Nucleon GPDs from DVCS

Krešimir Kumerički

Physics Department University of Zagreb, Croatia

ECT* Workshop Probing Transverse Nucleon Structure at High Momentum Transfer Trento, Italy, 18–22 April 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Extraction from da

JLab 2015 0000000 Some Older Data

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Neural networks

Parton distribution functions

• Deep-inelastic scattering, $-q_1^2 o \infty, \; x_{BJ} \equiv rac{-q_1^2}{2 \rho \cdot q_1} o {
m const}$

Extraction from da

JLab 2015 0000000 Some Older Data

Neural networks

Parton distribution functions

• Deep-inelastic scattering, $-q_1^2 o \infty, \; x_{BJ} \equiv rac{-q_1^2}{2 \rho \cdot q_1} o {
m const}$

Extraction from dat

JLab 2015 0000000 Some Older Data

Neural networks

Parton distribution functions

• Deep-inelastic scattering, $-q_1^2 \to \infty, \ x_{BJ} \equiv rac{-q_1^2}{2 \rho \cdot q_1} \to {
m const}$

Extraction from dat 000000 JLab 2015

Some Older Data

Neural networks

Electromagnetic form factors

3

 q_1

D

Extraction from data

p'

JLab 2015

Some Older Data

Neural networks

Electromagnetic form factors

• Transversal density

$$q(b_{\perp}) = [2$$
-dim F.T.] \otimes $F_1(t = q_1^2)$

・ロト ・ 同ト ・ ヨト ・ ヨト

э

 q_1

Extraction from data

JLab 2015 0000000 Some Older Data

()

Neural networks

-

• Transversal density

$$q(b_\perp) = [ext{2-dim F.T.}] \otimes F_1(t=q_1^2)$$

 q_1

Extraction from data

JLab 2015

Some Older Data

()

Neural networks

Electromagnetic form factors

• Transversal density

$$q(b_{\perp}) = [ext{2-dim F.T.}] \otimes F_1(t=q_1^2)$$

 q_1

Extraction from data

JLab 2015

Some Older Data

<ロト < 同ト < ヨト < ヨト

Neural networks

Electromagnetic form factors

Transversal density

$$q(b_{\perp}) = [ext{2-dim F.T.}] \otimes F_1(t=q_1^2)$$

[Burkardt '00, Ralston, Pire '02]

Extraction from da

JLab 2015 0000000 Some Older Data

Neural networks

Definition of GPDs

• In QCD GPDs are defined as [Müller '92, et al. '94, Ji, Radyushkin '96]

$$F^{q}(x,\eta,t) = \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P_{2}|\bar{q}(-z)\gamma^{+}q(z)|P_{1}\rangle\Big|_{z^{+}=0,z_{\perp}=0}$$
$$\widetilde{F}^{q}(x,\eta,t) = \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P_{2}|\bar{q}(-z)\gamma^{+}\gamma_{5}q(z)|P_{1}\rangle\Big|_{z^{+}=0,z_{\perp}=0}$$

(and similarly for gluons F^g and F^g).

Extraction from dat

JLab 2015 0000000 Some Older Data

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Neural networks

Some properties of GPDs

• Decomposing into spin-non-flip and spin-flip part:

$$F^{a} = \frac{\overline{u}(P_{2})\gamma^{+}u(P_{1})}{P^{+}}H^{a} + \frac{\overline{u}(P_{2})i\sigma^{+\nu}u(P_{1})\Delta_{\nu}}{2MP^{+}}E^{a} \qquad a = q,g$$

Extraction from dat

JLab 2015 0000000 Some Older Data

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Neural networks

Some properties of GPDs

• Decomposing into spin-non-flip and spin-flip part:

$$F^{a} = \frac{\overline{u}(P_{2})\gamma^{+}u(P_{1})}{P^{+}}H^{a} + \frac{\overline{u}(P_{2})i\sigma^{+\nu}u(P_{1})\Delta_{\nu}}{2MP^{+}}E^{a} \qquad a = q, g$$

