Form Factors and Their Interpretation

Gerald A. Miller, U. of Washington Why study form factors?

- Confinement
- Confinement vs- chiral symmetry breaking for light quarks in nucleon
- Relation to Proton Radius- measurements using electrons and muons have different results: new physics? What is proton radius
- Dynamics -how does proton stick together at high momentum transfer

We need form factors

Outline

1. How not to and how to analyze electromagnetic form factors- transverse density

2. Model independent proton, neutron transverse charge density proton transverse magnetization density

3. Connection with proton radius puzzle

4. Form factor dynamics and implications

5. Pion time-like data, transverse charge density, dynamics

Transverse Charge Densities. Gerald A. Miller, arXiv:1002.0355 [nucl-th] ARNPS 60,1 2010

Electron-nucleon scattering

Interpretation of Sachs - $G_E(Q^2)$ is Fourier transform of charge density WRONG $G_E(\vec{q}^{\ 2}) = \int d^3r \rho(r) e^{i\vec{q}\cdot\vec{r}} \rightarrow \int d^3r \rho(r) (1 - \vec{q}^{\ 2}r^2/6 + \cdots)$

Coefficient of q² term is average of r², But what is r?

Correct non-relativistic: wave function invariant under Galilean transformation

Neutron example Why FT of G_E is not a charge density

 $G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4M^2}F_2(Q^2) \qquad \text{Big}$ Low Q²: $G_E(Q^2) = -Q^2(\frac{R_1^2}{6} + \frac{\kappa_n}{4M^2})$

Non-zero neutron charge density caused by anomalous magnetic moment??????????

Problem- non relativistic doesn't work

Need relativistic treatment

Relativistic : wave function is frame dependent, initial and final states differ

interpretation of Sachs FF is wrong

Final wave function is **boosted** from initial

Relation between 3- dimensional and transverse densitiesexperimentalists love to 3 D F transform form factors

Sorry, not correct! No density interpretation of 3D FT of form factors but there is a way to make this kind of plot correctly.

Toy model GAM, Phys.Rev.C80:045210,2009.

- Scalar meson, mass M made of two scalars one neutral, M=m1+m2-B, B>0
- Exact covariant calculation of form factor

Direct evaluation of graph gives covariant, gauge invariant F(Q²), can be studied, vary masses look for |wave functions|²

$$F(Q^2)(2P^{\mu} + q^{\mu}) = 4\frac{g^2}{16\pi^2}(2P^{\mu} + q^{\mu})\int_0^1 dx \frac{x \operatorname{Tanh}^{-1}\left[\frac{\sqrt{Q^2}(1-x)}{4m^2 - x(1-x)M^2 + (1-x)^2Q^2}\right]}{\sqrt{Q^2}\sqrt{4m^2 - x(1-x)M^2 + (1-x)^2Q^2}}$$

$\label{eq:model} Toy \ model \qquad \mathbf{M} = \mathbf{2m} - \mathbf{B}, \ \mathbf{B} > \mathbf{0}$

- Infinite momentum frame, same result
- Integrate over minus-component, same result

$$F(Q^2) = \frac{g^2}{16\pi^2} \int d^2\kappa \int_0^1 \frac{dx}{x(1-x)} \psi^*(x, \kappa + (1-x)\mathbf{q})\psi(x, \kappa)$$
$$\psi(x, \kappa) = g \left[M^2 - \frac{\kappa^2 + m^2}{x(1-x)} \right]^{-1}$$

F(Q) IS 3Dim FT

Leading order Chiral EFT

$$x \to \frac{m+\kappa^3}{M}, \psi \to \frac{g}{2m(-B-\frac{\kappa^2}{m})}$$

How small must B/M be for nonrelativistic approximation to work? Validity of non-relativistic (NR) approximation

validity of NR approx needed for form factor to be 3 D FT of density

"quark-diquark nugeleon"

 $m_2 = 2m_1, m = 400$ MeV, B = 260 MeV = 0.276 M

)²

Light front, Infinite momentum frame

"Time", $x^+ = x^0 + x^3$, "Evolve", $p^- = p^0 - p^3$ "Space", $x^- = x^0 - x^3$, "Momentum", p^+ (Bjorken) Transverse position, momentum \mathbf{b}, \mathbf{p}

