
Form Factors  and Their Interpretation

• Confinement 
• Confinement vs- chiral symmetry breaking 

for light quarks in nucleon 
• Relation to Proton Radius- measurements 

using electrons and muons have different 
results:  new physics? What is proton radius 

• Dynamics -how does proton stick together 
at high momentum transfer
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Why study form factors?

We need form factors



!
!
1. How not to and how to analyze electromagnetic form 
factors- transverse density  
!
2. Model independent proton, neutron transverse  charge density 
proton transverse magnetization density 
!
3. Connection with proton radius puzzle 
!
4. Form factor dynamics and implications 
!
5. Pion time-like data, transverse charge density, dynamics 

Transverse Charge Densities.	
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 Electron-nucleon scattering 

Cross section for scattering 
 from a point-like object

Form factors describing 
nucleon shape/structure

Jµ=<p’|Γµ|p>

Nucleon vertex:
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scattering



Interpretation of Sachs - GE(Q2) is Fourier transform of 
charge density 

Correct non-relativistic:
wave function  invariant under Galilean transformation

-

WRONG
GE(~q 2) =

Z
d3r⇢(r)ei~q·~r !

Z
d3r⇢(r)(1� ~q 2r2/6 + · · · )

Coefficient of q2 term is average of r2, But what is r?

Neutron example    
Why FT of GE is not a charge density
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Low Q2
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Big

Non-zero neutron charge density caused by anomalous magnetic 
moment??????????



Problem- non relativistic doesn’t work

Relativistic :  wave function is frame dependent, 
initial and final states differ 
interpretation of Sachs FF is wrong 

Final wave function is boosted from 
initial

Need relativistic treatment



Relation between 3- dimensional and transverse densities-
experimentalists love to 3 D F transform form factors 

proach a constant for sufficiently large Q2. Extrapolation of

the LGE parametrization suggests that the asymptotic ratio

will be very small, but data at much larger Q2 are needed to

establish that level. An extension to 9 (GeV/c)2 has been

approved !72", but larger Q2 remains desirable. Similarly, the

present data for GEn /GMn are compatible with the Galster

parametrization but remain limited to rather small Q2. Con-

sequently, the extrapolation to larger Q2 is rather uncertain.

If an approved experiment using the 3He!(e! ,e!n) reaction
!73" achieves the proposed !13% statistical uncertainty at

Q2"3.4 (GeV/c)2, the error band will be reduced to about
the same width and the extrapolation much improved. Nev-

ertheless, there is little reason to expect the asymptotic limit

to be reached earlier for the neutron than for the proton.

Although a review of recent theoretical calculations is be-

yond the scope of the present work, it is probably worth

mentioning a few which describe the new GEp /GMp data

relatively well. Among these the earliest is the chiral soliton

model of Holzwarth !20", which predicted the linear de-
screase with respect to Q2 and a sign change near

10 (GeV/c)2. More recently !21", modifications of the vec-
tor meson parameters were made to improve the fits to the

neutron form factors, but the ratio GMn /GMp is not repro-

duced. Furthermore, because the chiral soliton model uses

#E"0 and #M"1, Holzwarth found it necessary to artifi-
cially increase the soliton mass in order to obtain reasonable

fits at large Q2. Alternatively, Lu et al. !74,75" obtained a
good fit to the GEp /GMp data for Q

2#3 (GeV/c)2 by ad-
justing the bag radius in the cloudy bag model, but the ratio

appears to level off well above the more recent data for

higher Q2. Note that this model uses #E"#M"1. The co-
variant calculation of Boffi et al. !76" using the point-form
spectator approximation provides reasonably accurate pre-

dictions of the form factors for Q2#5 (GeV/c)2, although
there remains a significant discrepancy for GMp near the end

of this range. The light-front calculations of Cardarelli and

Simula !77" using one-gluon exchange and the light-cone
diquark model of Ma et al. !78" also reproduce the linear Q2

dependence of GEp /GMp fairly well.

B. Densities

Proton charge and magnetization densities are compared

in Fig. 5. Both densities are measured very precisely, with

uncertainties at the origin better than 6% for magnetization

or 8% for charge. Incompleteness dominates in the interior

region while statistical errors become comparable in the sur-

face region. As shown by the variation of GEp /GMp in the

top panel of Fig. 4, the new recoil-polarization data for GEp

decrease more rapidly than either the dipole form factor or

the magnetic form factor for Q2$1 (GeV/c)2. Conse-
quently, we find that the charge density is significantly softer

than the magnetization density of the proton. The densities

obtained using LGE or FBE parametrizations are practically

indistinguishable and are independent of the choice of b or

Rmax over wide ranges. These densities are similar to the

Gaussian densities one might expect from a quark model and

are more realistic than the exponential density that results

from naive nonrelativistic inversion of the dipole form factor.

Neutron densities are shown in Fig. 6. We find that the

magnetization density for the neutron is very similar to that

for the proton, although the interior precision is not as good

because the range of Q2 is smaller and the experimental

uncertainties larger. Limitations in the range and quality of

the GEn data presently available result in a substantially

wider error band for the neutron charge density. Data at

higher Q2 are needed to improve the interior precision, but a

useful measurement of the interior charge density is obtained

nonetheless. The positive interior density is balanced by a

negative surface lobe. Note that polarization measurements

are sensitive to the sign of the density.

Whereas Figs. 5 and 6 emphasize the interior densities, it

is also of interest to compare these densities in the surface

and tail regions. Figures 7 and 8 use a factor of r2 to empha-

size these surface and tail densities. Although the densities

are small, the reduced slopes seen between 1 and 1.5 fm in

the neutron magnetization and in both the charge and the

magnetization densities for the proton are seen as significant

peaks in r2$ . Virtually identical features also emerge using
the FBE parametrization. These features are independent of b

for the LGE or Rmax for the FBE parametrization over wide

FIG. 5. Comparison between charge ($ch) and magnetization
($m) densities for the proton fitted using the LGE parametrization
with #E"#M"2. Both densities are normalized to %dr r2$(r)
"1.

FIG. 6. Charge ($ch) and magnetization ($m) densities for the
neutron fitted using the LGE parametrization with #E"#M"2.
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Figure 2.5: On the left is the distribution of the charge within the neutron, the combined result of experiments around the 
globe that use polarization techniques in electron scattering. On the right is that of the (much larger) proton distribution for 
reference. The widths of the colored bands represent the uncertainties. A decade ago, as described in the 1999 NRC report 
(The Core of Matter, the Fuel of Stars, National Academies Press [1999]), our knowledge of neutron structure was quite limited and 
unable to constrain calculations, but as promised, advances in polarization techniques led to substantial improvement.

But quarks can have a transverse spin preference, denoted as 
transversity. Because of effects of relativity, transversity’s rela-
tion to the nucleon’s transverse spin orientation differs from 
the corresponding relationship for spin components along its 
motion. Quark transversity measures a distinct property of 
nucleon structure—associated with the breaking of QCD’s 
fundamental chiral symmetry—from that probed by helicity 
preferences. The first measurement of quark transversity has 
recently been made by the HERMES experiment, exploiting 
a spin sensitivity in the formation of hadrons from scattered 
quarks discovered in electron-positron collisions by nuclear 
scientists in the BELLE Collaboration at KEK in Japan.