• Forward limit $(\Delta \rightarrow 0)$: \Rightarrow GPD \rightarrow PDF

$$F^{q}(x,0,0) = H^{q}(x,0,0) = \theta(x)q(x) - \theta(-x)\overline{q}(-x)$$

Extraction from dat

JLab 2015 0000000 Some Older Data

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Neural networks

Some properties of GPDs

• Decomposing into spin-non-flip and spin-flip part:

$$F^a=rac{ar{u}(P_2)\gamma^+u(P_1)}{P^+}H^a+rac{ar{u}(P_2)i\sigma^{+
u}u(P_1)\Delta_
u}{2MP^+}E^a \qquad a=q,g$$

• Forward limit ($\Delta \rightarrow 0$): \Rightarrow GPD \rightarrow PDF

$$F^{q}(x,0,0) = H^{q}(x,0,0) = \theta(x)q(x) - \theta(-x)\bar{q}(-x)$$

• Sum rules:

$$\int_{-1}^{1} dx \begin{cases} H^{q}(x,\eta,t) \\ E^{q}(x,\eta,t) \end{cases} = \begin{cases} F_{1}^{q}(t) & \text{Dirac} \\ F_{2}^{q}(t) & \text{Pauli} \end{cases}$$

Extraction from dat

JLab 2015 0000000 Some Older Data

Neural networks

Some properties of GPDs

• Decomposing into spin-non-flip and spin-flip part:

$$F^{a} = \frac{\overline{u}(P_{2})\gamma^{+}u(P_{1})}{P^{+}}H^{a} + \frac{\overline{u}(P_{2})i\sigma^{+\nu}u(P_{1})\Delta_{\nu}}{2MP^{+}}E^{a} \qquad a = q,g$$

• Forward limit ($\Delta \rightarrow 0$): \Rightarrow GPD \rightarrow PDF

$$F^{q}(x,0,0) = H^{q}(x,0,0) = \theta(x)q(x) - \theta(-x)\bar{q}(-x)$$

• Sum rules:

$$\int_{-1}^{1} dx \begin{cases} H^{q}(x,\eta,t) \\ E^{q}(x,\eta,t) \end{cases} = \begin{cases} F_{1}^{q}(t) & \text{Dirac} \\ F_{2}^{q}(t) & \text{Pauli} \end{cases}$$

• "Ji's sum rule" (related to proton spin problem)

$$J^{q} = \frac{1}{2} \int_{-1}^{1} dx x \Big[H^{q}(x,\eta,t) + E^{q}(x,\eta,t) \Big]_{t \to 0}$$
 [Ji '96]

- Access to GPDs: Deeply virtual Compton scattering (DVCS)
 "gold plated" process of exclusive physics
- DVCS is measured via leptoproduction of a photon

• Interference with Bethe-Heitler process gives unique access to both real and imaginary part of DVCS amplitude.

Extraction from dat

JLab 2015 0000000 Some Older Data

Neural networks

DVCS cross section

$$d\sigma \propto |\mathcal{T}|^2 = |\mathcal{T}_{\mathrm{BH}}|^2 + |\mathcal{T}_{\mathrm{DVCS}}|^2 + \mathcal{I} \; .$$

$$\mathcal{I} \propto \frac{-e_{\ell}}{\mathcal{P}_{1}(\phi)\mathcal{P}_{2}(\phi)} \left\{ c_{0}^{\mathcal{I}} + \sum_{n=1}^{3} \left[c_{n}^{\mathcal{I}} \cos(n\phi) + s_{n}^{\mathcal{I}} \sin(n\phi) \right] \right\},$$

$$\mathcal{T}_{\text{DVCS}}|^{2} \propto \left\{ c_{0}^{\text{DVCS}} + \sum_{n=1}^{2} \left[c_{n}^{\text{DVCS}} \cos(n\phi) + s_{n}^{\text{DVCS}} \sin(n\phi) \right] \right\},$$

