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Parton distribution functions

• Deep-inelastic scattering, −q2
1 →∞, xBJ ≡ −q2
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2 Krešimir Kumerički : Nucleon GPDs from DVCS



Intro to GPDs and DVCS Extraction from data JLab 2015 Some Older Data Neural networks

Parton distribution functions

• Deep-inelastic scattering, −q2
1 →∞, xBJ ≡ −q2

1
2p·q1

→ const

X

xp

γ∗

p

q1

2

∑

X
= xp

γ∗

p p
PDF q(x)

xp

q1 q1

γ∗

xp

p

x

q(x) – probability that parton q
has momentum xp
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Electromagnetic form factors
γ
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• Transversal density

q(b⊥) = [2-dim F.T.]⊗

F1,2(t = q2
1)
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q(b⊥)q(x)⊗ q(b⊥)q(x , b⊥)
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• “skewless” GPD: Hq(x , 0, t = ∆2) =
∫
db⊥ e i∆·b⊥q(x , b⊥)

[Burkardt ’00, Ralston, Pire ’02]
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Definition of GPDs
• In QCD GPDs are defined as [Müller ’92, et al. ’94, Ji, Radyushkin ’96]

F q(x , η, t) =

∫
dz−

2π
e ixP

+z−〈P2|q̄(−z)γ+q(z)|P1〉
∣∣∣
z+=0, z⊥=0

F̃ q(x , η, t) =

∫
dz−

2π
e ixP

+z−〈P2|q̄(−z)γ+γ5q(z)|P1〉
∣∣∣
z+=0, z⊥=0

(and similarly for gluons F g and F̃ g ).

Forward limit
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P+
(skewedness)
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Some properties of GPDs

• Decomposing into spin-non-flip and spin-flip part:

F a =
ū(P2)γ+u(P1)

P+
Ha +

ū(P2)iσ+νu(P1)∆ν

2MP+
E a a = q, g

• Forward limit (∆→ 0): ⇒ GPD → PDF

F q(x , 0, 0) = Hq(x , 0, 0) = θ(x)q(x)− θ(−x)q̄(−x)

• Sum rules:
∫ 1

−1
dx

{
Hq(x , η, t)
Eq(x , η, t)

=

{
F q

1 (t) Dirac
F q

2 (t) Pauli

• “Ji’s sum rule” (related to proton spin problem)

Jq =
1

2

∫ 1

−1
dx x

[
Hq(x , η, t) + Eq(x , η, t)

]
t→0

[Ji ’96]
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DVCS

• Access to GPDs: Deeply virtual Compton scattering (DVCS)
— “gold plated” process of exclusive physics

• DVCS is measured via leptoproduction of a photon

+

γ∗ γ

DVCS
p p

+

ℓ

ℓ

ℓ

ℓ

ℓ

ℓ γ

BH
p p

γ∗

BH
p p

γ∗

ℓ

ℓ
γ

• Interference with Bethe-Heitler process gives unique access to
both real and imaginary part of DVCS amplitude.

6 Krešimir Kumerički : Nucleon GPDs from DVCS



Intro to GPDs and DVCS Extraction from data JLab 2015 Some Older Data Neural networks

DVCS cross section

dσ ∝ |T |2 = |TBH|2 + |TDVCS|2 + I .

I ∝ −e`
P1(φ)P2(φ)

{
cI0 +

3∑

n=1

[
cIn cos(nφ) + sIn sin(nφ)

]}
,

|TDVCS|2 ∝
{

cDVCS
0 +

2∑

n=1

[
cDVCS
n cos(nφ) + sDVCS

n sin(nφ)
]}

,

• Choosing polarizations (and charges) we focus on particular
harmonics:

cI1,unpol. ∝
[

F1 ReH− t

4M2
p

F2 Re E +
xB

2− xB
(F1 + F2)Re H̃

]

[Belitsky, Müller et. al ’01–’14]

• H(xB, t,Q2), . . . — four Compton form factors (CFFs)
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Factorization of DVCS −→ GPDs

• [Collins et al. ’98]

DVCS

GPD

C
O


 1
Q2


= +

γ∗(−Q2) γ

p p p p

γ∗(−Q2) γ

• Compton form factor is a convolution:

aH(xB, t,Q2) =

∫
dx C a(x ,

xB
2− xB

,
Q2

Q2
0

) Ha(x ,
xB

2− xB
, t,Q2

0)

a=q,G

• Ha(x , η, t,Q2
0) — Generalized parton distribution (GPD)
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(N)NLO corrections
• [K.K., Müller and Passek-K. ’07]
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∣∣∣∣∣
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Experimental coverage (1/2)

• Coming soon: COMPASS, JLab12, . . . EIC
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Experimental coverage (2/2)

Collab. Year Observables
Kinematics No. of points

xB Q2 [GeV2] |t| [GeV2] total indep.

