

ECT* Workshop on Probing Transverse Nucleon Structure at High Momentum Transfer 19th April 2016

Wide-angle Compton Scattering at 8 and 10 GeV in JLab Hall C

David Hamilton

Outline

- The Jefferson Lab WACS program at 6 GeV
- Theoretical Context and Motivation for 12 GeV
 - Soft collinear effective theory
 - The handbag mechanism and GPDs
 - Dyson-Schwinger equations
- Experimental Technique
- The Hall C Neutral Particle Spectrometer
- Analysis Technique
- Background, resolution and uncertainties

Outline

- The Jefferson Lab WACS program at 6 GeV
- Theoretical Context and Motivation for 12 GeV
 - Soft collinear effective theory
 - The handbag mechanism and GPDs
 - Dyson-Schwinger equations
- Experimental Technique
- The Hall C Neutral Particle Spectrometer
- Analysis Technique
- Background, resolution and uncertainties

Why?

How?

WACS: An Introduction

- Proton Compton scattering in the wideangle regime (s, -t, -u >> M²) is a powerful and under-utilized probe of nucleon structure.
- It allows us to characterize the electromagnetic response of the nucleon without complications from additional hadrons.
- As such, it is complementary nucleon structure approach to elastic ep scattering and DVCS.
- It is, however, one of the least understood of the fundamental reactions in the several GeV regime.

Theoretical Approaches

- A number of reaction mechanisms have been proposed over the years:
 - pQCD (two-gluon exchange)
 - Relativistic constituent quark
 - Dyson-Schwinger equation
 - Handbag Mechanism (GPD's)
 - Soft collinear effective theory
- The two main open questions are:
 - How does the reaction mechanism factorize?
 - What new insights on the nonperturbative structure of the proton are accessible?

The 6 GeV Program

Jlab Experiment E99-114 (Hall A, 2002)

- Measurement of differential cross section over a broad kinematic range and of polarization transfer observables for one kinematic setting.
- Jlab Experiment E07-002 (Hall C, 2008)
 - Extension of the measurements of polarization transfer observables for an additional kinematic point.

5.75

11 GeV

 θ_{cm}

120

90

60

30

6 GeV Highlights

PRL 98, 152001 (2007)

 We propose to measure the differential cross section for WACS at photon energies of 8 and 10 GeV at ten carefully chosen kinematic points.

- We propose to measure the differential cross section for WACS at photon energies of 8 and 10 GeV at ten carefully chosen kinematic points.
- Factorization study combining 6 GeV data.

- We propose to measure the differential cross section for WACS at photon energies of 8 and 10 GeV at ten carefully chosen kinematic points.
- Factorization study combining 6 GeV data.
- Extend range in momentum transfer to 11 GeV².

	 (deg)	s (GeV²)	-t (GeV²)	-u (GeV²)
4A	55.8	15.89	3.10	11.03
4B	67.6	15.89	4.39	9.75
4C	80.4	15.89	5.91	8.22
4D	90.9	15.89	7.20	6.93
4E	104.8	15.89	8.90	5.23
5A	48.9	19.65	3.07	14.81
5B	59.5	19.65	4.41	13.47
5C	70.1	19.65	5.91	11.97
5D	78.7	19.64	7.21	10.68
5E	103.2	19.65	11.01	6.88

Soft Collinear Effective Theory

- The SCET approach has shown the importance of WACS in understanding twophoton exchange effects in elastic ep scattering.
- In this framework, a new universal form factor is introduced, the t-dependence of which is extracted from WACS cross section data.
- This form factor describes the soft-overlap contribution in a variety of hard exclusive reactions, such as time-like Compton scattering.

JHEP 04, 029 (2013) & arxiv:13125456

Soft Collinear Effective Theory

- To test the s-dependence of the SCET form factor over a broad kinematic range and firmly establish factorization.
- To extract the t-dependence of the form factor, which cannot be predicted from theory, up to -t = 11 GeV². This directly impacts interpretation of 12 GeV elastic form factor data.
- To explore the relationship between the space-like and time-like form factors to high -t, where data from BELLE is expected. This helps to assess the relative dominance of soft overlap contributions.

JHEP 04, 029 (2013) & arxiv:13125456

GPD Approach

- The handbag mechanism within a GPD-based framework is firmly established in analysis of DVCS data.
- Its application to WACS by Kroll, Diehl and others has a long and successful history. A new analysis for 12 GeV WACS has recently been undertaken.
- In this approach, WACS gives access to form factors that are moments of the underlying GPDs.
- These form factors differ from their elastic counterparts as their dependence on quark flavour and momentum fraction (x) is different.
- A comparison between the two with the proposed data will therefore allow access to the momentum fractions that dominate the respective form factors.