Fueled by new experiments and dramatic recent advances 
in theory, the entire subject of transverse spin sensitivities in 
QCD interactions has undergone a worldwide renaissance. 
In contrast to decades-old expectations, sizable sensitiv-
ity to the transverse spin orientation of a proton has been 
observed in both deep-inelastic scattering experiments with 
hadron coincidences at HERMES and in hadron production 
in polarized proton-proton collisions at RHIC. The latter 
echoed an earlier result from Fermilab at lower energies, 
where perturbative QCD was not thought to be applicable. 
At HERMES, but not yet definitively at RHIC, measure-
ments have disentangled the contributions due to quark 
transverse spin preferences and transverse motion preferences 
within a transversely polarized proton. The motional prefer-
ences are intriguing because they require spin-orbit correla-

tions within the nucleon’s wave function, and may thereby 
illuminate the original spin puzzle. Attempts are ongoing to 
achieve a unified understanding of a variety of transverse spin 
measurements, and further experiments are planned at RHIC 
and JLAB, with the aim of probing the orbital motion of 
quarks and gluons separately.

The GPDs obtained from deep exclusive high-energy 
reactions provide independent access to the contributions 
of quark orbital angular momentum to the proton spin. As 
described further below, these reaction studies are a promi-
nent part of the science program of the 12 GeV CEBAF 
Upgrade, providing the best promise for deducing the orbital 
contributions of valence quarks.

The Spatial Structure of Protons and Neutrons
Following the pioneering measurements of the proton 

charge distribution by Hofstadter at Stanford in the 1950s, 
experiments have revealed the proton’s internal makeup with 
ever-increasing precision, largely through the use of electron 
scattering. The spatial structure of the nucleon reflects in 
QCD the distributions of the elementary quarks and gluons, 
as well as their motion and spin polarization.

Charge and Magnetization Distributions of Protons and 
Neutrons. The fundamental quantities that provide the 
simplest spatial map of the interior of neutrons and protons 
are the electromagnetic form factors, which lead to a picture 
of the average spatial distributions of charge and magnetism. 

26 QCD and the Structure of Hadrons

Neutron charge density Proton charge density

NSAC 2007

Sorry, not correct!  No density interpretation of 3D FT of form factors 
but there is a way to make this kind of plot correctly.



Toy model  GAM, Phys.Rev.C80:045210,2009.   

• Scalar meson, mass M made of two 
scalars one neutral,  

• Exact covariant calculation of form factor

On the Relationship Between Electromagnetic Form Factors and Charge Densities

Gerald A. Miller
Department of Physics, University of Washington

Seattle, Washington 98195-1560

An exact covariant simple model is used to elucidate various issues.

PACS numbers:
Keywords: Nuclear Form Factors, Nuclear Charge Densities

I. INTRODUCTION

The text-book interpretation of these form factors is that their Fourier transforms are measurements of the charge
and magnetization densities. But the initial and final nuclei have different momentum, and therefore different wave
functions. This is because the relativistic boost operator that transforms a nucleus at rest into a moving one changes
the wave function in a manner that depends on the momentum of the nucleon. The presence of different wave functions
of the initial and final nucleons invalidates a probability or density interpretation.

Infinemomentum frame method history-me carlson carlson
Nuclei are very heavy expect relativistic effects are small.
Present analysis.
A proper determination of a charge density requires that the quantity be related to the square of a wave function

or of a field operator. The technical solution to the problem of determining the relevant density operator has been
known for a long time [3], and has been elegantly explained recently[5, 6]

The charge density ρ(b) [7] of partons in the transverse plane is a two-dimensional Fourier transform of the F1 form
factor. Here we present the first phenomenological analysis of existing data to determine ρ(b) for 3He and 3H. Carlson
and M. Vanderhaeghen,V and C have done the deuteron [8].

II. EXACT FORM FACTORS USING A SIMPLE MODEL

The model Lagrangian is given by gΨφ ξ where Ψ, φ and ξ represent three scalar fields of masses M, m1 and m2

respectively and g is a coupling constant One can take two or three of these fields to carry charge to make up a system
of definite charge (including the neutral case). We begin with the case that Ψ, φ carry a single positive charge and ξ
is neutral. The form factor F (q2) for a space-like incident photon of four-momentum qµ (q2 < 0, Q2 = −q2), incident
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FIG. 1: Feynman diagram for the form factor with the photon coupling to the particle of mass m1.
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Direct evaluation of graph gives  
covariant, gauge invariant F(Q2), 
can be studied, vary masses 
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Toy model
• Infinite momentum frame, same result  
• Integrate over minus-component, same result
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How small must B/M  be for non-
relativistic approximation to work?

• Non-relativistic limit,  m/M >>B/M 
• F(Q) IS 3Dim FT 
• Leading order Chiral EFTm
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Validity of non-relativistic (NR) approximation 
!

Q2 � 0.2M2
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FIG. 5: Exact vs non-relativistic Form factors for the case m1 = m2 = m.

where the coupling constants and other constants enter in such a manner as to make FNR(Q2 = 0) = 1.
We study the non-relativistic approximation, by comparing the exact model results Eq. (17) with those of the

non-relativistic approximation Eq. (69). See Fig. IXA.
The figure shows two sets of results. In the upper panel the binding energy B = 0.002 M . This corresponds roughly

to deuteron kinematics, in which the binding energy is of the order of a 0.004 of the deuteron mass. We see that
the non-relativistic approximation is not accurate for values of Q2/M2 greater than about 1. If one increases the
binding energy to 0.1 M , one sees that the non-relativistic approximation is not accurate for any value of Q2. If one
approximates a nucleon by taking M = 1 GeV, then m = 0.55 GeV, which is much larger than a constituent quark
mass.

We can gain some insight into the nature of the relativistic corrections to the charge radius by studying the low Q2

limit of the form factor of Eq. (8). One finds

lim
Q2→0

F (Q2) = 1 − Q2R2

6
, (70)

with

M2R2 =

(

1
γ3 + 48γ

)

cot−1(2γ) + 2
γ2 − 24

16
((

2γ + 1
2γ

)

cot−1(2γ) − 1
) , (71)

and

γ2 =
m2

M2
− 1

4
=

B

2M
+

B2

4M2
. (72)

The non-relativistic limit corresponds to the limit of small values of γ, which corresponds to a small value of B/M .
So we expand the previous result to order B/M to find

M2R2 ≈
(

12288− 2816π2 + 195π4
)

B

48Mπ4
+

√

B
M

(

128
√

2 − 25
√

2π2
)

4π3
+

64 − 5π2

8π2
+

√
2

√

B
M π

+
M

4B
(73)

Relativity needed

only deuteron kinematics are non-rel

(2m-M)/M=0.002

(2m-M)/M=0.1

Exact

Non-rel

Non-rel

Exact

validity of NR approx needed for form!
factor to be 3 D FT of density



“quark-diquark nucleon”

• Big effects at all Q2 

• Form factor is not 3 D FT of density 

• Relativistic analysis of form factors is needed
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FIG. 8: Exact vs non-relativistic form factors for the case m2 = 2m1, m = 400 MeV, B = 260 MeV = 0.276 M . Solid
curve-exact, dashed non-relativistic.
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FIG. 9: Exact vs (solid curve) non-relativistic form factors (dashed curve) for A = 4 for Sm = 46 MeV.