These variables are used in GPDs, TMDs, standard variables **transverse boosts in kinematic subgroup** $\mathbf{k} \rightarrow \mathbf{k} - k^+ \mathbf{v}$ $|\mathbf{R} = \mathbf{0}, \lambda\rangle = \int d^2p |\mathbf{p}, \lambda\rangle$ space - like $q^{\mu}, q^+ = 0$,

momentum transfer in transverse direction

then density is 2 Dimensional Fourier Transform

Model independent transverse charge density

Light Front Charge Density Operator

$$\rho_{\infty}(x^{-},\mathbf{b}) = \langle p^{+}, \mathbf{R} = \mathbf{0}, \lambda | \sum_{q} e_{q} q_{+}^{\dagger}(x^{-},b) q_{+}(x^{-},b) | p^{+}, \mathbf{R} = \mathbf{0}, \lambda \rangle$$

$$\rho(b) \equiv \int dx^{-} \rho_{\infty}(x^{-},\mathbf{b}) = \int \frac{QdQ}{2\pi} F_{1}(Q^{2}) J_{0}(Qb)$$

The true density is the 2 Dimensional FT of F₁!

Density is
$$u - \bar{u}, \ d - \bar{d}$$
 Soper '77

What is charge density at the center of the neutron?

- Neutron has no charge, but charge density need not vanish
- Is central density positive or negative?

Fermi: n fluctuates to $p\pi^{-}$

p at center, pion floats to edge

One gluon exchange favors dud

Real question- how does form factor relate to charge density?

Transverse charge densities from parameterizations (Alberico)

Why is central density of neutron negative ?

- d quarks dominate DIS from neutron at high x
- d quarks dominate at neutron center, or

 $\pi^- = \bar{u}d$ Quarks vs anti-quarks

Impact parameter dependent GPD Burkardt

Probability that quark at b from CTM has long momentum fraction x: ho(x,b)

$$b = (1 - x)r$$

b is distance from center of momentum r is relative distance can get b=0 from x=1 if so r can be large - b=0 is not true center

Neutron interpretation ρ(x,b) GAM, J. Arrington, PRC78,032201R '08

Using Kroll's GPD model

Negative density comes from high x, valence d quark effect Caution- the GPDs are fit to form factors and DIS. Not enough DVCS data yet to independently get (x,b) dependence, other fits are possible. Transverse Nucleon anomalous magnetization density

$$\vec{\mu} \cdot \vec{B} = \langle X | \int d^3 r \frac{1}{2} (\vec{r} \times \vec{j}) \cdot \vec{B} | X \rangle$$

Transversely polarized target \vec{B} in x-direction $1/2(\vec{r} \times \vec{j})$ in Infinite momentum frame

Transverse Nucleon anomalous magnetization density

How well are these known now?

 Analyze effect of experimental uncertainty and due to finite range of Q² - incompleteness

Venkat, Arrington, Miller, Zhan new analysis-

Phys. Rev. C 83, 015203 (2011)

Proton anomalous magnetization density

Connection to proton radius puzzle: Why G_E seems like FT of density

Leading order interaction in atomic physics

Nucleon vertex is matrix element of Γ_0 between proton on-shell spinors

$$V(r) = e^2 \int \frac{d^3 q}{(2\pi)^3} \frac{G_E(|\vec{q}|^2)}{|\vec{q}|^2} e^{i\vec{q}\cdot\vec{r}} \ (q^0 = 0 \text{ Coulomb gauge})$$

 $V(r) = \frac{e^2}{4\pi} \int \frac{d^3r'}{|\vec{r} - \vec{r'}|} (3 \operatorname{Dim} \operatorname{FT} \text{ of } \mathcal{G}_{\mathrm{E}}(|\tilde{\mathbf{q}}|^2))$ 3 Dim FT of $\mathcal{G}_{\mathrm{E}}(|\tilde{\mathbf{q}}|^2)$ acts as charge density for proton Coulomb interaction In atomic physics $r_p^2 \equiv -6G'_E(Q^2 = 0)$

Extractions of r_p^2 using H atom differs from that of muonic H

Electron scattering experiments are challenged

Proton structure: issues needing more than form factors

 Proton is complicated object consisting of many Fock space configurations:

$$3q, 4q\bar{q}, 4q\bar{q}g, 3qg, 3q2g \cdots$$

$$proton = \operatorname{PLC}^{proton} + \operatorname{O}_{\mathfrak{G}}^{\mathfrak{G}} + \operatorname{O}_{\mathfrak{$$

- These configurations have different spatial extents
- PLC point like configurations (small size)
- BLC -blob like configurations (large size)
- Hypothesis of pert. QCD form factors at high momentum transfer are caused by PLC ²²

Momentum of exchanged gluon ~Q, separation ~1/Q

- At high enough Q an exclusive interaction occurs if the transverse size of the hadron is smaller than the equilibrium size.
- Perturbative reasoning-also non-perturbative