HERMES 2001 Asinφ
LU 0.11 2.6 0.27 1 1

CLAS 2001 Asinφ
LU 0.19 1.25 0.19 1 1

CLAS 2006 Asinφ
UL 0.2–0.4 1.82 0.15–0.44 6 3

HERMES 2006 Acosφ
C 0.08–0.12 2.0–3.7 0.03–0.42 4 4

Hall A 2006 σ(φ), ∆σ(φ) 0.36 1.5–2.3 0.17–0.33 4×24+12×24 4×24+12×24
CLAS 2007 ALU(φ) 0.11–0.58 1.0–4.8 0.09–1.8 62×12 62×12

HERMES 2008

A
cos(0,1)φ
C , A

sin(φ−φS )
UT,DVCS,

A
sin(φ−φS ) cos(0,1)φ
UT,I ,

A
cos(φ−φS ) sinφ
UT,I

0.03–0.35 1–10 <0.7
12+12+12

12+12
12

4+4+4
4+4

4

CLAS 2008 ALU(φ) 0.12–0.48 1.0–2.8 0.1–0.8 66 33

HERMES 2009 A
sin(1,2)φ
LU,I , Asinφ

LU,DVCS,

A
cos(0,1,2,3)φ
C

0.05–0.24 1.2–5.75 <0.7
18+18+18

18+18+18+18
6+6+6

6+6+6+6

HERMES 2010 A
sin(1,2,3)φ
UL ,

A
cos(0,1,2)φ
LL

0.03–0.35 1–10 <0.7
12+12+12
12+12+12

4+4+4
4+4+4

HERMES 2011

A
cos(φ−φS ) cos(0,1,2)φ
LT,I ,

A
sin(φ−φS ) sin(1,2)φ
LT,I ,

A
cos(φ−φS ) cos(0,1)φ
LT,BH+DVCS ,

A
sin(φ−φS ) sinφ
LT,BH+DVCS

0.03–0.35 1–10 <0.7

12+12+12
12+12
12+12

12

4+4+4
4+4
4+4

4

HERMES 2012 A
sin(1,2)φ
LU,I , Asinφ

LU,DVCS,

A
cos(0,1,2,3)φ
C

0.03–0.35 1–10 <0.7
18+18+18

18+18+18+18
6+6+6

6+6+6+6

CLAS 2015 ALU(φ), AUL(φ), ALL(φ) 0.17–0.47 1.3–3.5 0.1–1.4 166+166+166 166+166+166
CLAS 2015 σ(φ), ∆σ(φ) 0.1–0.58 1–4.6 0.09–0.52 2640+2640 2640+2640
Hall A 2015 σ(φ), ∆σ(φ) 0.33–0.40 1.5–2.6 0.17–0.37 480+600 240+360
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Alternative processes for GPD access
• Deeply virtual meson production (DVMP) γ∗p → Mp.

P1

GPD
P2

γ∗

M

• Theory more “dirty” than for DVCS (second “soft” function
appears: meson distribution amplitude)

• Different mesons enable access to different flavours of GPDs

[P. Kroll’s talk?]

• Wide-angle Compton scattering (WACS) [Tommorrow’s talks]

• WACS: proton momentum transfer t is large (unlike DVCS,
where photon virtuality is large: Q2 � t!)

• data reasonably described by GPD models [Diehl, Kroll, ’13]

• double DVCS γ∗p → γ∗p, timelike DVCS, . . .
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Curse of dimensionality

• It is relatively easy to find a coin lying somewhere on 100
meter string. It is very difficult to find it on a football field.

• When the dimensionality increases, the volume of the space
increases so fast that the available data becomes sparse.

• Analogously, in contrast to PDFs(x), it is very difficult to
perform truly model independent extraction of GPDs(x , η, t)

• Known GPD constraints don’t decrease the dimensionality of
the GPD domain space.