We see that the first term is indeed the non-relativistic result, and that the second term changes sign for the value of
A that satisfies the equation 4A− 2(A− 2) ln(A− 1) = 0 or A ≈ 12. This displayed in Fig. 11. It is also seen that the
relativity causes very significant effects on the effective radii. Except for values of A near 12, the changes are of the
order of 10-15%. I expect that the specific values shown in Fig. 11 are highly model-dependent. Covariant models
other than the Ψφξ model used here probably have have effects of different sizes. However, the large effects shown
here cause one to wonder if relativity really may cause the true nuclear radii extracted from elastic electron scattering
to differ by 10-20% from those appearing in tables. As noted above, we can expect that the model employed here is a
reasonable representation of the lowest s-state of heavy nuclei for which the range of the binding interactions is much
less than the size of the system as a whole. For such states, the results of Fig. 11 should be a reasonably accurate
guide, so that significant effects of relativity should be expected.
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We see that the first term is indeed the non-relativistic result, and that the second term changes sign for the value of
A that satisfies the equation 4A− 2(A− 2) ln(A− 1) = 0 or A ≈ 12. This displayed in Fig. 11. It is also seen that the
relativity causes very significant effects on the effective radii. Except for values of A near 12, the changes are of the
order of 10-15%. I expect that the specific values shown in Fig. 11 are highly model-dependent. Covariant models
other than the Ψφξ model used here probably have have effects of different sizes. However, the large effects shown
here cause one to wonder if relativity really may cause the true nuclear radii extracted from elastic electron scattering
to differ by 10-20% from those appearing in tables. As noted above, we can expect that the model employed here is a
reasonable representation of the lowest s-state of heavy nuclei for which the range of the binding interactions is much
less than the size of the system as a whole. For such states, the results of Fig. 11 should be a reasonably accurate
guide, so that significant effects of relativity should be expected.
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,R = 0, �|

X

q

eqq
†
+(x�, b)q+(x�, b)|p+

,R = 0, �i

⇢(b) ⌘
Z

dx

�
⇢1(x�,b) =

Z
QdQ

2⇡

F1(Q2)J0(Qb)

Density is u� ū, d� d̄

Model independent transverse charge density

12

Light Front Charge Density Operator

Soper ’77

The true density is the 2 Dimensional FT of F1!



What is charge density at the 
center of the neutron? 

• Neutron has no charge, but 
charge density need not vanish 

• Is central density positive or 
negative? 

 Fermi: n fluctuates to   
 

p at center, 
pion floats 
to edge

One gluon exchange favors   dud 

Real question- how does form factor relate to charge density?



Transverse charge densities from 
parameterizations (Alberico) 
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Figure 4
Nucleon ρ(b). (a) Proton transverse charge density. (b) Neutron transverse charge density. These densities
are obtained by using the parameterization of Reference 91.

by a nonzero value of Q2, no matter how small, because the momentum difference between the
initial and final states appears via the use of derivatives of momentum-conserving delta functions
in the moments computed in Reference 85. Any attempt to analytically incorporate relativistic
corrections in a p2/m2

q type of expansion would be doomed by the presence of the quark mass mq

to be model dependent. This feature is explained more thoroughly in References 6 and 86.
We exploit Equation 31 by using measured form factors to determine ρ(b). Recent parameter-

izations (87–91) of GE and GM are very useful, so we use Equation 43 to obtain F1 in terms of GE,
GM . Then ρ(b) can be expressed as a simple integral of known functions,

ρ(b) =
∫ ∞

0

d Q Q
2π

J0(Qb)
GE (Q2) + τGM (Q2)

1 + τ
, 44.

where τ = Q2

4M 2 and J0 is a cylindrical Bessel function.
A straightforward application of Equation 44 to the proton using the parameterizations of

Reference 91 yields the results shown in Figure 4a. The curves obtained by using the two different
parameterizations overlap. Furthermore, there seems to be negligible sensitivity to form factors
at very high values of Q2 that are currently unmeasured. The density is peaked at low values of b
but contains has a long positive tail, suggesting a long-ranged, positively charged pion cloud.

The neutron results are shown in Figure 4b. The curves obtained by using the two different
parameterizations seem to overlap. Surprisingly, the central neutron charge density is negative.
The values of the integral of Equation 44 are somewhat sensitive to the regime 8 < Q2 < 16 GeV2,

14 Miller
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Figure 5
Neutron F1 and bρ(b). (a) F1(Q2). (b) bρ(b). The solid light brown curves are obtained using fit 1 of
Reference 91, and the dashed green curves are obtained by using fit 2 of the same reference.

for which GE is as yet unmeasured. Approximately 30% of the value of ρ(0) arises from this region.
That ρ(b = 0) < 0 was confirmed in References 80 and 92–94.

The negative central density deserves further explanation. See Figure 5a, which shows F1 for
the neutron from two parameterizations of Reference 91. In both cases, F1 is negative (because
of the dominance of the GM term of Equation 44) for all values of Q2. This feature, along with
taking b = 0 so that J0(Qb) = 1 in Equation 44, immediately leads to the central negative result.
The long-range structure of the charge density is captured by displaying the quantity bρ(b) in
Figure 5b. At very large distances from the center, bρ(b) < 0, which suggests the existence of the
long-ranged pion cloud. Thus, the neutron transverse charge density displays an unusual behavior,
in which the positive charge density in the middle region is sandwiched by negative charge densities
at the inner and outer reaches of the neutron. A simple model in which the neutron fluctuates
into a proton and a π− parameterized to reproduce the negative-definite nature of the neutron’s
F1 (95) reproduces the negative transverse central density. In this case, the negative nature arises
from pions that penetrate to the center. The change from the nominal positive value obtained
from GE can be understood as originating in the boost to the IMF (86).

One can gain information about the individual u and d quark densities by invoking charge
symmetry [invariance under a rotation by π about the z (charge) axis in isospin space (96–99)] and
by neglecting the effects of s s̄ pairs (100). Model-independent information about nucleon structure
is thereby obtained and shows, surprisingly, that the central density of the neutron is negative.
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⇢(x, b)

⇢(b) =
Z

dx⇢(x, b)

Impact parameter dependent GPD Burkardt

15

Probability that quark at b from CTM has long momentum fraction x: 

1−x

b / (1− )xr =
b

x

Why is central density of neutron negative ?

b is distance from center of 
momentum!
r is relative distance!
can get b=0 from x=1!
if so r can be large - b=0 is 
not true center

• d quarks dominate DIS from neutron at high x 
• d quarks dominate at neutron center, or

⇡� = ūd Quarks vs anti-quarks

b = (1� x)r



Neutron interpretation ρ(x,b)  
GAM, J. Arrington, PRC78,032201R  ’08 

Negative density comes from  high x, valence d quark effect 

 

Using Kroll’s    GPD model

0.2 0.4 0.6 0.8 1.0

-0.04

-0.03

-0.02

-0.01

0.01

0.02

⇢n(x, b = 0)
b[GeV�1]

Caution- the GPDs are fit to  form factors and DIS. Not enough 
DVCS data yet  to independently get (x,b) dependence, other fits 
are possible.