Transverse size not affected -no PLC

Interesting dynamical question about QCD -do PLC exist and participate? Making PLC is squeezing- and is the interesting part PLC vs Feynman mechanism

Implications of PLC vs Feynman

- Color transparency High momentum transfer turns the proton into a color neutral Point Like Configuration- PLC
- These do not interact, not absorbed by nuclei, cast no shadow

Implications of PLC vs Feynman- EMC Effect Suppression of PLC in medium

place in medium:

normal size components attracted energy goes down

PLC does not interact- color screening

energy denominator increased, PLC suppressed

quarks in bound protons lose momentum inmediumStudied in Nuclear DIS

Lattice FF calculations could be extended to tell PLC vs Feynman

Pion form factor

Determination of F_{π} via Pion Electroproduction

At low $Q^2 < 0.3 \text{ GeV}^2$, the π^+ form factor can be measured exactly using high energy π^+ scattering from atomic electrons.

- $\Rightarrow 300 \text{ GeV pions at CERN SPS. [Amendolia et al., NP B277(1986)168]}$
- \Rightarrow Provides an accurate measure of the π^+ charge radius.

$$r_{\pi} = 0.657 \pm 0.012$$
 fm

To access higher Q^2 , one must employ the $p(e, e'\pi^+)n$ reaction.

- *t*-channel process dominates σ_L at small -t.
- In the Born term model:

$$\frac{d\sigma_{L}}{dt} \propto \frac{-tQ^{2}}{(t-m_{\pi}^{2})} g_{\pi NN}^{2}(t) F_{\pi}^{2}(Q^{2},t)$$

Pionic Transverse Density From Time-like and Space-Like Probes

Gerald A. Miller¹, Mark Strikman², Christian Weiss³

Phys. Rev. D 83, 013006 (2011)

$$F_{\pi}(t) = \frac{1}{\pi} \int_{4m_{\pi}^2}^{\infty} dt' \frac{ImF_{\pi}(t')}{t' - t + i\epsilon}.$$

Dispersion relation uses time-like data

$$K_0(x) \sim \frac{e^{-x}}{x} \quad \rho(b) = \frac{1}{2\pi} \int_{4m_\pi^2}^{\infty} dt K_0(\sqrt{t}b) \frac{ImF_\pi(t)}{\pi}.$$

Low t dominates except for very small values of b

Model needed for high t: C. Bruch et al E. J Phys.C39, 41

Pion Transverse Charge Density

PHYSICAL REVIEW C 90, 025211 (2014)

Pion transverse charge density and the edge of hadrons

- Data is below the monopole form
- Uncertainy in pion transverse density dominated by incompleteness
- pion and proton have same transverse density 0.3 < b < 0.6 fm quark-diquark structure of proton?

r=q \overline{q} transverse separation, b is distance from cm r-distribution $\rho_r(x,r) = (1-x)^2 \rho(x,b = (1-x)r)$

Singular in b is not necessarily singular in r b distribution is accessible in elastic scattering, -dist is NOT GPD is needed to tell- three models with same form factor below

A tale of two authors- three models (many more: Cloet, Eichmann)

- Anatoly Radyushkin (AR) -ad hoc quark dist .times function of Q²
- Broniowski et al quark spectral function, confinement plus VMD
- Broniowski et al NJL- spontaneous symmetry breaking

PLC existence: yes or no?

Frankurt, Miller Strikman Nucl. Phys. A555 (1993) 752

$$r^{2}(Q^{2}) = \frac{\int dx d^{2}b \, r^{2} \, e^{i\mathbf{Q}\cdot\mathbf{b}}\rho(x,b)}{\int dx d^{2}b \, r^{2} \, \rho(x,b)}, \, r = b/(1-x)$$

 $r^{2}(Q^{2})$ Decrease of $r^{2}(Q^{2})$ with Q² implies PLC exists NJL $r^{2}(Q^{2})$ is infinite all Q²

Summary of pion models

Model	Singular (b=0)	PLC	Feynman
AR	No	Yes	Yes
Spectral	Yes	YES (low Q)	Yes
NJL	No	NO	Yes

No one to one correspondence between b=0 sing., PLC Need more models, ultimately lattice

Summary

- Much data exist, Jlab12 will improve data set, many experiments -talks here Form factors needed
- Charge density is not a 3 dimensional Fourier transform of G_E
- Interpret form factor as determining transverse charge and magnetization densities
- Nucleon transverse densities known now to high precision, neutron central t.density is negative caused by valence quarks
- Pion transverse density known fairly well, it is singular at origin
- Form factors do not tell all we want to know: Feynman vs PLC, b vs r, flavor composition, extension of lattice calcs (Syritsyn, Young, Portelli)