 Choosing polarizations (and charges) we focus on particular harmonics:

$$c_{1, ext{unpol.}}^\mathcal{I} \propto \left[F_1 \, \mathfrak{Re} \, \mathcal{H} - rac{t}{4M_
ho^2} F_2 \, \mathfrak{Re} \, \mathcal{E} + rac{x_ ext{B}}{2-x_ ext{B}} (F_1+F_2) \, \mathfrak{Re} \, \widetilde{\mathcal{H}}
ight]$$

[Belitsky, Müller et. al '01–'14] • $\mathcal{H}(x_{\mathrm{B}}, t, \mathcal{Q}^{2}), \ldots$ four Compton form factors (CFFs)

Extraction from da 000000

JLab 2015 0000000 Some Older Data 00000

Neural networks

Factorization of DVCS \longrightarrow GPDs

• [Collins et al. '98]

• Compton form factor is a convolution:

$${}^{a}\mathcal{H}(x_{\mathrm{B}}, t, \mathcal{Q}^{2}) = \int \mathrm{d}x \ C^{a}(x, \frac{x_{\mathrm{B}}}{2 - x_{\mathrm{B}}}, \frac{\mathcal{Q}^{2}}{\mathcal{Q}_{0}^{2}}) \ H^{a}(x, \frac{x_{\mathrm{B}}}{2 - x_{\mathrm{B}}}, t, \mathcal{Q}_{0}^{2})$$

$${}^{a=q,G}$$

$$H^{a}(x, \eta, t, \mathcal{Q}_{0}^{2}) - \text{Generalized parton distribution (GPD)}$$

Extraction from da

JLab 2015

Some Older Data 00000 Neural networks

(N)NLO corrections

• Coming soon: COMPASS, JLab12, ... EIC

Krešimir Kumerički: Nucleon GPDs from DVCS

Extraction from dat

JLab 2015

Some Older Data 00000 Neural networks

æ

Experimental coverage (2/2)

Collab Vear	Voor	Observables		Kinematics		No. of points		
Conab.	rear	Obscivabics	$x_{\rm B}$	$Q^2 [\text{GeV}^2]$	t [GeV ²]	total	indep.	
HERMES	2001	$A_{LU}^{\sin \phi}$	0.11	2.6	0.27	1	1	
CLAS	2001	$A_{LU}^{\sin \phi}$	0.19	1.25	0.19	1	1	
CLAS	2006	$A_{UL}^{\sin \phi}$	0.2-0.4	1.82	0.15-0.44	6	3	
HERMES	2006	$A_{C}^{\cos \phi}$	0.08-0.12	2.0-3.7	0.03-0.42	4	4	
Hall A	2006	$\sigma(\phi), \Delta\sigma(\phi)$	0.36	1.5-2.3	0.17-0.33	$4 \times 24 + 12 \times 24$	$_{4\times24+12\times24}$	
CLAS	2007	$A_{LU}(\phi)$	0.11-0.58	1.0-4.8	0.09-1.8	62×12	62×12	
HERMES	2008	$\begin{array}{l} A_{\rm C}^{\cos(0,1)\phi}, \ A_{\rm UT,DVCS}^{\sin(\phi-\phi_{\rm S})}, \\ A_{\rm UT,I}^{\sin(\phi-\phi_{\rm S})\cos(0,1)\phi}, \\ A_{\rm UT,I}^{\cos(\phi-\phi_{\rm S})\sin\phi}, \end{array}$	0.03–0.35	1–10	<0.7	12+12+12 12+12 12	$\overset{4+4+4}{\overset{4+4}{_4}}$	
CLAS	2008	$A_{LU}(\phi)$	0.12-0.48	1.0-2.8	0.1-0.8	66	33	
HERMES	2009	$A_{LU,I}^{\sin(1,2)\phi}, A_{LU,DVCS}^{\sin\phi}, A_{C}^{\cos(0,1,2,3)\phi}$	0.05-0.24	1.2-5.75	<0.7	18+18+18 18+18+ <i>18</i> +18	6+6+6 6+6+ <i>6</i> +6	
HERMES	2010	$A_{\rm UL}^{\sin(1,2,3)\phi}, \ A_{\rm LL}^{\cos(0,1,2)\phi}$	0.03–0.35	1–10	<0.7	12+12+ <i>12</i> 12+ <i>12</i> +12	4+4+4 4+4+4	
HERMES	2011	$\begin{array}{l} A_{\mathrm{LT,I}}^{\cos(\phi-\phi_S)\cos(0,1,2)\phi},\\ A_{\mathrm{LT,I}}^{\sin(\phi-\phi_S)\sin(1,2)\phi},\\ A_{\mathrm{LT,I}}^{\sin(\phi-\phi_S)\cos(0,1)\phi},\\ A_{\mathrm{LT,BH+DVCS}}^{\cos(\phi-\phi_S)\sin\phi},\\ A_{\mathrm{LT,BH+DVCS}}^{\sin(\phi-\phi_S)\sin\phi} \end{array}$	0.03–0.35	1–10	<0.7	12+12+12 12+12 12+12 12	4+4+4 4+4 4+4 4	
HERMES	2012	$A_{LU,I}^{\sin(1,2)\phi}$, $A_{LU,DVCS}^{\sin\phi}$, $A_{C}^{\cos(0,1,2,3)\phi}$	0.03-0.35	1–10	<0.7	18+ <i>18</i> + <i>18</i> 18+18+ <i>18</i> + <i>18</i>	6+ <i>6</i> + <i>6</i> 6+6+ <i>6</i> + <i>6</i>	
CLAS	2015	$A_{LU}(\phi), A_{UL}(\phi), A_{LL}(\phi)$	0.17-0.47	1.3-3.5	0.1-1.4	166 + 166 + 166	166 + 166 + 166	
CLAS	2015	$\sigma(\phi), \Delta\sigma(\phi)$	0.1-0.58	1-4.6	0.09-0.52	2640+2640	2640+2640	
Hall A	2015	$\sigma(\phi), \Delta\sigma(\phi)$	0.33-0.40	1.5-2.6	0.17-0.37	480+600	240+360	