Magnetization density

⇢M (b) =

sin2 �
2M b

R Q2dQ
2⇡ F2(Q2

)J1(Qb)

~j

~B, ~S
~r

~µ · ~B = hX|
Z

d3r
1
2
(~r ⇥~j) · ~B|Xi

Transverse Nucleon anomalous 
magnetization density 

17

~

B in x-direction

1/2(~r ⇥~

j) in Infinite momentum frame

Transversely polarized target
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Direction of magnetic field
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Figure 7
(a) ρ̃M [b = (b, φ = π/2)] as a function of b. (b) Density plot of ρ̃M (b). The horizontal axis is the direction of
the applied magnetic field. The largest (smallest) values of ρ̃M are denoted by the brightest (darkest) areas.
This panel is obtained by using a dipole parameterization for F2 of the proton.

shows that the proton’s magnetization density extends much further than its charge density (110).
This is surprising because it contradicts simple naı̈ve intuition gained from the rapid fall of the
ratio GE/GM with increasing momentum transfer (3), if one assumes that GE (GM ) is related to the
spatial extent of the charge (magnetization) density.

4.4. Noncylindrically Symmetric Transverse Charge Density and Shape
of the Nucleon
Carlson & Vanderhaeghen (80) computed the transverse charge density ρN

T (b) in a given state
of transverse polarization For the case that the polarization is in the x direction, their result is
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How well are these known now?
• Analyze effect of experimental uncertainty 

and due to finite range of Q2 - incompleteness

19

Proton transverse charge density

Venkat, Arrington,  Miller,  Zhan  new analysis-

2

limited and can be written as a discrete Fourier series
involving F (Q2). This result, known as the Nyquist-
Shannon [7] sampling theorem, enables us to asso-
ciate the density at a given range of values of b with
a discrete value of the momentum transfer, see Eq. (3)
below (which we denote as the finite radius approxi-
mation FRA). The equivalence between the FRA and
the Bessel series expansion technique is also estab-
lished.

Sect. III is concerned with exploring the the valid-
ity and utility (which depends on the number of terms
needed in the discrete Fourier series) of the FRA us-
ing examples in which the form factor is given by a
monopole (M) or dipole (D) form. Sect. V is con-
cerned with the reality that the proton electromag-
netic form factors are not known as analytic func-
tions. Instead, form factors GE,M , F1,2 (with uncer-
tainties ) measured at discrete values of Q2 up to a
finite maximum value Q2

max are known. This means
that ρ is known only within some uncertainties, and
a technique to determine the uncertainties in ρ must
be developed. This is accomplished by using the val-
ues of Fi ± dFi in the FRA. Estimates of the effects
arising from form factors evaluated at Q2 > Q2

max ,
the effects of incompleteness, are also provided. The
paper is concluded with a brief summary.

II. GENERAL CONSIDERATIONS

JRA: A simpler overview of the assumptions and
approach would be very helpful. (GAM: this is done
above.) The only assumption made (that I see) is that
the ρ = 0 above b = R, but later there is a comment
about the assumption that F (Q2) = 0 above some
unspecified Q2. ( GAM:this comment is removed.)
Also, expanding a little more on the connection be-
tween N, R, and Q2, in the context of fitting to be
done later, would help clarify this. (GAM: this is
done below.) Also, it would set up things nicely if you
state after giving eq.1 that this can be used to extract
the density for any well-behaved fit to F (Q2), but then
point out that an expansion is useful for determining
the error in the density, especially for contributions
beyond the measured regions in Q2, that would help
the later sections where it seems strange to start with
the exact answer and then follow up with the approx-
imate solution.(GAM: this is done below.)

Intuitively, we expect particles to be localized.
That is, we expect densities associated with the par-
ticle to be well approximated by functions that are
zero outside some maximum radius. This assump-
tion, called the finite radius approximation (FRA),
greatly simplifies the relationship between form fac-

tors and their associated densities.
Let ρ(b) be a two-dimensional transverse density

function (we later take this to be charge or magneti-
zation density) and let F (Q2) be the associated form
factor. The transverse density is given by

ρ(b) =
1

(2π2)

∫
d2qe−iq·b F (Q2 = q2)

=
1

2π

∫
QdQJ0(Qb)F (Q2), (1)

with the azimuthal symmetry of ρ obtained from the
Lorentz invariant form of F in the space-like region
with q+ = 0. If one knows F (Q2) exactly for all
values of Q2 the transverse density is known immedi-
ately. However, one only knows F (Q2) within exper-
imental uncertainties for a finite range of Q2. This
means that ρ is known only within some uncertain-
ties, and it is necessary to develop a technique to
determine the uncertainties in ρ.

We proceed by assuming that ρ(b) = 0 for b ≥ R,
where R is a finite distance. Since the functions ρ, F
are Fourier transforms, F is band-limited. We pro-
ceed in the spirit of the Nyquist-Shannon sampling
theorem. The function ρ can be expanded as

ρ(b) =
∞∑

n=1

cnJ0(Xn
b

R
), (2)

where Xn is the n-th zero of J0, and cn is given ap-
proximately by the formula

cn ≈ c̃n =
1

2π

2

R2J1(Xn)2
F

(
(
Xn

R
)2

)
. (3)

The above equation Eq. (3), which is the two-
dimensional version of [7], is the central formal re-
sult of this paper. Using this in Eq. (2) yields the
following expression for ρ(b):

ρ(b) =
1

πR2

∞∑

n=1

J1(Xn)−2F (Q2
n)J0(Xn

b

R
), (4)

with

Qn ≡
Xn

R
. (5)

The result Eq. (4) is the central phenomenological
result because it tells us that measuring a form fac-
tor at Q2

n provides information about the density at
values of b < R/Xn. This is because Bessel functions
are of the order of unity only for values of arguments
less than that of its first zero.
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FIG. 9: The true magnetization density ρm. The uncer-
tainties are numerically negligible.

C. Extraction of ρm(b)

We now turn to the true transverse magnetic den-
sity of Eq. (31). This Fourier transform involves
J1(Qb) and therefore the FRA corresponds to that
of Eq. (19) and Eq. (20), with λ = 1. Using this ex-
pansion, instead of simply taking the derivative of ρ2,
allows an expansion in basis functions that explicitly
vanish at b = R2. Then the FRA gives the result:

ρFRA
m =

1

πR2
2

∞∑

n=1

J−2
2 (X1,n)bQ1,nF2(Q

2
1,n)J1(Q1,nb),

Q1,n ≡
X1,n

R2
(35)

Once again we include the effects of the experimen-
tal error and the incompleteness error. This latter
error is larger in this case than for ρ2 because of the
explicit factor of X1,n. The result for ρM and its er-
ror bands are plotted in Fig. 9. This quantity has

a broader spatial extent than ρ2, possibly resulting
from the importance of the pion cloud in causing the
anomalous magnetic moment. The uncertainties on
this quantity are greater than for the other densities.
Future measurements extending knowledge of F2 to
higher values of Q2 would reduce these higher uncer-
tainties.

