i)}A_y^{(i)} \sum_{j=x,z} S_{xj}^{(i)}P_j - A_y^{(i)}S_{xy}^{(i)}P_y) \sin \varphi^{(i)} + (b_1 - h\epsilon^{(i)}A_y^{(i)} \sum_{j=x,z} S_{xj}^{(i)}P_j - A_y^{(i)}S_{xy}^{(i)}P_y) \sin \varphi^{(i)} + (b_1 - h\epsilon^{(i)}A_y^{(i)} \sum_{j=x,z} S_{xj}^{(i)}P_j - A_y^{(i)}S_{xy}^{(i)}P_y) \sin \varphi^{(i)} + (b_1 - h\epsilon^{(i)}A_y^{(i)} \sum_{j=x,z} S_{xj}^{(i)}P_j - A_y^{(i)}S_{xy}^{(i)}P_y) \sin \varphi^{(i)} + (b_1 - h\epsilon^{(i)}A_y^{(i)} \sum_{j=x,z} S_{xj}^{(i)}P_j - A_y^{(i)}S_{xy}^{(i)}P_y) \sin \varphi^{(i)} + (b_1 - h\epsilon^{(i)}A_y^{(i)} \sum_{j=x,z} S_{xj}^{(i)}P_j - (b_1 - h\epsilon^{(i)}A_y^{(i)}) + (b_1 - h\epsilon^{(i)}A_y^{(i)} \sum_{j=x,z} S_{xj}^{(i)}P_j - (b_1 - h\epsilon^{(i)}A_y^{(i)}) + (b_1 - h\epsilon^{(i)}A_y^{(i)} \sum_{j=x,z} S_{xj}^{(i)}P_j - (b_1 - h\epsilon^{(i)}A_y^{(i)}) + (b_1 - h\epsilon^{(i)}A_y^{(i)} \sum_{j=x,z} S_{xj}^{(i)}P_j - (b_1 - h\epsilon^{(i)}A_y^{(i)}) + (b_1 - h\epsilon^{(i)}A_y^{(i)} + (b_1 - h\epsilon^{(i)}A_y^{(i)}) + ($$

$$+a_2\cos 2\varphi^{(i)}+b_2\sin 2\varphi^{(i)}+\cdots]$$

New software tools may improve analysis

- Likelihood function from azimuthal asymmetry, event by event observed quantities
- Bayesian MCMC (uniform priors distribution)
- Estimate posterior distribution functions of polarization transfer
- Pro's
 - global picture
 - search max. no approximation
 - ad hoc priors could improve uncertainties

Similar approaches in: N. Sato/ECT* 2016 for PDFs extraction Super Rosenbluth Separation - J. C. Bernauer 2010

20/April/2016 (ETC*)

GMp in JLab/HallA (E12-07-108) at high momentum transfer

Measure proton elastic cross section at $Q^2 \sim 7 - 17.5$ GeV² with high statistical precision Keep systematics under control (beam energy, target density, scattering angle)

Kinematics at smaller ϵ respect to existing SLAC data: GEp contributions smaller TPE still affecting the GMp extraction, but not the elastic cross section measurements

20/April/2016 (ETC*)

... but higher QED corrections are coupled to nucleon internal structure: the probe gets correlated to the investigated sample!

20/April/2016 (ETC*)

Nucleon, still a mystery!

- Mass origin
 - Confinement / QCD
 - Internal dynamics
- Spin origin
 - Orbital Angular Momentum
 - Gluon Contribution
- (Proton) radius

sample image show (actual product may vary)

QED-QCD reaction mechanisms

Current experimental programs on FF, GPD, TMD, QCD spectroscopy ... (thanks to technological progresses in Lumi, Polarization, Coherent Light production ...) & theoretical developments

are going to offer real chance to shed light on this mystery