Extraction from dat 000000

JLab 2015 0000000 Some Older Data

Neural networks

Alternative processes for GPD access

• Deeply virtual meson production (DVMP) $\gamma^* p \rightarrow Mp$.

- Theory more "dirty" than for DVCS (second "soft" function appears: meson distribution amplitude)
- Different mesons enable access to different flavours of GPDs

[P. Kroll's talk?]

- Wide-angle Compton scattering (WACS) [Tommorrow's talks]
 - WACS: proton momentum transfer *t* is large (unlike DVCS, where photon virtuality is large: $Q^2 \gg t!$)
 - data reasonably described by GPD models [Diehl, Kroll, '13]
- double DVCS $\gamma^* p \rightarrow \gamma^* p$, timelike DVCS, ...

Extraction from data •00000 JLab 2015

Some Older Data

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Neural networks

Curse of dimensionality

• It is relatively easy to find a coin lying somewhere on 100 meter string. It is very difficult to find it on a football field.

Extraction from data •00000 JLab 2015 0000000 Some Older Data

Neural networks

Curse of dimensionality

- It is relatively easy to find a coin lying somewhere on 100 meter string. It is very difficult to find it on a football field.
- When the dimensionality increases, the volume of the space increases so fast that the available data becomes sparse.
- Analogously, in contrast to *PDFs(x)*, it is very difficult to perform truly model independent extraction of *GPDs(x, η, t)*
- Known GPD constraints don't decrease the dimensionality of the GPD domain space.
- As an intermediate step, one can attempt extraction of *CFFs*(x_B, t)
- (Dependence on additional variable, photon virtuality Q², is in principle known — given by evolution equations.)