VI. SUMMARY

This paper is concerned with obtaining a general
method to determine information about densities in
the transverse plane. The use of Bessel series expan-
sion, augmented by the finite radius approximation
FRA of Eq. (2), Eq. (3), Eq. (19) and Eq. (20) al-
lows us to determine the effects of experimental un-
certainties and also allows us to estimate the effects
of the incompleteness error caused by a lack of mea-
surements at large values of Q2. The method is ap-
plied to analyze electromagnetic form factors. We
can see from Fig. 7 and Fig. 8 that the errors associ-
ated with the transverse charge density and the two-
dimensional Fourier transform of F2 are very small.
The anomalous magnetization density ρM , Fig. 9, is
also reasonably well determined, but future measure-
ments extending our knowledge of F2 to higher values
of Q2 would reduce the existing uncertainties.
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Connection to proton radius puzzle: 
Why GE seems like FT of density

21

Leading order interaction in atomic physics

Nucleon vertex is matrix element of �0 between proton on-shell spinors

V (r) = e2
R d3q

(2⇡)3
GE(|~q|2)

|~q|2 ei~q·~r (q0 = 0 Coulomb gauge)

V (r) = e2

4⇡

R
d3r0

|~r�~r0| (3DimFTof GE(|q̃|2))
3DimFTof GE(|q̃|2) acts as charge density for proton Coulomb interaction
In atomic physics r2p ⌘ �6G0

E(Q
2 = 0)

Extractions of r2p using H atom di↵ers from that of muonic H

Electron scattering experiments are challenged



Proton structure: issues needing 
more than form factors

• Proton is complicated object consisting of 
many Fock space configurations: 
!
!
!

• These configurations have different spatial extents 
• PLC - point like configurations (small size) 
• BLC -blob like configurations (large size) 
• Hypothesis of pert. QCD - form factors at high 

momentum transfer are caused by PLC 22

3q , 4qq̄ , 4qq̄g , 3qg , 3q2g · · ·



Why  PLC ?
Example:  e-p scattering 

• At high enough Q an exclusive  interaction occurs  
   if the transverse size of the hadron is  
   smaller than the equilibrium size. 
• Perturbative reasoning-also non-perturbative 

Momentum of exchanged gluon ~Q, separation ~1/Q



Why  not PLC ?
 e-p scattering 

Transverse size not affected –no PLC 
!
Interesting dynamical question about QCD –do PLC exist 
and participate? 
Making PLC is squeezing- and is the interesting part

Feynman mechanism 

γ

Final

Initial

x=1

PLC vs Feynman mechanism



Implications of PLC vs Feynman
• Color transparency   High momentum transfer 

turns the proton into a color neutral Point 
Like Configuration- PLC 

• These do not interact, not absorbed by 
nuclei, cast no shadow 

• Quantum mechanical invisibility

25

small size- limited 
interaction 

Squeeze and  
freeze

⇡, ⇢, p

Study in (e,e’p), (e,e’,Pi) etc on nuclei 

Nucleus



Implications of PLC vs Feynman- EMC 
Effect Suppression of PLC in medium 

place in medium:  

normal size components attracted energy goes down  

PLC does not interact- color screening 

energy denominator increased,  PLC suppressed 

quarks in bound protons lose momentum in 
medium

free

                         Studied in Nuclear DIS  

Lattice  FF calculations could be extended  to tell  PLC vs Feynman
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Pion form factor
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of partons is valid. Setting the transverse center of momentum of a state of total very large momentum p+ to zero as
in Eq. (3), allows the transverse distance b relative to R to be defined.

Next we relate the charge density

ρ∞(x−,b) =
⟨p+,R = 0, λ| ρ̂∞(x−,b) |p+,R = 0, λ⟩

⟨p+,R = 0, λ|p+,R = 0, λ⟩ , (4)

to Fπ(Q2). In the DY frame no momentum is transferred in the plus-direction, so that information regarding the x−

dependence of the distribution is not accessible. Therefore we integrate over x−, using the relationship

q†+(x−,b)q+(x−,b) = eibp+x−
e−ibp·bq†+(0)q+(0)eibp·be−ibp+x−

, (5)

to find

ρ(b) ≡
∫

dx−ρ∞(x−,b) =
〈

p+,R = 0, λ
∣

∣ ρ̂∞(0,b)
∣

∣p+,R = 0, λ
〉

/(2p+). (6)

Furthermore, the use of Eqs. (5,3,2) leads to the simplification of the right-hand-side of the above equation:

ρ(b) =

∫

d2q

(2π)2
Fπ(Q2 = q2)e−iq·b, (7)

where ρ(b) is termed the transverse charge density, giving the charge density at a transverse position b, irrespective
of the value of the longitudinal position or momentum. This relation between an integral of the three-dimensional
infinite momentum frame density and the electromagnetic form factor is our principal new formula. Previous results
[5, 6, 7, 11, 12] involved the integral over the longitudinal momentum fraction x of the impact parameter parton
distribution function (pdf) q(x, b), which gives the charge density for a quark at position b for a momentum fraction
(of the plus-component) x. The equality of the respective integrals over x− or x of the quantities ρ∞(x−, b) and q(x, b)
is an example of Parseval’s theorem. The central charge density of the pion is determined by ρ(b = 0), because the
longitudinal dimension is Lorentz contracted to essentially zero in the infinite momentum frame

Recent pion data[1, 2] provide an accurate measurement of the pion form factor up to a value of Q2 = 2.45 GeV2.
Their analysis includes an assessment of the influence of the necessary model dependence caused by extracting the
form factor from the measured cross sections on the experimental error bars. The existing data for the pion form
factor show that it is well represented by the monopole form

Fπ(Q2) = 1/(1 + R2Q2/6), (8)

with R2 = 0.431 fm2. A better representation of the data may be a monopole plus dipole [2] which involves the square
of the term of Eq. (8), but any form involving the monopole term leads to a singular central charge density. This is
because the use Eq. (8) in Eq. (7) gives the result:

ρ(b) =
3K0

(√
6b

R

)

πR2
, (9)

where K0 is modified Bessel function of rank zero. For small values of b this function diverges as ∼ log(b). This
divergence is very surprising because the charge density we are considering measures a valence quark operator between
eigenstates of the full Hamiltonian. The divergences of quark distribution functions that occur at small values of
Bjorken x do not occur here. Any model, such as vector meson dominance or holographic QCD [13, 14, 15] that yields
a monopole form factor has a central density with a logarithmic divergence..

Intuition regarding a possible singularity in the central charge density may be improved by considering other
examples. Suppose that the non-relativistic (NR) limit in which the quark masses are heavy is applicable. In this
case, the pion would be a pure qq̄ object and the charge density is the Fourier transform of the form factor. Given
the form factor of Eq. (8) the three-dimensional density is uniquely given by

ρNR(r) =
3

2 π r R2
e

−
√

6 r
R (10)

where r is the distance relative to the pion center of mass. If one takes r =
√

b2 + z2 as demanded by the rotational
invariance of the non-relativistic wave function, then one finds

∫ ∞
−∞ dzρNR(r) is equal to ρ(b) of Eq. (9). This is

expected because in the NR limit the charge density is the same in all frames, including the infinite momentum

Singular - varies as log (b)  
small b, log(log(b)) in pQCD
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FIG. 1: (Color online) Q2Fπ(Q2). Pion form factor data as plotted in [2]. The data labeled Jlab are from [2]. The data Brauel
et al. [28] and that of Ackermann et al. [29] have using the method of [2]. The Amendola data et al. are from [30] The
data point labeled PionCT is from [31]. The (red) dashed curve uses the monopole fit Eq. (8) and the (black) solid line the
constituent quark model of [27].