• As an intermediate step, one can attempt extraction of
CFFs(xB , t)

• (Dependence on additional variable, photon virtuality Q2, is in principle known
— given by evolution equations.)
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13 Krešimir Kumerički : Nucleon GPDs from DVCS



Intro to GPDs and DVCS Extraction from data JLab 2015 Some Older Data Neural networks

Modelling sea quark and gluon GPDs

• Instead of considering momentum fraction dependence
H(x , . . .)

• . . . it is convenient to make a transform into complementary
space of conformal moments j :

Hq
j (η, . . .) ≡ Γ(3/2)Γ(j+1)

2j+1Γ(j+3/2)

∫ 1

−1
dx ηj C

3/2
j (x/η) Hq(x , η, . . .)

• They are analogous to Mellin moments in DIS: x j → C
3/2
j (x)

• C
3/2
j (x) — Gegenbauer polynomials

• At LO easy multiplicative evolution (pQCD series behaviour
and evolution of CFFs studied also to NNLO)
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SO(3) partial wave expansion
• To model η-dependence of GPD’s Hj(η, t) consider crossed

t-channel process γ∗γ → pp̄ and perform SO(3) partial wave
expansion:

γ∗ p

p
γ

m(J)

hJ,j (1 − t/M2)−p

1

m(J) − t
∝ 1

J − α(t)

Hj(η, t) =

j+1∑

J=Jmin

hJ,j
1

J − α(t)

1(
1− t

M2

)p ηj+1−JdJ
0,ν(

1

η
)

• dJ
0,ν — Wigner SO(3) functions (Legendre, Gegenbauer,. . . )

ν = 0,±1 — depending on hadron helicities

• Similar to “dual” parametrization [Polyakov, Shuvaev ’02]

• We take leading waves J = j + 1, j − 1, · · · and expand for
small η.

15 Krešimir Kumerički : Nucleon GPDs from DVCS



Intro to GPDs and DVCS Extraction from data JLab 2015 Some Older Data Neural networks

Modelling valence quark GPDs

• Hybrid models at LO

• Sea quarks and gluons modelled like just described (conformal
moments + SO(3) partial wave expansion + Q2 evolution).

• Valence quarks model (ignoring Q2 evolution):

ImH(ξ, t) = π

[
4

9
Huval(ξ, ξ, t) +

1

9
Hdval(ξ, ξ, t) +

2

9
Hsea(ξ, ξ, t)

]

H(x , x , t) = n r 2α
(

2x

1 + x

)−α(t)(1− x

1 + x

)b 1(
1− 1−x

1+x
t

M2

)p .

• Fixed: n (from PDFs), α(t) (eff. Regge), p (counting rules)

αval(t) = 0.43 + 0.85 t/GeV2 (ρ, ω)
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• ReH determined by dispersion relations

ReH(ξ, t) =

1

π
PV

∫ 1

0
dξ′
(

1

ξ − ξ′ −
1

ξ + ξ′

)
ImH(ξ′, t)− C

(
1− t

MC
2

)2

• Typical set of free parameters:

Msea
0 , s

(2,4)
sea , s

(2,4)
G sea quarks and gluons H

rval, Mval, bval valence H

r̃val, M̃val, b̃val valence H̃
C , MC subtraction constant (H, E )

rπ, Mπ ”pion pole” Ẽ
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Model KM09a KM09b KM10 KM10a KM10b KMS11 KMM12 KM15

free params. {3}+(3)+5 {3}+(3)+6 {3}+15 {3}+10 {3}+15 NNet {3}+15 {3}+15

χ2/d.o.f. 32.0/31 33.4/34 135.7/160 129.2/149 115.5/126 13.8/36 123.5/80 240./275