Modelling sea quark and gluon GPDs

- Instead of considering momentum fraction dependence H(x,...)
- ... it is convenient to make a transform into complementary space of conformal moments *j*:

$$H_{j}^{q}(\eta,...) \equiv \frac{\Gamma(3/2)\Gamma(j+1)}{2^{j+1}\Gamma(j+3/2)} \int_{-1}^{1} \mathrm{d}x \ \eta^{j} \ C_{j}^{3/2}(x/\eta) \ H^{q}(x,\eta,...)$$

- They are analogous to Mellin moments in DIS: $x^j \rightarrow C_i^{3/2}(x)$
- $C_i^{3/2}(x)$ Gegenbauer polynomials
- At LO easy multiplicative evolution (pQCD series behaviour and evolution of CFFs studied also to NNLO)

Extraction from data

JLab 2015 0000000 Some Older Data

Neural networks

SO(3) partial wave expansion

• To model η -dependence of GPD's $H_j(\eta, t)$ consider crossed t-channel process $\gamma^*\gamma \to p\bar{p}$ and perform SO(3) partial wave expansion:

$$H_{j}(\eta, t) = \sum_{J=J_{\min}}^{j+1} h_{J,j} \frac{1}{J-\alpha(t)} \frac{1}{\left(1-\frac{t}{M^{2}}\right)^{p}} \eta^{j+1-J} d_{0,\nu}^{J}(\frac{1}{\eta})$$

- $d_{0,\nu}^J$ Wigner SO(3) functions (Legendre, Gegenbauer,...) $\nu = 0, \pm 1$ — depending on hadron helicities
- Similar to "dual" parametrization [Polyakov, Shuvaev '02]
- We take leading waves $J = j + 1, j 1, \cdots$ and expand for small η .

Extraction from data

JLab 2015 0000000 Some Older Data

Neural networks

Modelling valence quark GPDs

- Hybrid models at LO
- Sea quarks and gluons modelled like just described (conformal moments + SO(3) partial wave expansion + Q² evolution).
- Valence quarks model (ignoring Q^2 evolution):

$$\Im \mathfrak{M} \mathcal{H}(\xi, t) = \pi \left[\frac{4}{9} H^{u_{\text{val}}}(\xi, \xi, t) + \frac{1}{9} H^{d_{\text{val}}}(\xi, \xi, t) + \frac{2}{9} H^{\text{sea}}(\xi, \xi, t) \right]$$
$$H(x, x, t) = n r 2^{\alpha} \left(\frac{2x}{1+x} \right)^{-\alpha(t)} \left(\frac{1-x}{1+x} \right)^{b} \frac{1}{\left(1 - \frac{1-x}{1+x} \frac{t}{M^{2}} \right)^{p}}.$$

• Fixed: *n* (from PDFs), $\alpha(t)$ (eff. Regge), *p* (counting rules)

$$\alpha^{
m val}(t) = 0.43 + 0.85 t/{
m GeV}^2$$
 (ho, ω)

Intro to GPDs and DVCS	Extraction from data	JLab 2015	Some Older Data	Neural networks
0000000000	000000	0000000	00000	000000000

• $\mathfrak{Re} \mathcal{H}$ determined by dispersion relations

$$\mathfrak{Re} \, \mathcal{H}(\xi, t) = \frac{1}{\pi} \mathrm{PV} \int_0^1 d\xi' \left(\frac{1}{\xi - \xi'} - \frac{1}{\xi + \xi'} \right) \mathfrak{Im} \, \mathcal{H}(\xi', t) - \frac{C}{\left(1 - \frac{t}{M_C^2} \right)^2}$$

Typical set of free parameters:

 $\begin{array}{ll} M_0^{\rm sea}, \, s_{\rm sea}^{(2,4)}, \, s_{\rm G}^{(2,4)} & {\rm sea \ quarks \ and \ gluons \ H} \\ r^{\rm val}, \, M^{\rm val}, \, b^{\rm val} & {\rm valence \ H} \\ \tilde{r}^{\rm val}, \, \tilde{M}^{\rm val}, \, \tilde{b}^{\rm val} & {\rm valence \ \widetilde{H}} \\ C, \, M_C & {\rm subtraction \ constant \ (H, \ E)} \\ r_{\pi}, \, M_{\pi} & {\rm "pion \ pole" \ \widetilde{E}} \end{array}$