[4] Our notation is that x± ≡ (x0±x3)/
√

2, p± ≡ (p0±p3)/
√

2, and pµxµ = p−x++p+x−−p·b. The coordinates perpendicular
to the 0 and 3 directions are denoted as b and p.
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Use of data for the pionic electromagnetic form factor obtained from e+e− anni-
hilation and electron scattering experiments places tighter constraints on the pionic
transverse density than using form factor measurements taken at space-like momen-

tum transfers. We show that the transverse charge density ρ(b) is well-determined
for distances b greater than about 0.3 fm. The relationship between ρ(b) and the
presence of point-like qq̄ configurations (PLC) of the pion is discussed. We find that

the data allow a significant presence of PLC.
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I. INTRODUCTION

Learning how QCD describes the interaction and existence of elementary particles is one
of the central goals of nuclear physics. To do this, it is necessary to understand the pion, a
nearly mass-less excitation of the QCD vacuum with pseudoscalar quantum numbers. The
pion plays a central role in nuclear and particle physics as the carrier of the longest range force
between nucleons and as a harbinger of spontaneous symmetry breaking. The importance of
the pion has been recognized by an intense level of both experimental and theoretical activity
aimed at measuring its properties and understanding its structure. Recent measurements of
the pion electromagnetic form factor, Fπ have been made for space-like momentum transfers
[1, 2] and new ones are planned [3]. Moreover, many experiments have used e+e− annihilation
to determine Fπ for time-like momentum transfers. [4–6].

It is natural to attempt to use measurements of Fπ to determine properties such as the
charge density. But one needs a model-independent treatment of the spatial structure of
the pion to make a proper analysis. The recently proposed concept of transverse densities
[7, 8] provides a model-independent way to interpret form factors. See [9] for a review of the
significant relevant literature. Transverse densities are 2–dimensional Fourier transforms of
the elastic form factors that are matrix elements of true density operators. They describe the
distribution of charge and magnetization in the plane transverse to the direction of motion
of a fast hadron. Transverse densities provide an unambiguous spatial interpretation for
systems in which the motion of the constituents is relativistic, are closely related to the
parton picture of hadron structure in high–energy processes and correspond to a reduction
of the generalized parton distributions describing the distribution of quarks/antiquarks with

NT@UW-10-15

Pionic Transverse Density From Time-like and Space-Like Probes

Gerald A. Miller1, Mark Strikman2, Christian Weiss3

1 University of Washington, Seattle, WA 98195-1560
2 Pennsylvania State University, University Park, PA 16802

3 Theory Center, Jefferson lab, Newport News, VA 23606

(Dated: September 10, 2010)

Use of data for the pionic electromagnetic form factor obtained from e+e− anni-
hilation and electron scattering experiments places tighter constraints on the pionic
transverse density than using form factor measurements taken at space-like momen-

tum transfers. We show that the transverse charge density ρ(b) is well-determined
for distances b greater than about 0.3 fm. The relationship between ρ(b) and the
presence of point-like qq̄ configurations (PLC) of the pion is discussed. We find that

the data allow a significant presence of PLC.

PACS numbers:

Keywords: form factor, vector meson, pion, dispersion relation

I. INTRODUCTION

Learning how QCD describes the interaction and existence of elementary particles is one
of the central goals of nuclear physics. To do this, it is necessary to understand the pion, a
nearly mass-less excitation of the QCD vacuum with pseudoscalar quantum numbers. The
pion plays a central role in nuclear and particle physics as the carrier of the longest range force
between nucleons and as a harbinger of spontaneous symmetry breaking. The importance of
the pion has been recognized by an intense level of both experimental and theoretical activity
aimed at measuring its properties and understanding its structure. Recent measurements of
the pion electromagnetic form factor, Fπ have been made for space-like momentum transfers
[1, 2] and new ones are planned [3]. Moreover, many experiments have used e+e− annihilation
to determine Fπ for time-like momentum transfers. [4–6].

It is natural to attempt to use measurements of Fπ to determine properties such as the
charge density. But one needs a model-independent treatment of the spatial structure of
the pion to make a proper analysis. The recently proposed concept of transverse densities
[7, 8] provides a model-independent way to interpret form factors. See [9] for a review of the
significant relevant literature. Transverse densities are 2–dimensional Fourier transforms of
the elastic form factors that are matrix elements of true density operators. They describe the
distribution of charge and magnetization in the plane transverse to the direction of motion
of a fast hadron. Transverse densities provide an unambiguous spatial interpretation for
systems in which the motion of the constituents is relativistic, are closely related to the
parton picture of hadron structure in high–energy processes and correspond to a reduction
of the generalized parton distributions describing the distribution of quarks/antiquarks with

2

respect to longitudinal momentum and transverse position [10],[11].
Recently Strikman and Weiss [12] showed how to use time-like data and a dispersion relation

for the nucleon form factor to study the transverse density of the nucleon and elucidate its
long-range structure. Our intent here is to use both time-like and space like data, along with a
dispersion relation to determine the pionic transverse density. We shall find that this approach
enables a much more precise determination than does the use of only space-like data [8].

The transverse density of the pion ρ(b) is determined from Fπ measured at space-like
momentum transfers as

ρ(b) =
1

(2π)

∫
∞

0

dQQJ0(Qb)Fπ(Q2) (1)

The pion form factor can be written in terms of a dispersion relation based on the idea that
the singularity of Fπ(t) are confined to a cut along the real axis from t = 4m2

π to infinity: [13]

Fπ(t) =
1

π

∫
∞

4m2
π

dt′
ImFπ(t′)

t′ − t + iϵ
. (2)

The asymptotic behavior expected from perturbative QCD, limt→∞ Fπ(t) ∼ αs

s allows the use
of an unsubtracted dispersion relation. The use of Eq. (2) in Eq. (1) leads to the result [12]

ρ(b) =
1

2π

∫
∞

4m2
π

dtK0(
√

tb)
ImFπ(t)

π
. (3)

The exponential drop-off of the modified Bessel function, K0 causes the integrand of Eq. (3)
to drop rapidly with increasing values of t. Moreover, high quality cross-section data exist for
values of t up to about 1 GeV, so that we can hope to be able to determine ρ(b) for values of
b at least as large as b ∼ 1 GeV−1=0.2 fm.

To proceed we need to know ImF , which is not directly measured. The e+e− annihilation
experiments measure a cross section that is proportional to |Fπ|2. Therefore a model is needed.

II. THE MODEL FORM FACTOR

In the time-like region near threshold the form factor is dominated by the effects of the ρ
meson. The effects of ρ0 − ω mixing are also clearly observable. Many workers generalized
this to a set of ρ meson resonances. A recent and very detailed treatment, which represents
data for momentum transfers far above the ρ resonance, was developed in [14]. This model
is constructed to be in accord with constraints imposed by analyticity and isospin symmetry.
It incorporates behavior at high energies that is consistent with perturbative QCD and is
based on plausible assumptions derived from the quark model, vector meson dominance and a
pattern of radial excitations expected from dual resonance models. The model provides form
factors in agreement with experimental results for space-like as well as time-like momentum
transfers. Although this work was published prior to the appearance of recent data [1, 2], it
predicts form factors in accord with that data.

A brief description of the model’s details is provided here, but the original paper [14] and
references therein contain complete information. The model includes the first four rho mesons
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to drop rapidly with increasing values of t. Moreover, high quality cross-section data exist for
values of t up to about 1 GeV, so that we can hope to be able to determine ρ(b) for values of
b at least as large as b ∼ 1 GeV−1=0.2 fm.