F2 {85} {85} {85} {85} {85} {85} {85}
σDVCS (45) (45) 51 51 45 11 11

dσDVCS/dt (56) (56) 56 56 56 24 24

Asinφ
LU 12+12 12+12 12 16 12+12 4 13

Asinφ
LU,I 18 18 18 6 6

Acos 0φ
C 6 6

Acosφ
C 12 12 18 18 12 18 6 6

∆σsinφ,w 12 12 63

σcos 0φ,w 4 4 58

σcosφ,w 4 4 58

σcosφ,w/σcos 0φ,w 4 4

Asinφ
UL 10 17

Acos 0φ
LL 4 14

Acosφ
LL 10

A
sin(φ−φS ) cosφ
UT ,I 4 4

• [K.K., Müller, et al. ’09–’15]
• These models are available at WWW (google for ”gpd page”)
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2015 CLAS cross-sections (1/2)
• Restriction to kinematics where leading-order framework

should be valid: −t/Q2 < 0.25 with Q2 > 1.5GeV2, means
using 48 out of measured 110 xB–Q2–t bins.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

d
σ

=
d
σ
←

+
d
σ
→

xB = 0.335, Q2  = 2.78, t = -0.2

KM15 prelim.

KMM12

CLAS 2015

xB = 0.335, Q2  = 2.78, t = -0.26 xB = 0.335, Q2  = 2.78, t = -0.45

0 100 200 300 400

φ [deg]

0.10

0.05

0.00

0.05

0.10

∆
σ

=
d
σ
←
−
d
σ
→

xB = 0.335, Q2  = 2.78, t = -0.2

0 100 200 300 400

φ [deg]

xB = 0.335, Q2  = 2.78, t = -0.26

0 100 200 300 400

φ [deg]

xB = 0.335, Q2  = 2.78, t = -0.45

• χ2/npts = 1032.0/1014 for dσ and 936.1/1012 for ∆σ
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φ-space vs. harmonics (1/2)

• φ-space figures and perfect χ2 are not revealing the whole
story

• Instead to σ(φ) it is favourable to work with harmonics like

σsin nφ,w ≡ 1

π

∫ π

−π
dw sin(nφ) σ(φ) ,

with specialy weighted Fourier integral measure

dw ≡ 2πP1(φ)P2(φ)∫ π
−π dφP1(φ)P2(φ)

dφ ,

thus cancelling strongly oscillating factors 1/(P1(φ)P2(φ)) in
Bethe-Heitler and interference terms in dσ. Series of such
weighted harmonic terms converges then faster with
increasing n than normal Fourier series.
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φ-space vs. harmonics (2/2)
• How many harmonics to extract?
• One approach:

1. Fit harmonic expansion

σ(φ) = c0 + c1 cosφ+ · · ·+ s1 sinφ+ · · ·
to randomly chosen subset of data in a bin, and calculate χ2

error for description of the rest of data (so called
cross-validation procedure)

2. Increase the number of harmonics until χ2/d.o.f starts to fall

• Highest extractable harmonics in 2015 cross-section data:

CLAS Hall A

sine cosine sine cosine

∆σw 0.9± 0.4 0.1± 0.3 1.1± 0.3 0.1± 0.3
dσw 0.3± 0.6 0.7± 0.7 0.6± 0.8 1.5± 0.7

• (So ∆σw = s1 sinφ and dσw = c0 + c1 cosφ is enough.)
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2015 CLAS cross-sections (2/2)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

∆
σ

si
n
φ
,w

Q2 =1.63
xB =0.18

Q2 =1.64
xB =0.21

Q2 =1.88
xB =0.21

Q2 =1.79
xB =0.24

Q2 =2.12
xB =0.24

0.1 0.2 0.3 0.4 0.5
0.00

0.01

0.02

0.03

0.04

0.05

0.06

∆
σ

si
n
φ
,w

Q2 =2.35
xB =0.28

0.1 0.2 0.3 0.4 0.5

Q2 =2.58
xB =0.30

0.1 0.2 0.3 0.4 0.5

−t [GeV2 ]

Q2 =2.78
xB =0.34

0.1 0.2 0.3 0.4 0.5

Q2 =2.97
xB =0.36

0.1 0.2 0.3 0.4 0.5

Q2 =3.18
xB =0.40

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

d
σ

co
s0
φ
,w

Q2 =1.63
xB =0.18

Q2 =1.64
xB =0.21

Q2 =1.88
xB =0.21

Q2 =1.79
xB =0.24

Q2 =2.12
xB =0.24

0.1 0.2 0.3 0.4 0.5
0.00

0.05

0.10

0.15

0.20

d
σ

co
s0
φ
,w

Q2 =2.35
xB =0.28

0.1 0.2 0.3 0.4 0.5

Q2 =2.58
xB =0.30

0.1 0.2 0.3 0.4 0.5

−t [GeV2 ]