Krešimir Kumerički: Nucleon GPDs from DVCS

イロト 不得 とくほと くほと

Intro to GPDs and DVCS 00000000000	Extraction from data 00000●		JLab 2015 0000000		Some Older Data 00000			Neural networ	
Model	KM09a	KM09b	KM10	KM10a	KM10b	KMS11	KMM12	KM15	
free params.	{3}+(3)+5	{3}+(3)+6	$\{3\}+15$	$\{3\}+10$	$\{3\}+15$	NNet	$\{3\}+15$	{3}+15	
χ^2 /d.o.f.	32.0/31	33.4/34	135.7/160	129.2/149	115.5/126	13.8/36	123.5/80	240./275	
F ₂	{85}	{85}	{85}	{85}	{85}		{85}	{85}	
$\sigma_{\rm DVCS}$	(45)	(45)	51	51	45		11	11	
$d\sigma_{ m DVCS}/dt$	(56)	(56)	56	56	56		24	24	
$A_{LU}^{\sin\phi}$	12+12	12 + 12	12	16	12 + 12		4	13	
$A_{LU,I}^{\sin\phi}$			18	18		18	6	6	
$A_C^{\cos 0\phi}$							6	6	
$A_C^{\cos\phi}$	12	12	18	18	12	18	6	6	
$\Delta \sigma^{\sin \phi, w}$			12				12	63	
$\sigma^{\cos 0\phi,w}$			4				4	58	
$\sigma^{\cos\phi,w}$			4				4	58	
$\sigma^{\cos\phi,w}/\sigma^{\cos0\phi,w}$		4			4				
$A_{UL}^{\sin \phi}$							10	17	
$A_{LL}^{\cos 0\phi}$							4	14	
$A_{LL}^{\cos \phi}$								10	
$A_{UT,I}^{\sin(\phi-\phi_S)\cos\phi}$							4	4	

• [K.K., Müller, et al. '09-'15]

• These models are available at WWW (google for "gpd page")

Krešimir Kumerički: Nucleon GPDs from DVCS

Extraction from dat

JLab 2015 •000000 Some Older Data

Neural networks

2015 CLAS cross-sections (1/2)

• Restriction to kinematics where leading-order framework should be valid: $-t/Q^2 < 0.25$ with $Q^2 > 1.5 \,\mathrm{GeV^2}$, means using 48 out of measured 110 $x_{\mathrm{B}}-Q^2-t$ bins.

• $\chi^2/\text{npts} = 1032.0/1014$ for $d\sigma$

and 936,1/1012 for $\Delta\sigma$

Extraction from dat

JLab 2015 000000 Some Older Data

Neural networks

ϕ -space vs. harmonics (1/2)

- $\phi\text{-space}$ figures and perfect χ^2 are not revealing the whole story
- Instead to $\sigma(\phi)$ it is favourable to work with harmonics like

$$\sigma^{\sin n\phi, w} \equiv rac{1}{\pi} \int_{-\pi}^{\pi} dw \, \sin(n\phi) \, \sigma(\phi) \; ,$$

with specialy weighted Fourier integral measure

$$egin{aligned} & {dm w} \equiv rac{2\pi \mathcal{P}_1(\phi)\mathcal{P}_2(\phi)}{\int_{-\pi}^{\pi} d\phi\,\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} d\phi \ , \end{aligned}$$

thus cancelling strongly oscillating factors $1/(\mathcal{P}_1(\phi)\mathcal{P}_2(\phi))$ in Bethe-Heitler and interference terms in $d\sigma$. Series of such weighted harmonic terms converges then faster with increasing *n* than normal Fourier series.