To proceed we need to know ImF , which is not directly measured. The e+e− annihilation
experiments measure a cross section that is proportional to |Fπ|2. Therefore a model is needed.

II. THE MODEL FORM FACTOR

In the time-like region near threshold the form factor is dominated by the effects of the ρ
meson. The effects of ρ0 − ω mixing are also clearly observable. Many workers generalized
this to a set of ρ meson resonances. A recent and very detailed treatment, which represents
data for momentum transfers far above the ρ resonance, was developed in [14]. This model
is constructed to be in accord with constraints imposed by analyticity and isospin symmetry.
It incorporates behavior at high energies that is consistent with perturbative QCD and is
based on plausible assumptions derived from the quark model, vector meson dominance and a
pattern of radial excitations expected from dual resonance models. The model provides form
factors in agreement with experimental results for space-like as well as time-like momentum
transfers. Although this work was published prior to the appearance of recent data [1, 2], it
predicts form factors in accord with that data.

A brief description of the model’s details is provided here, but the original paper [14] and
references therein contain complete information. The model includes the first four rho mesons

Dispersion relation 
uses time-like data

Low t dominates 
except for very small 
values of b 
!
Model needed for 
high t: C. Bruch et al 
E. J Phys.C39, 41
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• Data is below the monopole form 
• Uncertainy in pion transverse density dominated by 
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Pion transverse charge density and the edge of hadrons
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We use the world data on the pion form factor for space-like kinematics and a technique previously used to
extract the proton transverse densities to extract the transverse pion charge density and its uncertainty due the
incomplete knowledge of the pion form factor at large values of Q2 and the experimental uncertainties. The pion
charge density at small values of impact parameter b < 0.1 fm is dominated by this incompleteness error while
the range between 0.1–0.3 fm is relatively well constrained. A comparison of pion and proton transverse charge
densities shows that the pion is denser than the proton for values of b < 0.2 fm. The pion and proton transverse
charge densities seem to be the same for values of b = 0.3–0.6 fm. Future data from Thomas Jefferson National
Accelerator Facility (JLab) 12 GeV and the Electron-Ion Collider (EIC) will increase the dynamic extent of the
form factor data to higher values of Q2 and thus reduce the uncertainties in the extracted pion transverse charge
density.
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I. INTRODUCTION

Measurements of form factors play an important role
in our understanding of the structure and interactions of
hadrons based on the principles of quantum chromodynamics
(QCD). One of the simplest hadronic systems available for
study is the pion, whose valence structure is a bound state
of a quark and an antiquark. Its elastic electromagnetic
structure is parameterized by a single form factor Fπ (Q2).
Calculations of the pion charge form factor have been used
to investigate the transition from the low-momentum transfer
confinement region to the regime where perturbative methods
are applicable [1,2]. There is a long history of experimental
measurements [3–20]. In particular, Fπ (Q2) has been mea-
sured at space-like momentum transfers through pion-electron
scattering and pion electroproduction on the nucleon with high
precision up to Q2 = 2.5 GeV2, and new measurements are
planned with the 12-GeV era at the Thomas Jefferson National
Accelerator Facility (JLab) [21,22] and envisioned for a future
Electron-Ion Collider (EIC) [10].

The concept of transverse charge densities [23] has emerged
recently [24,25] as a framework providing an interpretation
of electromagnetic form factors in terms of the physical
charge and magnetization densities. It has been explored in a
number of recent works [26–31]. These transverse densities are
obtained as two-dimensional Fourier transforms of elastic form
factors and describe the density of charge and magnetization
in the plane transverse to the propagation direction of a fast
moving nucleon. They are related to the generalized parton
distributions (GPDs) [32–34], which are expected to provide
a universal (process-independent) description of the nucleon,
and simultaneously encode information on parton distributions
and correlations in both momentum (in the longitudinal
direction) and coordinate (in the transverse direction) spaces.

There have been two previous analyses of the pion trans-
verse charge density [27,30]. In the first a wide range of models

*marcoapc@jlab.org

was used. No estimate of the uncertainty caused by incomplete
kinematic knowledge of the form factor was made. The second
was based on data taken in the time-like region and extended
to the space-like region through the use of dispersion relations
and models needed to obtain the separate real and imaginary
parts of the observable quantity |Fπ (Q2)|2. The present paper
is aimed at avoiding models and determining the impact of
potential new experiments.

In particular, the goal of the present analysis is to evaluate
the world’s data on the space-like pion form factor, to extract
the corresponding pion transverse charge density within cur-
rent uncertainties, and to estimate the influence of the planned
experiments on the pion transverse charge density. Examining
the current data requires forming a superset with a single global
uncertainty, taking into account the individual uncertainties
and the differences in the form factor extraction method. This
is done in Sec. II. We use the finite radius approximation
technique applied to analyze the proton form factor data
described in Ref. [31] to estimate the uncertainty due to the
limited kinematic coverage of the currently available data in
Sec. III. Results for the pion transverse charge density are
presented in Sec. IV. An interesting application of transverse
charge densities is the analysis of the spatial structure of the
proton’s pion cloud. Recent work [29] found that the nonchiral
core of the charge density is dominant up to rather large
distances ∼2 fm implying a large proton core. The proton
and pion transverse charge density are compared in Sec. V,
and the impact of future experiments is assessed in Sec. VI.
Our analysis is consistent with the general trends of the pion
charge density reported by the authors of Ref. [27], the present
analysis is of higher precision and more extensive.

II. EXTRACTION OF THE PION FORM FACTOR
FROM WORLD DATA

The pion’s elastic electromagnetic structure is parame-
terized by a single form factor Fπ (Q2), which depends on
Q2 = −q2, where q2 is the four-momentum squared of the
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behavior (∼1/Q2), which results in a singularity at the center
of the pion [27,30]. Though the mean value of the pion
transverse charge density is not singular at b = 0, our results
are compatible with such a singularity within the uncertainty.
The incompleteness error is likely overestimated as we chose
two very extreme models resulting in a very conservative
incompleteness error band (given by the difference between
the incompleteness error calculated using the monopole and
LF models). Future high Q2 data like those discussed in Sec. VI
will significantly narrow down the error band by constraining
the models and thus reducing the incompleteness error at
intermediate and small distances.

IV. PION TRANSVERSE CHARGE DENSITY

We turn to our stated goal of using the world data on
the space-like pion form factor to extract the pion transverse
charge density. Figure 4 shows the pion charge density
evaluated using the series expansion of Eq. (7) with the
experimental uncertainty based on our fits of Fπ (Q2) (from
Fig. 2) and with the incompleteness error estimated using the
monopole and LF models as described above in Eq. (8).

As we are working in polar coordinates, the spatial
transverse element of area is d2b = 2πbdb, for a given impact
parameter b. Thus Fig. 4(b) shows the pion transverse charge
density multiplied by the Jacobian b.