Q2 =2.78
xB =0.34

0.1 0.2 0.3 0.4 0.5

Q2 =2.97
xB =0.36

0.1 0.2 0.3 0.4 0.5

Q2 =3.18
xB =0.40

0.4

0.3

0.2

0.1

0.0

0.1

d
σ

co
sφ
,w

Q2 =1.63
xB =0.185

Q2 =1.64
xB =0.214

Q2 =1.88
xB =0.215

Q2 =1.79
xB =0.244

Q2 =2.12
xB =0.245

0.1 0.2 0.3 0.4 0.5
0.05

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

d
σ

co
sφ
,w

Q2 =2.35
xB =0.275

0.1 0.2 0.3 0.4 0.5

Q2 =2.58
xB =0.305

0.1 0.2 0.3 0.4 0.5

−t [GeV2 ]

Q2 =2.78
xB =0.335

0.1 0.2 0.3 0.4 0.5

Q2 =2.97
xB =0.365

0.1 0.2 0.3 0.4 0.5

Q2 =3.18
xB =0.400

• χ2/npts = 62.2/48
for dσcosφ,w

(O.K. but not so perfect as in
φ-space)
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2006 vs 2015 Hall A cross-sections
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2015 CLAS asymmetries (1/2)
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2015 CLAS asymmetries (2/2)
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H1 (2007), ZEUS (2008)
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HERMES (2012)

BCA ≡ dσe+ − dσe−

dσe+ + dσe−
∼ Acos 0φ

C + Acos 1φ
C cosφ ∼ ReH

BSA ≡ dσe↑ − dσe↓

dσe↑ + dσe↓
∼ Asin 1φ

LU sinφ ∼ ImH
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CLAS (2007)
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• Only data with |t| ≤ 0.3GeV2 used for fits.
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Transversally polarized target — HERMES (2008)
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Longitudinally polarized target — HERMES (2010)
• Surprisingly large sin(2φ) harmonic of AUL cannot be described

within this leading twist framework
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Neural networks

• Essentially a least-squares fit of a complicated
many-parameter function. f (x) = tanh(

∑
wi tanh(

∑
wj · · · ))

⇒ no theory bias
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Function fitting by a neural net
• Theorem: Given enough neurons, any smooth function

f (x1, x2, · · · ) can be approximated to any desired accuracy.
Single hidden layer is sufficient (but not always most efficient).

• With simple training of neural nets to data there is a danger
of overfitting (a.k.a. overtraining)

• Solution: Divide data (randomly) into two sets: training
sample and validation sample. Stop training when error of
validation sample starts increasing.
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Example of a training with crossvalidation
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Fitting by a set of neural networks

H, E , · · ·

Neural Net

xB, t, Q2

x 100

H, E , · · ·

Neural Net

xB, t, Q2

x 100

• Training networks on Monte Carlo replicated data preserves
experimental uncertainties and their correlations [Giele et al. ’01]

• Already successfully applied to PDF fitting by [NNPDF] group.
Has even larger potential in GPD fitting with GPDs being
less-known functions of more variables.
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Preliminary neural Net HERMES fit
• Fit to all HERMES DVCS data with two types of neural nets

• (xB , t) – (7 neurons) – (ImH, ReH, Im H̃): χ2/npts =
135.4/144

• (xB , t) – (7 neurons) – (ImH, Re E): χ2/npts = 120.2/144
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Neural Net HERMES fit - BSA/BCA
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Neural Net HERMES fit - CFFs
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Comparison of various approaches
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38 Krešimir Kumerički : Nucleon GPDs from DVCS



Intro to GPDs and DVCS Extraction from data JLab 2015 Some Older Data Neural networks

Summary

• Global fits of all proton DVCS data using flexible hybrid
models are in healthy shape

• Data clearly restrict H(x , x , t), and to some extent H̃, but any
information about E is very model-dependent

• New 2015 data relieve some old tensions

• Neural networks are very promising method for GPD/CFF
extraction

The End
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39 Krešimir Kumerički : Nucleon GPDs from DVCS


	Introduction to Generalized Parton Distributions (GPDs) and Deeply Virtual Compton Scattering (DVCS)
	Extraction from data
	JLab 2015
	Some Older Data
	Neural networks approach