Extraction from dat

JLab 2015

Some Older Data

Neural networks

ϕ -space vs. harmonics (2/2)

- How many harmonics to extract?
- One approach:
 - 1. Fit harmonic expansion

 $\sigma(\phi) = c_0 + c_1 \cos \phi + \dots + s_1 \sin \phi + \dots$

to randomly chosen subset of data in a bin, and calculate χ^2 error for description of the rest of data (so called cross-validation procedure)

- 2. Increase the number of harmonics until $\chi^2/{\rm d.o.f}$ starts to fall
- Highest extractable harmonics in 2015 cross-section data:

	CLAS			Hall A			
	sine	cosine		sine	cosine		
$\Delta \sigma^w$	0.9 ± 0.4	0.1 ± 0.3		1.1 ± 0.3	0.1 ± 0.3		
$d\sigma^w$	0.3 ± 0.6	0.7 ± 0.7		0.6 ± 0.8	1.5 ± 0.7		

• (So $\Delta \sigma^w = s_1 \sin \phi$ and $d\sigma^w = c_0 + c_1 \cos \phi$ is enough.)

Extraction from da

JLab 2015

Some Older Data

Neural networks

э

2015 CLAS cross-sections (2/2)

• $\chi^2/\text{npts} = \frac{62.2}{48}$ for $d\sigma^{\cos\phi,w}$

(O.K. but not so perfect as in ϕ -space)

(日)、(四)、(三)、(三)、

Extraction from da

JLab 2015

Some Older Data

Neural networks

2006 vs 2015 Hall A cross-sections

 $Q^2 = 2.6702, x_8 = 0.337185$

KM15 prelim.

CLAS 2015

-- KMM12

 $Q_{-}^{2} = 2.36222, z_{\infty} = 0.254504$

= 3.31407, y₁ = 0.442331

-t [GeV²]

F

02 03 0.4 0.5 0.600 0.1 0.2 0.3 0.4 0.5 0.6

0.0 0.4

 $A_{LU}^{\sin\phi}$

0.2

0.4

 $A_{UL}^{\sin\phi}$

q1 = 2.36222. 3p = 0.254504

 $Q^2 = 3.31407, \mu_B = 0.442331$

-t [GeV²]

 $Q_{\perp}^2 = 2.6702, x_{\rm B} = 0.337185$

- - KMM12

0.1 0.2 0.3 0.4 0.5 0.60.0 0.1 0.2 0.3 0.4 0.5 0.6

CLAS 2015

KM15 prelim.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

JLab 2015

Krešimir Kumerički: Nucleon GPDs from DVCS

A D > A P > A D > A D >

3

Extraction from da

JLab 2015

Some Older Data •0000

メロト メポト メヨト メヨト

Neural networks

э

H1 (2007), ZEUS (2008)

Extraction from da

JLab 2015 0000000 Some Older Data

(日)

Neural networks

э

HERMES (2012)

Extraction from da

JLab 2015

Some Older Data

Neural networks

ъ

э

CLAS (2007)

• Only data with $|t| \le 0.3 \, {\rm GeV}^2$ used for fits.

 co GPDs and DVCS
 Extraction from data
 JLab 2015
 Some Older Data
 Neural

 0000000
 000000
 000000
 000000
 000000

Transversally polarized target — HERMES (2008)

Krešimir Kumerički: Nucleon GPDs from DVCS

(日)

3.5 3

Extraction from da

JLab 2015 0000000 Some Older Data

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Neural networks

э

Longitudinally polarized target — HERMES (2010)

 Surprisingly large sin(2φ) harmonic of A_{UL} cannot be described within this leading twist framework

Essentially a least-squares fit of a complicated many-parameter function. f(x) = tanh(∑ w_i tanh(∑ w_j ···)) ⇒ no theory bias

<ロト < 同ト < ヨト < ヨト

Extraction from da

JLab 2015 0000000 Some Older Data 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Neural networks

Function fitting by a neural net

Theorem: Given enough neurons, any smooth function f(x₁, x₂, ···) can be approximated to any desired accuracy.
 Single hidden layer is sufficient (but not always most efficient).