For ρ(b) the uncertainties due to the incompleteness error
for b > 0.1 fm are relatively small compared to the ones for
the region b < 0.1 fm. This is because pion form factor data
are readily available at low values of Q2 (large values of
impact parameter b) and, as a result, ρ(b) is well determined
in that region. On the other hand, in the region b < 0.1 fm
the incompleteness error is very large, which is due to the
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FIG. 4. (Color online) (a) The pion transverse charge density (red
curve) calculated from the two-dimensional (2D) Fourier transform of
the pion form factor. (b) The pion transverse charge density multiplied
by the Jacobian b. Uncertainties from experimental Fπ (Q2) data are
represented by the black/hatched band, while the incompleteness
error was estimated using the monopole model (blue band) and the
LF model (gray band).

lack of the pion form factor data at very large values of Q2.
The oscillatory behavior can be attributed to the truncation of
the Bessel function series of Eq. (7). However, the choice of
R = 2 fm is not physically relevant for our result. Tests of
the sensitivity of our results for R larger than 2.0 fm show no
significant change in the pion transverse charge density within
the uncertainties. The oscillations are due to the finite range in
Q2 of the experimental data available for the Fourier transform.
Using values of R larger than 2.0 fm increases the number of
terms in the series, but does not reduce the oscillations of the
incompleteness error.

V. PROTON PION CLOUD AND PION CHARGE DENSITY

Recent work [29] explored the proton transverse charge
density finding that the nonchiral core is dominant up to
relatively large distances of ∼2 fm. This suggests that there
is a nonpionic core of the proton, as one would obtain in the
constituent quark or vector meson dominance models. One
does not usually think of the pion having a meson cloud
since a, e.g., ρπ component would involve a high excitation
energy. Therefore it is interesting to compare the proton and
pion transverse charge densities as given by numerically stable
series as in Eq. (7). Figures 5 and 6 compare proton and pion
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FIG. 5. (Color online) (a) Comparison of the pion transverse
charge density (red curve) to the proton transverse charge density
(from Ref. [31]) shown in the green band. The uncertainties for
the pion transverse charge density are as in Fig. 4. The green band
for the proton includes both the experimental and incompleteness
error. The proton error band is smaller as compared to the pion
because the proton form factor is well known over a larger range
in Q2. The two transverse charge density curves (red solid and green
solid lines) coalesce in the region b > 0.3 fm within the uncertainty
while the pion transverse charge density appears denser than that
of the proton in the region b < 0.2 fm. (b) Ratio of pion to proton
transverse charge densities (red solid curve). Here the error bands
shown denote the uncertainty on the ratio of pion to proton charge
density. The error band is dominated by the pion incompleteness error
so we keep the same coloring and shading as in panel (a) of this figure
to indicate the individual uncertainty contributions.
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FIG. 2. (Color online) Empirical fit to the experimental Fπ (Q2)
data (black/hatched band) used to evaluate the pion transverse charge
density. The band represents the systematic uncertainties due to
combining the different measurements. The error bars represent the
statistical and systematic uncertainties of the individual measure-
ments. The curves are the same as shown in Fig. 1.

our analysis we thus use a three-parameter empirical fit form
as follows:

Fπ (Q2) = A · 1
(1 + B · Q2)

+ (1 − A) · 1
(1 + C · Q2)2

.

(1)

The parameter A denotes the fractional contribution of
the two terms to the overall fit. Equation (1) imposes the
normalization condition Fπ (Q2 = 0) = 1. We vary all of the
values of the parameters A, B, and C simultaneously to obtain
the present fit. Note that the slope of Fπ (Q2) at Q2 → 0
GeV2 is constrained by the world data set for low values
of Q2 [11] and our fit incorporates this information. Curves
with the form of Eq. (1) were fitted to the data. For each fit,
the experimental points were randomly recreated following a
Gaussian distribution around their central values. The results
of these fits are shown in the black/hatched band in Fig. 2. We
find the best coefficients for these fits to be A = 0.384 ± 0.071,
B = 1.203 ± 0.101 GeV−2, and C = 1.054 ± 0.080 GeV−2

with χ2 = 1.64, corresponding to a probability of 99%. Using
these coefficients we extract a value of rπ of 0.641 ± 0.025 fm,
which is consistent with the value extracted from the world data
0.672 ± 0.008 fm [11].

The dominance of the first term over the second term in the
present fit differs from the result of the authors of Ref. [8],
who found the first dominant. The constraints on the fit in
Ref. [8] are different from our present fit in that their values of
B and C were kept fixed and only the fractional contribution
A was fitted. Furthermore, our present fit included additional
data points up to Q2 = 9.8 GeV2. The impact of the additional
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FIG. 3. (Color online) Uncertainties of the pion transverse charge
density due to Fπ (Q2) experimental data uncertainties σEXP

(black/hatched band) and the incompleteness error, when considering
the monopole model (blue band) or the LF model (gray band).
The incompleteness error is estimated using the difference between
two models that describe the existing data well, but have different
asymptotic behavior: $MONOPOLE and $LIGHT−FRONT. $MONOPOLE goes
to infinity as b → 0 fm due to the 1/Q2 asymptotic behavior of
the monopole form. The total uncertainty on the pion transverse
charge density is the sum of the experimental uncertainties and
the incompleteness error. This provides an uncertainty band and all
existing data and all other models that describe them fall in between.
Future data will narrow this band as discussed in the text.

higher Q2 data points on the present fit is small due to their
large experimental uncertainties; the fit parameters change by
less than 0.5%. However, including these points here despite
their large uncertainties is important for the truncation of the
series expansion in Eq. (7), and the resulting incompleteness
error. This error results from the region in Q2 where no
measurements exist at all. As Fig. 3 shows, the incompleteness
error dominates over the experimental error.

III. EXTRACTION OF THE PION TRANSVERSE
CHARGE DENSITY

We apply the method of the authors of Ref. [31] to studying
the pion. In particular, the pion transverse charge density ρπ (b)
is the matrix element of the LF density operator integrated over
longitudinal distance [28] and is given by the two-dimensional
Fourier transform of the space-like pion form factor Fπ (Q2)

ρπ (b) = 1
(2π )2

∫
d2qe−iq⃗·b⃗Fπ (Q2), (2)

where q⃗ 2 = Q2. The transverse density ρπ (b) denotes the
probability that a charge is located at a transverse distance
b from the transverse center of momentum with normalization
condition

∫
d2bρπ (b) = 1. If we consider the azimuthal
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predicts a form factor that falls below the prediction of pQCD
at Q2 greater than about 10 GeV2, and falls rapidly at higher
values. There is no contradiction with the prediction of pQCD.
In any case, it is therefore absolutely and manifestly clear that
obtaining data at higher values of Q2 is essential to providing
further understanding. Such data could provide support for
or rule out either constituent quark models or current pQCD
evaluations of Fπ . If an assumption that the central density is
nonsingular is correct, the form factor will fall as described
by constituent quark models. On the other hand, if asymptotic

pQCD is valid, the central charge density would be singular—a
remarkable and interesting fact of nature.
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PLC existence: yes or no?  
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Model Singular (b=0) PLC Feynman

AR No Yes Yes

Spectral Yes YES (low Q) Yes

NJL No NO Yes

No one to one correspondence between b=0 sing., PLC!
Need more models, ultimately lattice

Summary of pion models



Summary
• Much data exist, Jlab12 will improve data set, many 

experiments -talks here Form factors needed 
•  Charge density is not a 3 dimensional Fourier     

transform of GE  

• Interpret form factor as determining transverse 
charge and magnetization densities 

• Nucleon transverse densities known now to high 
precision, neutron central t.density is negative 
caused by valence quarks 

• Pion transverse density known fairly well, it is 
singular at origin 

• Form factors do not tell all we want to know: 
Feynman vs PLC, b vs r, flavor composition, 
extension of lattice calcs (Syritsyn, Young, Portelli) 