Eur Phys C 73, 2397 (2013)

GPD Approach

M. Diehl and P. Kroll, arxiv 1302.4604

$$ep \rightarrow ep$$

$$\begin{split} R_{_{V}}(t) &= \sum_{a} e_{a}^{2} \int_{-1}^{1} \frac{dx}{x} H^{a}(x,0,t), & F_{_{1}}(t) &= \sum_{a} e_{a} \int_{-1}^{1} dx H^{a}(x,0,t), \\ R_{_{A}}(t) &= \sum_{a} e_{a}^{2} \int_{-1}^{1} \frac{dx}{x} \operatorname{sign}(x) \hat{H}^{a}(x,0,t), & G_{_{A}}(t) &= \sum_{a} \int_{-1}^{1} dx \operatorname{sign}(x) \hat{H}^{a}(x,0,t), \\ R_{_{T}}(t) &= \sum_{a} e_{a}^{2} \int_{-1}^{1} \frac{dx}{x} E^{a}(x,0,t), & F_{_{2}}(t) &= \sum_{a} e_{a} \int_{-1}^{1} dx E^{a}(x,0,t), \end{split}$$

$$\frac{d\sigma}{dt} = \frac{d\sigma}{dt}_{_{KN}} \left\{ \frac{1}{2} \left[R_{_V}^2 + \frac{-t}{4m^2} R_{_T}^2 + R_{_A}^2 \right] - \frac{us}{s^2 + u^2} \left[R_{_V}^2 + \frac{-t}{4m^2} R_{_T}^2 - R_{_A}^2 \right] \right\}$$

Studying WACS can lead to constraints on GPDs at large -t and x, which differ from electromagnetic form factors due to 1/x and e_a^2 factors.

$$\gamma p \rightarrow \gamma p$$

DSE Approach

PRD 87, 036006 (2013)

- A very recent development has seen the groundwork laid for WACS phenomenology in the DSE approach.
- This framework has already seen success in interpretation of elastic form factor data by assuming the dominance of a di-quark coupling in the nucleon wavefunction.
- The proposed data points, particularly those at moderate -t, will allow theorists to test the evolution of the amplitude as one moves from the dominant t-channel poles.

Experimental Technique

Experimental Technique

Experimental Technique

NPS

- The NPS is a standalone 25 msr spectrometer allowing for precision (coincidence) cross section measurements of neutral particles.
- Consists of a PbWO4-based calorimeter preceded by a sweeping magnet

Son Lap

Jefferson National Accelerator Facility

NPS on SHMS platform

NPS Program

- To extract the rich information on nucleon structure encoded in GPD and TMDs one needs to show that the scattering process is understood.
- 5 experiments have been approved by the JLab PAC to date:
 - E12-13-007: Measurement of Semi-inclusive π^0 production as Validation of Factorization
 - E12-13-010 Exclusive Deeply Virtual Compton and π^0 Cross Section Measurements in Hall C
 - E12-14-003 Wide-angle Compton Scattering at 8 and 10 GeV Photon Energies
 - E12-14-005 Wide Angle Exclusive Photoproduction of π^0 Mesons
 - E12-14-006 Initial State Helicity Correlation in Wide-Angle Compton Scattering
- The two-arm combination of a neutral-particle detection and highresolution magnetic spectrometers, e.g., the HMS (or SHMS) in Hall C, offer the scientific capabilities for these measurements requiring both precision and high luminosity

Analysis Technique

- The analysis technique relies on utilization of the two-body kinematic correlation between the scattered photon/electron and the recoil proton.
- The three dominant reaction channels are:
 - $\gamma + p \longrightarrow \gamma + p$
 - $\gamma + p \rightarrow \pi^0 + p \rightarrow \gamma + \gamma + p$
 - $e+p \rightarrow e+p$ (and $ep\gamma$)
- The Compton peak sits on top of a background from both neutral pion and epγ reactions.

Analysis 6 GeV Data

E99-114 Kin 4C All Events

Analysis 12 GeV Data

All Events

Rates and Uncertainties

cross section solid angle photon flux $N_{RCS} = \frac{d\sigma}{dt}_{RCS} \left(\frac{(E_{\gamma}^{f})^{2}}{\pi} \Delta \Omega_{p} \frac{d\Omega_{\gamma}}{d\Omega_{p}}\right) f_{\gamma p} \left(\frac{\Delta E_{\gamma}^{f}}{E_{\gamma}^{f}} \frac{t_{rad}}{X_{o}}\right) \mathcal{L}_{e\vec{p}}$

	N _{RCS} (/h)	Ι (μΑ)	δ _{NRCS} / N _{RCS}	Time (h)	Source	Uncertainty (%)
4A	15.0	5	0.05	20+7	Beam Charge	1.0
4B	6.0	15	0.05	20+7	Target Thickness	1.0
4 C	3.0	30	0.05	20+7	Photon Flux	3.0
4D	1.5	60	0.05	30+7	NPS Detection	1.5
4E	0.7	60	0.08	50+7	Efficiency	
5A	9.0	20	0.05	15+7	HMS Acceptance	1.5
5B	3.0	30	0.05	20+7	HMS Tracking Efficiency	1.5
5C	1.6	60	0.05	20+7	Pion Background Subtraction	3.0
5D	1.0	60	0.05	40+7	epy Background	3.0
5E	0.3	60	0.08	120+7	Subtraction	
Total				425	Total	6.0

Expected Results

 10^{-1} Kivel Vanderhaeghen 10^{-1} <math>... ... Kivel Vanderhaeghen <math>... <math>... ...

All kinematic settings unambiguously satisfy the wide-angle condition that s, -t, $-u >> M^2$

Four fixed -t scans, three of which overlap with 6 GeV data, will allow for a rigorous test of factorization.

Expected Results

The t-dependence of the Compton form factor will be measured up to $-t = 11 \text{ GeV}^2$ in order to gain valuable insights into proton structure at high momentum transfer and compare against data from other reactions.

Summary

- WACS is a powerful and underutilized probe of proton structure.
- We will measure the cross section at Jlab with the NPS at 8 and 10 GeV.
- The new data will allow for a rigorous test of factorization in exclusive processes.