Extraction from da

JLab 2015 0000000 Some Older Data

Neural networks

Function fitting by a neural net

- Theorem: Given enough neurons, any smooth function f(x₁, x₂, ···) can be approximated to any desired accuracy.
 Single hidden layer is sufficient (but not always most efficient).
- With simple training of neural nets to data there is a danger of overfitting (a.k.a. overtraining)

Extraction from da

JLab 2015 0000000 Some Older Data

Neural networks

Function fitting by a neural net

- Theorem: Given enough neurons, any smooth function f(x₁, x₂, ···) can be approximated to any desired accuracy.
 Single hidden layer is sufficient (but not always most efficient).
- With simple training of neural nets to data there is a danger of overfitting (a.k.a. overtraining)

Extraction from da

JLab 2015 0000000 Some Older Data

Neural networks

Function fitting by a neural net

- Theorem: Given enough neurons, any smooth function f(x₁, x₂, ···) can be approximated to any desired accuracy.
 Single hidden layer is sufficient (but not always most efficient).
- With simple training of neural nets to data there is a danger of overfitting (a.k.a. overtraining)
- Solution: Divide data (randomly) into two sets: *training* sample and *validation sample*. Stop training when error of validation sample starts increasing.

Krešimir Kumerički: Nucleon GPDs from DVCS

Extraction from da

JLab 2015 0000000 Some Older Data

3 N 3

Neural networks

Example of a training with crossvalidation

Extraction from da 000000 JLab 2015 0000000 Some Older Data

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ クタ(や

Neural networks

Fitting by a set of neural networks

ΤΙΙ

Extraction from da 000000 JLab 2015 0000000 Some Older Data

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ クタ(や

Neural networks

Fitting by a set of neural networks

ή Ι Ι

Extraction from da 000000 JLab 2015 0000000 Some Older Data

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ クタ(や

Neural networks

Fitting by a set of neural networks

Extraction from da[.] 000000 JLab 2015 0000000 Some Older Data

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ クタ(や

Neural networks

Fitting by a set of neural networks

Extraction from da 000000 JLab 2015 0000000 Some Older Data

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Neural networks

Fitting by a set of neural networks

Extraction from da 000000 JLab 2015 0000000 Some Older Data 00000

Neural networks

= nac

Fitting by a set of neural networks

Neural networks

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ クタ()

- Training networks on Monte Carlo replicated data preserves experimental uncertainties and their correlations [Giele et al. '01]
- Already successfully applied to PDF fitting by [NNPDF] group. Has even larger potential in GPD fitting with GPDs being less-known functions of more variables.

Extraction from da

JLab 2015 0000000 Some Older Data

Neural networks

Preliminary neural Net HERMES fit

- Fit to all HERMES DVCS data with two types of neural nets
 - $(x_B, t) (7 \text{ neurons}) (\Im \mathfrak{m} \mathcal{H}, \mathfrak{Re} \mathcal{H}, \Im \mathfrak{m} \tilde{\mathcal{H}})$: $\chi^2/n_{\text{pts}} = 135.4/144$
 - $(x_B, t) (7 \text{ neurons}) (\Im \mathfrak{m} \mathcal{H}, \mathfrak{Re} \mathcal{E}): \chi^2 / n_{pts} = 120.2/144$

Krešimir Kumerički : Nucleon GPDs from DVCS

Extraction from da

JLab 2015 0000000 Some Older Data 00000 Neural networks

Neural Net HERMES fit - BSA/BCA

Extraction from dat 000000

JLab 2015

Some Older Data 00000 Neural networks

Neural Net HERMES fit - CFFs

Extraction from dat

JLab 2015

Some Older Data

Neural networks

Comparison of various approaches

- Global fits of all proton DVCS data using flexible hybrid models are in healthy shape
- Data clearly restrict H(x, x, t), and to some extent \tilde{H} , but any information about E is very model-dependent
- New 2015 data relieve some old tensions
- Neural networks are very promising method for GPD/CFF extraction

- Global fits of all proton DVCS data using flexible hybrid models are in healthy shape
- Data clearly restrict H(x, x, t), and to some extent \tilde{H} , but any information about E is very model-dependent
- New 2015 data relieve some old tensions
- Neural networks are very promising method for GPD/CFF extraction

The End